Greetings from Georgia Tech

An Industry – Academic Collaborative Model for EM CAD Research and Development in Packaging

Madhavan Swaminathan Joseph M. Pettit Professor in Electronics School of Electrical and Computer Engineering Director, Interconnect and Packaging Center

INTERCONNECT and PACKAGING CENTER

an SRC Center of Excellence at Georgia Tech

Georgia Tech

- □ 3D Integration
- □ CAD Research
- □ Transferring tools to Industry
- □ Summary

Interconnect and Packaging Center

IPC Technical Focus and Vision

IPC is a multi-university center supported by SRC with research focus on 3D Technologies, positioning GT to become the academic hub for 3D IC technology innovation, exploration, and discoveries

Interconnect and Packaging Center

Georgia Institute of Technology

Interconnect and Packaging Center

Georgia Institute of Technology

3D Technology Impact Forecast

3D-TSV Technologies Impact on Semiconductor business (in wafers to be processed)

Interconnect and Packaging Center

Why 3D? 3D Integration Market Drivers

Courtesy : y y vole developpement

Oct 2009

Interconnect and Packaging Center

3D Roadmap

* Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits, Volume 2, edited by Philip Garrou, Christopher Bower, Peter Ramm

* SiP White Paper V9.0

* P. Leduc, "What is 3d IC integration and what metrology is needed," in Conference on Frontiers of Characterization and Metrology for Nano electronics, Mar. 2007.

Interconnect and Packaging Center

Overcoming the Memory Wall Power of the 3D Interconnect

THE FUTURE: Intel's experimental chip has 80 cores.

Overcoming memory wall using shorter distance and higher density 3D interconnect

Ref: IEEE Spectrum Nov. 2008

Interconnect and Packaging Center

Georgia Institute of Technology

3D Multi-core System Evolution

Interconnect and Packaging Center

Georgia Institute of Technology

dorasess ngized toennooreinI QE Opportunities

3D Thermal-Electrical Design

- Thermal-electrical effect in 3D integration
- DC power drop including
- conduction and convection mode

3D Interconnect (TSV) Modeling and Characterization

- Multiple TSV coupling
- Variable capacitance
- Signal/power optimized TSV design

3D Clock Distribution

- Driving 10^5 I/Os with low jitter low skew
 Vertical clock
- Vertical Clock
 distribution
 using TSV array

3D Power Delivery

- DC drop by TSV loss
- Power noise coupling through TSV
- TSV filter & TSV Decap

3D Signaling

- Power through the transmission line
- VRM & TSV capacitor in Si-substrate
- Removing power supply plane

Interconnect and Packaging Center

Electrical-Thermal-Mechanical Multi-physics Design in 3D

* J. Xie, D. Chung, M. Swaminathan, M. Mcallister, A. Deutsch, L. Jiang, B. J Rubin, "Electrical-thermal co-analysis for power delivery networks in 3D system integration," IEEE International Conference on 3D System Integration (3DIC), Sept. 2009.

* S. M. Sri-Jayantha, "Thermomechanical modeling of 3D electronic packages," IBM Journal of Research and Development, vol. 52, no.6, Nov. 2008.

Interconnect and Packaging Center

n<mark>eiced-oO lepiticelE-lemrenT roi beeN</mark>

Thermal Distribution

Voltage Distribution

- Increasing heat flux density in 3D
- Affects power delivery
- Thermal Electrical Interaction

Uniticelt eluctio equition

Thermal profile causes change in material resistivity which changes DC drop

Interconnect and Packaging Center

n<mark>eited lepitipelE-lemredT GE</mark> An Example

Interconnect and Packaging Center

Georgia Institute of Technology

elitore lemredT

Interconnect and Packaging Center

Georgia Institute of Technology

DC Drop Variation

Increased DC due to Joule heating effect

Interconnect and Packaging Center

Stacking Order : Which is better ?

CPU on top has lower hot spot (as expected)Does this lead to acceptable DC drop ?

Interconnect and Packaging Center

Georgia Institute of Technology

Buffer Sizing with TSV

Interconnect and Packaging Center

Georgia Institute of Technology

SuoitpennopretinI GE

□ Bonding wires

(courtesy of Amkor Technology, Inc.)

(J.U. Knickerbocker et al., ECTC 2008)

(K. Kumagai et al., ECTC 2008)

Objective

Developing an efficient method to extract broadband parasitics of 3-D interconnection structures including TSVs

Interconnect and Packaging Center

Georgia Institute of Technology

Number of coupled vias can be large

Commercial EM Tools will have trouble due to the aspect ratio of these structures

Interconnect and Packaging Center

Modeling Concept

Solution States and the second states are second states are

Free from the inefficient mesh issue.

 Computational cost to model a large number of TSVs is considerably reduced.

Interconnect and Packaging Center

Modeling of Current and Charge

$$\frac{\vec{J}(\vec{r},\omega)}{\sigma} + j\omega \frac{\mu}{4\pi} \int_{V'} G(\vec{r},\vec{r}') \vec{J}(\vec{r}',\omega) dV' = -\nabla \Phi(\vec{r},\omega)$$

IE with vector potential

$$\vec{J}_{j}(\vec{r},\omega) \cong \sum_{n,q} I_{jnq} \vec{w}_{jnq}(\vec{r},\omega)$$

Approximate current using cylindrical CMBF

$$\vec{w}_{i0} = \frac{\hat{z}_i}{A_{i0}} J_0(\alpha(\vec{r} - \vec{r}_i) \cdot \hat{\rho}_i)$$

(SE mode)

$$\vec{w}_{in\{d,q\}} = \frac{\hat{z}_i}{A_{in}} J_n(\alpha(\vec{r} - \vec{r}_i) \cdot \hat{\rho}_i) \begin{cases} \cos(n\varphi_i) \\ \sin(n\varphi_i) \end{cases}$$

$$\sum_{n,q} I_{jnq} R_{imd,jnq} + j\omega \sum_{n,q} I_{jnq} L_{imd,jnq} = \Delta V_{imd}$$

Voltage equation between two interconnect nodes

Interconnect and Packaging Center

Georgia Institute of Technology

Cylindrical PMBFs for Modeling Thin Oxide

Interconnect and Packaging Center

Georgia Institute of Technology

<u>5x5 TSV Aray</u>

Near-end coupling to the center conductor at 10 GHz

Interconnect and Packaging Center

Georgia Institute of Technology

Effect of Substrate Bias on TSV

Interconnect and Packaging Center

Georgia Institute of Technology

Modified TSV Model

Interconnect and Packaging Center

Georgia Institute of Technology

Power Delivery with Variable TSV Capacitance

Courtesy : Packaging Research Center

Interconnect and Packaging Center

Georgia Institute of Technology

Thermal Aware Clock Distribution

Static/Dynamic Control for Thermal variation

3D clock distribution for power/thermal noise isolation

Interconnect and Packaging Center

3D Clock Tree with Voltage Controlled TSV

In collaboration with Prof. Sungkyu Lim, Georgia Tech

Interconnect and Packaging Center

Clock Skew Adjustment with Thermal & Bias Effect

Optimized skew under constant thermal profile
 Increase skew due to active thermal profile

Re-optimized skew using VC-TSV bias control

In collaboration with Prof. Sungkyu Lim, Georgia Tech

Interconnect and Packaging Center

Multi-scale System Level Modeling

Chip-Package Multi-scale Structures

Ratio of Dimensions = 5mm/100nm = 50000

M. Ha, K. Srinivasan, M. Swaminathan, "Chip-Package Co-Simulation with Multiscale Structures, "IEEE Electrical Performance of Electronic Packaging, 27-29 Oct. 2008 Page(s):339 - 342

Interconnect and Packaging Center

Georgia Institute of Technology

Chip – Package Transitions

Length scale 1:10,000

Interconnect and Packaging Center

Georgia Institute of Technology

How do you make the tools available to computer designers ?

Interconnect and Packaging Center

Mixed Signal Design Tools - Initial Consortium Idea Packaging Research Center

University

Methodology
Fast Algorithms
Beta Code
Model/Hardware
Correlation

Industry

Problem
Definition
User
Design Flow
Test Vehicles

EDA Companies

IntegrationInterfaces

Interconnect and Packaging Center

Mixed Signal Design Tools Consortium

Consortium Model

- □ Multiple companies join by paying membership fee
- Money is pooled to fund a group of projects
- Company members get to mentor projects and help in defining direction
- Pre-competitive research
- □ Non-exclusive, royalty free license provided to all members
- Deliverables are design/modeling tools

Mixed Signal Design Tools Consortium Joint collaboration between Georgia Tech and Politechnico di Torino 2 years (2007 – 2009) 5 companies

□ ~\$1M funding

Interconnect and Packaging Center

Ultra-Miniaturized Mobile Computing Platform

Interconnect and Packaging Center

Georgia Institute of Technology

Mixed Design Tool Consortium Collaboration between Industry, GT and P. di Torino EPCOS

□ Infineon

□ Sameer

Panasonic

Interconnect and Packaging Center

Georgia Institute of Technology

MSDT Projects

	Project	Problem Addressed	Solution Technique
	MSDT 1	Signal and Power Integrity	M-FDM
	MSDT 2	Layout level DFM	Response Surface, convolution and DOE
	MSDT 3.1	Automated library dev. for RF Passives	Augmentation with Fast Circuit Based EM Solver
	MSDT 3.2	Place & Route for RF Passives	Simulated Annealing & Partitioning
	MSDT 4	Multiscale EM Simulation	Laguerre Polynomials and FDTD/MNA
	MSDT 5	Automated design of EBG	Genetic Algorithm
	MSDT 6	RLC extraction of 3D structures	Conduction and Accumulation Mode Basis Functions
	MSDT 7	Parameterization	Rational Functions
Interconnect and Packaging Center		Georgia Institute of Technolo	Oct 2009

Tools with Input and Output Interfaces

- Based on Input from MSDT Members
- Each MSDT Tool has ASCII Input Format
- □ And ASCII (Standard Touchstone; Spice) Output Format
- Input and Output Formats defined and made available to MSDT Members
- □ Members can write interfaces to any Physical CAD tool

Interfaces developed by MSDT Consortium
 DXF
 Cadence .mcm and .brd

Design Automation for Embedded Passives

Specification

Minimize Design Iterations

RF Layout

Interconnect and Packaging Center

Automated Design Flow for Embedded Passives

Interconnect and Packaging Center

Georgia Institute of Technology

21 Component Embedded High Pass Filter Automatic Place and Route (MSDT 3.2

Interconnect and Packaging Center

Georgia Institute of Technology

dB(S(2,1)) dB(S(4,3))

dB(S(6,5))

3D Finite Difference Frequency Domain Method EM Solver - Simfony

Features of circuit-based frequency-domain formulation

- 1. Spice-like tool for full-wave 3D-EM/lumped-element cosimulation
- 2. Fast memory-efficient iterative solution for large problems
- 3. No post-processing steps necessary (for time-to-frequency conversion)

Interconnect and Packaging Center

Georgia Institute of Technology

Modeling of Band-pass Filter with MSDT 3.1

Electric Field Distributions on 1st Metal Layer at 2GHz

Interconnect and Packaging Center

Georgia Institute of Technology

Parameterized Library Development (MSDT 7)

Multi-layered Spiral Inductors

Interconnect and Packaging Center

3D Stacking

Stacking using Wirebond

Ref: R. Chatterjee, R. Tummala, "The 3DASSM Consortium: An Industry/ Academia Collaboration," online article in http://ap.pennnet.com

Interconnect and Packaging Center

Stacking using TSV

Georgia Institute of Technology

Rapid EM Modeling of Cylindrical Structures (TSVs, Wirebonds, Vias, Transitions) $\frac{J(\vec{r},\omega)}{\sigma} + j\omega \frac{\mu}{4\pi} \int_{V} G(\vec{r},\vec{r}') \vec{J}(\vec{r}',\omega) dV' = -\nabla \Phi(\vec{r},\omega)$ IE with vector potential $1 \times$ SE mode $\vec{J}_{j}(\vec{r},\omega) \cong \sum I_{jnq} \vec{w}_{jnq}(\vec{r},\omega)$ Approximate current using cylindrical CMBF $\vec{w}_{i0} = \frac{\vec{z}_i}{A_{i0}} J_0(\alpha(\vec{r} - \vec{r}_i) \cdot \hat{\rho}_i)$ $0.5 \times$ PE-d mode (SE mode) **Resultant current** $\vec{w}_{in\{d,q\}} = \frac{\hat{z}_i}{A_{in}} J_n(\alpha(\vec{r} - \vec{r}_i) \cdot \hat{\rho}_i) \begin{cases} \cos(n\varphi_i) \\ \sin(n\varphi_i) \end{cases}$ density distribution $0.5 \times$ PE-q mode (PE mode) $\sum_{n,q} I_{jnq} R_{imd,jnq} + j\omega \sum_{n,q} I_{jnq} L_{imd,jnq} = \Delta V_{imd}$

Voltage equation between two interconnect nodes

Interconnect and Packaging Center

Georgia Institute of Technology

Interconnect and Packaging Center

Georgia Institute of Technology

Spin-Off

□ No EDA company would join the consortium

- Support and further development for MSDT tools major issue
- Led to spin-off company E-System Design
 Based on consultation with MSDT members

VISIT E-SYSTEM DESIGN BOOTH AT EPEPS

Interconnect and Packaging Center

For further information:

www.epsilonlab.ece.gatech.edu www.e-systemdesign.com

Interconnect and Packaging Center

