Signal Integrity Design of TSV-Based 3D IC

October 24, 2010 Joungho Kim at KAIST

joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr

TERA Terahert Interconnection and Package Laboratory

1

- 1) Driving Forces of TSV based 3D IC
- 2) Signal Integrity Issues
- 3) Noise Coupling Issues
- 4) Noise Isolation Methods
- 5) Conclusion

Major Advantages of TSV-based 3D IC

- Large interconnection density
- Small for factor
- High performance: high-bandwidth, high I/O counts
- Low power
- Potentially low cost

Key Technology for 3D IC: TSV (Through Silicon Via)

High-frequency Channel Loss in TSV

Frequency-dependent Loss of Through Silicon Via

TSV Channel Loss with Various Insulator Thickness of TSV

The Proposed TSV Equalizer using an Ohmic Contact

TSV Equalizer Performance

Eye opening by the TSV Equalizer

High speed channel loss by TSV

- High frequency loss
- Non uniform loss
- Loss increases as higher die stack and TSV numbers
- Passive and active equalization methods needed

Noise Coupling Paths in Stacked Dies using TSV

Coupling between TSVs

Terahe

14

Noise Coupling from TSV to Active Circuits

Shielding Effect Measurement: Guard Ring

nnection and Package Laboratory

Shielding Methods for TSV Coupling

Crosstalk between TSV

- High frequency coupling
- Dependent on TVS designs: dimensions and materials
- Proper shielding methods are needed
- Shielding structures can be significant overhead of chip area
- Special I/O scheme may be needed to compensate or to avoid the crosstalk effects

Vertical Noise Coupling Issues in Mixed-Signal 3D-IC

3D IC for 2.4GHz VCO in Zigbee module

Impact of Vertical Coupling on VCO Output Spur.

Solutions to Reduce Vertical Coupling in Mixed-Signal 3D-IC

• or re-distribution layer

Terahertz Interconnection and Package Laboratory 23

Vertical Coupling from On-Chip DC-DC Converter to LNA

Inductive and Capacitive Coupling Model

Time from Triggered point(ns)

KAIST

а.

SSN Sensitive Circuits in IC

- VCO: Voltage Controlled Oscillator
- PLL: Phase Locked Loop
- ADC: Analog to Digital Converter
- DAC: Digital to Analog Converter
- LNA: Low Noise Amplifier
- RF Mixers

PDN Impedance of 3D IC with On-chip Decoupling Capacitors

30

Lowering PDN impedance in TSV based 3D IC

- On-chip and Off-chip decoupling capacitors
- Lower inductance TSV,
- Higher number of TSV
- Lower inductance of PDN interconnections in RDL, on-chip, and interposer
- Lower resistance of PDN interconnections in RDL, on-chip, and interposer

PDN Noise coupling pathes in 3D IC

SSN Noise Coupling Paths

- On-chip and Off-chip PDN
- Si substrate
- Interposer substrate
- RDL patterns
- TSV
- Coupling

Clock Jitter Due to the SSN Coupling

* w/o PDN Noise

***800MHz PDN Noise**

/O PDN NOISE

*100MHz PDN Noise

IGHz PDN Noise

Noise Isolation Techniques Applicable to 3D ICs

- At Low Frequency Region
 (< several hundred MHz)
 - Off-chip decap
 - Split P/G planes
- At Mid. Frequency Region
 - (< several GHz)
 - On-chip decap
 - Embedded cap in interposer
 - Trench, MiM cap with a high K material

- At High Frequency Region
 (> tens GHz)
 - On-chip EBG in the interposer
 - Connected with TSVs
 - Design issues : High Q inductor

and Low ESR

On-Interposer EBG Structure

nnection and Package Laboratory

SEM Photograph of On-chip Active CMOS EBG

KAIST

* MagnaChip 0.18µm standard CMOS Process

42

Measured SSN Waveforms with a 3-GHz Clock Noise Input

- -TSV is the most critical interconnection structure in 3D IC.
- TSV can cause significant channel loss for high-speed signaling.
- Equalizer or specific I/O schemes are needed to support low power and high-speed data transmissions.
- -Crosstalk and coupling between TSV and active circuit need to be considered when designing the TSV arrangement configurations.
- -Vertical coupling should be considered in mixed mode 3D IC.
- Shielding structures are needed to reduce the TSV crosstalks and noise couplings.

