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The Fifth Most Referenced Transactions Paper
of the EMC Society

Dan Hoolihan, History Committee Chair

INTRODUCTION
As part of the 50th Anniversary Celebration of the EMC Society of the IEEE (1957-2007), a review and comparison of past
papers in the IEEE Transactions on Electromagnetic Compatibility was undertaken. In the four previous Newsletters, we have pub-
lished the first, second, third, and fourth most referenced papers, which are, respectively:
1. “Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field;” EMC-22,
No. 2, May — 1980, Page 119 by A. K. Agrawal, H. J. Price, and S. H. Gurbaxani.

2. “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field
Equations;” EMC-23, No. 4, November — 1981, Page 377 by Gerrit Mur.

3. “Generation of Standard Electromagnetic Fields Using TEM Transmission Cells;” EMC-16, No. 4, November — 1974,
Pages 189 -195 by Myron (Mike) L. Crawford.

4. “Frequency Response of Multiconductor Transmission Lines Illuminated by an Electromagnetic Field,” EMC-18, No. 4,
November — 1976, Pages 183-190 by Clayton R. Paul.

In this issue, we are publishing the fifth Most-Referenced EMCS Transactions paper of the first 50 years of the EMC Society
and it is written by two gentlemen; J. G. Costas and B. Boverie who were both with Sandia National Laboratories in Albu-
querque, New Mexico when the paper was written.

The title of the paper is “Statistical Model for a Mode-Stirred Chamber” and it was first published in the IEEE Transactions
on EMC in Volume 33, No. 4. in November of 1991.

Again, we hope you take the time to read and appreciate the significance of this historical article.
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[3] J. V. Evans, ‘“‘Theory and practice of ionosphere study by Thomson
scatter radar,”” Proc. IEEE, vol. 57, pp. 496-530, Apr. 1969.

[4] World Data Center A for Solar Terrestrial Physics, International
Reference Ionosphere—IRI 79, Rep. UAG-82, NOAA, Boulder,
Co.

[5} S. Brunstein, ‘‘Atmospheric attenuation and noise, and ionospheric
reflection at 9 GHz,’’ IOM 3346-89-008, Jet Propulsion Laboratory,
Pasadena, CA, Jan. 19, 1989 (internal document).

[6] M. I. Skolnik, Introduction to Radar Systems. New York: Mc-
Graw-Hill, 1980, ch. 1, pp. 4-5.

[71 R. Gagliardi, Introduction to Communications Engineering. New
York: Wiley, 1978, ch. 2, pp. 70-71.

Statistical Model for a Mode-Stirred Chamber
Joseph G. Kostas and Bill Boverie

Abstract—The probability density functions for one- and three-
dimensional fields in a mode-stirred chamber are derived and verified
with chi-square goodness-of-fit tests on experi 1 data. Maxi
likelihood s of the functions’ parameters are derived, and their
accuracy is determined as a function of the t of data. These
results are applied to estimating chamber Q. The amount of data
required for a given accuracy is determined.

I. INTRODUCTION

A mode-stirred chamber (MSC) is a test facility that makes it
possible to generate large electromagnetic fields (~ 100 V/m) with
modest-sized sources, but the price paid is that the fields are no
longer deterministic. The large fields are obtained by using a metal
room as a high Q overmoded cavity. Q’s as high as 150000 have
been reported in the literature [1]. The EM energy is injected via an
antenna inside the room, and the field strength builds up until the
loss in the room equals the input power. This also results in a
standing wave pattern and, hence, nonuniform illumination of the
test object. This, in turn, requires use of statistics to interpret the
results. Good statistics require using a wavelength (M) that is much
smaller than the room dimensions and providing some means,
usually a metal paddle wheel, for “‘stirring’’ the modes. The small
wavelength (relative to room dimensions) results in a highly over-
moded condition, the number of modes being approximately [2].

n=abc/¥

where a, b, and ¢ are the room dimensions. The mode structure is
further complicated by the test object, antenna, and paddle wheel,
making a deterministic field model impractical.

The field in an MSC is, therefore, considered to be a random
process. For a given paddle-wheel angle, the field varies with
position in the chamber in a random manner. Likewise the field at a
given point in the chamber varies randomly with paddle-wheel
angle. Tests indicate that the ratio of peak to average values remains
approximately the same throughout the chamber, provided that the
measurement point is at least a third of a wavelength from the walls
or the paddle wheel [1].
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Tests are performed using either average or peak values. For
example, a transfer function for a shielded cable can be defined as
the ratio of the voltage or current at the cable end to the incident
E-field, as a function of frequency. If the test object is measured in
an anechoic chamber, all these parameters are deterministic. How-
ever, if it is measured in an MSC, either average or peak values of
the parameters are used, for which comparable results are reported
[1]. MSC and anechoic chamber tests give comparable results,
except that any ‘‘gain’’ possessed by the test object is lost in the
MSC [3]. Normally, this difference is only a few dB.

Statistical modeling of MSC fields beyond use of averages or
peak values has received limited attention in the literature. Tests
indicated that the power received by an antenna (where the power
received is considered to be a random variable) in the chamber is
exponentially distributed [4]. The field incident on the antenna is
proportional to the square root of the received power and should,
therefore, be Rayleigh distributed. Plots of experimentally deter-
mined field probability density functions (pdf’s) appear to be
Rayleigh distributed [5]. A theoretical model indicates that the
power density is chi-square distributed with two degrees of freedom
(dof) [6], which is the same as an exponential distribution. Thus,
these three references come to the same basic conclusion. However,
as noted below, this conclusion applies to only one component of
the field; the resultant of the three components has a different
distribution.

The literature has nothing to say about uses for the pdf. One use
is derivation of optimal estimators for test quantities of interest.
Another is the derivation of the size of errors in these estimators due
to statistical sampling. Since the field is a random process, samples
are random variables, and any function of random variables is itself
a random variable. The estimators thus vary from the true value,
though the size of the error decreases with the amount of data. Both
of these uses for the pdf are considered in this paper.

This paper derives a model for the pdf of the MSC field for both
one- and three-dimensional fields. The model is verified with chi-
square goodness-of-fit tests on experimental data taken with a point
sensor (instead of the usual horn antenna). The model is then used to
derive maximum-likelihood estimators of the pdf parameters, and
the accuracy of these estimators is determined as a function of the
amount of data used to make the estimate. The result is then applied
to estimating chamber Q.

II. THEORETICAL MODEL

The only case of interest is that in which a large number of modes
are present in the MSC. In this case, the field at a point is the vector
sum of the contributions of all these modes. Moving the paddle
wheel changes the way the energy in the field is distributed among
the modes. The energy in a given mode can be thought of as a
random variable that depends on paddle-wheel angle.

Since the field at a point has a phase as well as an amplitude, six
parameters are required to fully describe the field. The six parame-
ters are in-phase and quadrature components in each of three
orthogonal directions. Each of these six components is the sum of a
large number of random variables (the mode amplitudes) and by the
central limit theorem, should be normally distributed. Furthermore,
if the measurement point is well away from any wall, it is reason-
able to assume that all six components are independent and identi-
cally distributed. Finally, the means can all be assumed to be zero if
there is not a significant direct-path signal from the antenna in the
chamber to the measurement point. This is a good assumption if the
antenna is near and pointed into a corner. (If there is a significant
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direct-path signal, the in-phase components will have nonzero
means.)

The magnitude of the resultant (vector sum of the field in the
three dimensions) is then the square root of the sum of the squares
of six identically distributed, zero mean, normal random variables
and is, therefore, chi distributed with six degrees of freedom, or

E e
F(E) = 5”87

However, most MSC measurements only respond to one dimension
of the field. This appears to be the case in [4], [5], and [6] and
implies, though the references did not so state, that the antennas
used had linear polarization. In that case, the magnitude of the
received voltage (or current) is proportional to just one dimension of
the field. Each dimension of the field has in-phase and quadrature
components and is therefore chi distributed with two dof, which is
the same as a Rayleigh distribution, or

E
J(E) = = e,
[

The chamber power density (in each dimension), and hence the
received power, is proportional to the square of the field, and is,
therefore, exponentially distributed, or

1
P) = — e P17
J(P) = ——

Recall that, in all three probability distributions, a2 is the variance
of each of the six field components.

III. EXPERIMENTAL DATA

Field measurements were made in an existing shield room, con-
verted to use as an MSC. The chamber was a metal shield room
made of clamped galvanized-steel panels. Chamber dimensions were
approximately 10 x 20 X 8 ft. Histograms were made at ten loca-
tions in the chamber for three frequencies (4, 6, and 8 GHz). Point
measurements were made using a small E-field probe with linear
polarization. The probe is a square-law device with an output
voltage proportional to the square of the E-field [7]. The probe
voltage would then be expected to be exponentially distributed. A
schematic diagram of the chamber and instrumentation system is
shown in Fig. 1.

For these tests, the tuner was moved in discrete steps of 3°. For
each tuner position, the electric field was measured and stored for
later processing. The net input power to the chamber was 0.25
m Watt.

A representative histogram is shown in Figs. 2(a) and 2(b). The
histogram is an aid in displaying the distribution of sample values.
For example, 49 electric field values lie between 0 and 0.1 V2 /m?,
18 samples lie between 0.1 and 0.2 V2 /m?, etc.

The histogram is characteristic of any probe orientation within the
chamber. These data were taken near the center of the chamber at 4
GHz. The histogram clearly has an exponential shape, except for a
few ‘‘outliers,”” i.e., values higher than those predicted by the
exponential distribution. This general result, exponential distribu-
tion with outliers, was found for all the histograms taken.

The usual check for fit between data and a distribution function is
the chi-square goodness-of-fit test. This test is based on the random
variable,

2 _ - (ki - ”i)2

X g: 1 n;
where m is the number of data intervals, k; is the number of
samples in the ith interval, and n; is the expected number of

samples in the interval if the hypothesized distribution is correct.
The x? variable will be chi-square distributed (if the amount of data
is large) with m — p — 1 degrees of freedom, p being the number
of parameters in the assumed distribution that are calculated from
the data. Obviously, the smaller x2, the more likely the distribution
is correct. The value of x? calculated from the data is compared to
a threshold value determined by the confidence level selected for the
test. If x? is less than the threshold, the hypothesized distribution is
selected as being correct. The test data supported the exponential
distribution at the 95% confidence level, even with the outliers, in
all but one case. Trimming the outliers results in the exponential
distribution being accepted in all cases.

The reason for the outliers is unclear. They could be an artifact of
the relatively low Q of the chamber (see below). They may also be
a result of the measurement being a point measurement. Other
experimenters do not report outliers [4], [5], but they used an
antenna instead of a point sensor. An antenna will average the field
over its aperture and might ‘‘average out’’ the outliers.

IV. ESTIMATORS

One of the main advantages of having a pdf for the chamber field
is that estimators and their accuracy can be calculated. The maxi-
mum-likelihood estimator (MLE) will be used here because it has
several useful properties. First, it generally leads to intuitively
reasonable estimators. Second, it is always asymptotically unbiased,
i.e., its mean is the true value if the amount of data is large. Third,
there is a useful theorem for determining the accuracy of MLE
estimators [8].

The MLE derivation involves writing the joint pdf for the data
samples, assuming the samples are independent. The pdf parameters
are then selected to maximize the value of the joint pdf. In this case
it is easier to maximize the natural log of the pdf, and since log is a
monotonic function, this is the same as maximizing the pdf. Taking
a derivative with respect to o2, the only parameter in the above
distributions, and setting it equal to zero yields

1 2 E
G2 = — E2 L
6n,~=zl ! 6

for the three-dimensional (chi-6) pdf and

-
E2Le
2n,~§| ! 2

for the one-dimensional (Rayleigh) pdf, where n is the number of
data samples. Thus the estimator is just the average of the square of
the E-field divided by the number of degrees of freedom.

%=

V. ESTIMATOR ACCURACY

For large sample sizes, o7 is approximately normally distributed,
and in this case its variance can be shown to be [8, p. 212]
9 In f

var[62] = {—nE
1 e

where E denotes the expected value and f is the pdf. Applying this
equation gives

4
g
~2 -
var [ 5] = o
for the three-dimensional (chi-6) pdf and
4
4

var[&z] = "
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Fig. 1. MSC schematic diagram.

for the one-dimensional (Rayleigh) pdf. The normalized (divided by
%) accuracy (standard deviation) of ¢2 is thus 1/v/n and 1/v3n
for one- and three-dimensional data, respectively.

The normalized accuracy of 6% makes it possible to determine
how much data is needed for a desired accuracy. Since 62 is
normally distributed and unbiased, the probability (confidence) that
it is within k standard deviations(s) of its mean (o?) is

prob [0? — ks < 62 < ¢” + ks] = 2erf (k)

where ‘‘erf”’ is the error function

erf (k) = % /Oke"’z/2 dy.
Requiring 67 to be within a confidence interval of d dB implies
ddB = 101log M
1—k/vVzn

where k determines the confidence, and z is the number of
dimensions of the field data (1 or 3). Solving for n gives
K2 (10970 4 1\*
( 109710 _ 1 )
For example, if d is 1 dB and the desired confidence is 90%

(k =1.65), then n is 69 or 207 for z = 3 dimensions or 1
dimension, respectively.

e

VI. CHAMBER Q

The estimate of ¢“ is directly related to the chamber Q. Chamber
Q is a useful quantity because it allows prediction of the mean field
strength from the input power. The highly overmoded chamber
makes Q calculations based on resonant bandwidths difficult, if not
meaningless. A better approach is to use the basic definition of Q,
which is 27 times the ratio of the energy stored per cycle to the

2

energy dissipated per cycle. This leads to

we?V @BV

T 2P 24P
where V is the chamber volume and P is the net input power. Note
that it is the square of the E- or B-field that is averaged and that it is
the three-dimensional field that is of interest. If a one-dimensional
field is used, then Q must be multiplied by three to include the
energy stored in the other two dimensions. Q can also be expressed
in terms of G2, or, for E-fields,
3wed?V

TP
The advantage of this expression is that the normalized accuracy for
Q can be seen to be the same as that for 62, or 1/v/n and 1/V3n
for one- and three-dimensional data, respectively. The above equa-
tion for n, the amount of data required for a given accuracy,
therefore also applies to Q.

Chamber measurements were used to determine Q values from 1
to 10 GHz. The @ is approximately 20000 from 2 to 10 GHz, and
drops off rapidly below 2 GHz (See Fig. 3). The prediction for Q
based only on wall losses is [9]

3rft 1 1\

b+ 8k(a+b+c)]

where S is the total surface area, 6 is the skin depth, and & is the
wave number. Since the second bracket is essentially one, Q should
vary as the square root of frequency (because of 1/6). This equation
predicts a much higher Q than was measured. The low Q and its
independence of frequency indicate that loss mechanisms other than
Joule heating are important. At the present time, a good physical
explanation for the low Q is not forthcoming. However, an effort
has been made to eliminate electrical conductivity from considera-

15V
Q—‘m
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(a) Histogram of square of electric field (one component) at a position close to the center of the chamber and at a
frequency of 4 GHz. (b) An expanded version of Fig. 2(a) with an estimated probability density function superimposed.
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Fig. 3. Q-measurement summary.

tion. A sample of the chamber wall was measured for electrical
conductivity by the Microwave Standards Division of Sandia Na-
tional Laboratories. The conductivity of the wall coating was deter-
mined to be 1.26 - 107 S/m, which is close enough to published
values of the conductivity of zinc (1.74 - 107 $/m, [10]) to assume
the walls can be taken to be zinc (the steel is not coming into play).
RF leakage is another possibility for the low Q. The steel panel
construction of this chamber contains approximately 250 linear ft of
intermediate overlapping flat stock to hold the panels together. The
chamber has been checked for leakage, with no detectable leakage.
However, the leakage is diffuse and would be difficult to detect for
the relatively low power input levels.

The chamber was loaded with approximately 0.003 m® of rf
absorber placed 25 in off the floor, and the Q was again measured
from 2 to 10 GHz. Fig. 2 gives the loaded Q, along with the
previously obtained unloaded Q. Q drops by a factor of 2 to 6,
depending on frequency. The loaded Q was measured in only one
position in the chamber. The rather large reduction in Q by a small
amount of material is impressive.
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VII. CONCLUSIONS

Each of the three components of the field in the chamber is
Rayleigh distributed, which is the same as a chi distribution with
two degrees of freedom, and the resultant is thus chi distributed with
six degrees of freedom. Each component of the power density is
then exponentially distributed. Experimental data confirm these
distributions, though unexpected high values, or outliers, were
consistently found.

The maximum likelihood estimator for ¢2, the only parameter in
these distributions, is just the average of the square of the field
divided by the number of degrees of freedom (2 or 6). The
normalized accuracy of these estimates is 1/+/7 and 1/ V3n for
one- and three-dimensional data, respectively. Chamber Q is pro-
portional to o2 and has the same normalized accuracy.
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