

3D Heterogeneous Technologies for

[Memory-Processor] & [CMOS-Sensor] Stacking

Muhannad S. Bakir School of ECE, Georgia Tech Nanoelectronics Research Center (NRC)

muhannad.bakir@mirc.gatech.edu

Future Directions in Packaging (FDIP) 2010

Turn of the Century Marked Many New Paradigms ...

Many-Core Processor Emergence

L. Polka, et al., Intel Technol. J., 2007

Aggregate off-chip bandwidth:

→Today: ~ 0.8 Tbps

 \rightarrow Soon: Several Tbps

Few challenges:

-Interconnect quality & density

-Latency (inches of wire)

-Power:

 \sim 15-20% µP power used for signal I/Os

Some Challenges in Off-Chip Signaling

Energy Cost for Off-Chip Communication

Operation	Energy (pJ)
64b Floating FMA (2 ops)	100
64b Integer Add	1
Write 64b DFF	0.5
Read 64b Register (64 x 32 bank)	3.5
Read 64b RAM (64 x 2K)	25
Read tags (24 x 2K)	8
Move 64b 1mm	6
Move 64b 20mm	120
Move 64b off chip	256
Read 64b from DRAM	2000

(Bill Dally, Advanced Computing Symposium, September 16, 2009)

- •Lots of energy goes into communication
- •Need new approach to performing chip-chip signaling

3D Stacking – with Air-Cooled Heat Sink

- (+) interconnect length (1,000x length reduction)
- (+) interconnect energy (10-40x lower)
- (+) interconnect density (100x easily)
- (+ /--) system footprint
- (-) power delivery for processor
- (-) memory density
- (-) number of memory chips

3D Stacking – with Interlayer Liquid Cooling

- (+) interconnect length (1,000x length reduction)
- (+) interconnect energy (10-40x lower)
- (+) interconnect density (100x easily)
- (+ +) system footprint
- (+) power delivery for processor
- (+) memory density
- (+) number of memory chips

Impact of Novel Cooling on Power Dissipation

•Thermal 'ancillary technologies' are critical to minimizing power dissipation and increasing reliability and performance

Interlayer Microfluidic Cooling Approach for 3D ICs

Direct cooling of chip back side eliminates thermal interface resistance
Cooling on each stratum to extract >100W/cm²

•Microscale fluidic interconnection between strata

C. King et al., ECTC 2010 J. Zaveri et al., IMAPS 2009

Experimental Results

µScale Plumbing

Air-gap C4 based Electro-fluidic I/Os

Air-gap C4 Fluidic I/O

Copper Pad

- Similar to C4 based I/Os except the solder is overplated on the mold which domes after reflow
- All advantages of conventional C4 I/Os
- In addition, it enables ability to use no-flow under fill during flip chip bonding

C. King et al., ECTC 2010

Assembly of C4 Electrical and Electro-fluidic I/Os

•X-ray image of C4 Fluidic I/Os after assembly

Cross-Sectional Image After Assembly – Elec & Fluidic

- \rightarrow 100 µm diameter fluidic TSVs
- →45 μ m tall C4 fluidic I/Os
- →47 μ m tall electrical I/Os

Fluidic Testing

•Flow rate measured up to 100ml/min

C. King et al., ECTC 2010 J. Zaveri et al, IMAPS 2009

Assuming Only the Top Most Die is Switching

• When the number of chips is increased, the noise is suppressed because non-switching dice provide additional decap

• When too many dice are stacked, on-chip decap can't compensate the longer inductive TSVs.

One Layer Switching is Too Idealistic

•To maximize gain from 3D, blocks with most communication must be vertically interconnected.

• Therefore, we must consider the worst case when all the layers are switching.

Assuming All the Dice are Switching

- When all the dice are switching, the noise condition in the 3D stack is unacceptable compared to single chip case, especially for the top most die.
- We need to find ways to suppress noise!

3D Problem Needs a 3D Solution: Use of a 'Decap' Die

 \rightarrow functions as a local high-frequency energy storage

G. Huang et al., EPEP 2007

G. Huang et al, IEEE Trans. Adv. Pkging, accepted for publication

But, there is more to the story ...

3D Stacking of Electronics and MEMS/sensors

MEMS Market

"The number of different MEMS devices is large and steadily growing"

Table 3: Forecasted growth (in \$bn) of MEMS devices

Application	2005	2015
Pressure sensors	3.0	6.0
In vitro diagnostics	0.01	5.0
Read/write heads	2.0	4.0
Ink jet print heads	2.0	3.5
Optical displays	1.0	3.0
Gyroscopes	0.1	2.0
Lab-on-a-chip	0.01	2.0
Drug delivery systems	0.0	I.5
Inertial sensors	0.2	I.5
Chemical sensors	0.1	1.0
Optical switches	0.1	1.0
RF devices	0.1	1.0
Microspectrometers	0.02	0.4

*T. Marinis, Strain 2009

•MEMS/Sensors need electronics

-Signal conditioning, amplification, analysis, device actuation, etc.

•Challenges for MEMS/electronics monolithic integration:

-Most of the state-of-the-art foundry wary of preprocessed wafers

-MEMS last approach gives limited window to MEMS designers

-Limited processes, materials, and devices

- -Each monolithic process is unique
- -Increases the development time as well as NRE cost
- -Supply voltage
- -However, provides small electrical parasitics

Package Based / Hybrid Integration

- MEMS and CMOS can be manufactured <u>independently</u>
 - Shorter Time-to-Market
 - Less complex process
 - Lower Non-Recurring Expense

- Low performance due to 2D interconnects
 - Signals need to go through several millimeter of wire and package wires

Analog Devices' ADXL345 Package X-Ray Image from MEMS the Word

- Independent fabrication of CMOS and MEMS
- Performance benefits of 3D integration

There is a need for new interconnect technologies

Mechanically Flexible Interconnects

MEMS 444444 7777777777 Stress Isolation CMOS IC Package Assembly on non-MEMS planar surface 111571111 CMOS IC Potential temporary interconnections for Sensor disposable sensors CMOS IC

Disposable Sensors

- If temporary interconnections are possible...
- Cleaning the sensor is expensive if not impossible
- Cost per test can be reduced by reusing CMOS IC

H S Yang et al IITC 2010

R. Ravindran et al. ECTC 2010

Temporary Interconnections

Compliance Measurements

Compliance vs. Thickness

H S Yang et al ECTC 2010

Bio Detection in General

- To detect a particular antigen, its complimentary antibody is first bound to the sensor
 - Antigen refers to cancer markers and antibody to proteins which specifically bind the cancer markers
- Then sample is introduced
 - The antibody specifically binds the antigen if present
 - The rest of the sample is washed away

- Nanowire (NW) sensors detect the charge induced due to the presence of charged proteins bound to their surface
- Surface charge leads to either an accumulation or depletion of carriers
- Analogous to surface potential in a FET controlling depletion depth and the onset of inversion

Figure retrieved from I. Kimukin et al., Nanotechnology 17, S240 (2006).

- A top-down fabricated charge-based sensor
- Label-free detection
 possible
- Can be used to detect cancer cells

Figure retrieved from P. Nair et al., IEEE Trans. Elec. Devices 54, 3400 (2007).

BioFET - TSV Integration

- Integration with a high temperature (900C) SiNW process demonstrated
- SiNW can be <u>fabricated</u> prior to TSV due to CMPfree planarization

H S Yang et al IITC 2010

R. Ravindran et al. ECTC 2010

Disposable Sensors

Si Nanowire Sensor: Samples from Real Patients

- Shows detection of cancerous epithelial ovarian cells
- HEY -> Cancerous Cells
- IOSE -> Healthy Cells

R. Ravindran *et al*. ECTC 2010

Collaboration w/ John McDonald, Biology GT & Atlanta Northside Hospital ³⁵

1) Innovation in silicon technology without <u>**REVOLUTIONARY</u>** innovation in silicon ancillary technologies will yield progressively "performance crippled" electronic systems</u>

2) 3D stacking & novel silicon ancillary technologies are key to

- Advancing computing systems
- Enabling heterogeneous integration of electronics & MEMS/sensors