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INTRODUCTION

As part of the 50th Anniversary celebration of the EMC Society of the IEEE (1957-2007), a review and comparison of past
papers in the IEEE Transactions on Electromagnetic Compatibility was undertaken. In the three previous Newsletters, we have pub-
lished the first, second and third most referenced papers, which are, respectively:

1. “Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field;” EMC-22,
No. 2, May — 1980, Page 119 by A. K. Agrawal, H. J. Price, and S. H. Gurbaxani.
2. “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field
Equations;” EMC-23, No. 4, November — 1981, Page 377 by Gerrit Mur.
3. “Generation of Standard Electromagnetic Fields Using TEM Transmission Cells;” EMC-16, No. 4, November — 1974,
Pages 189 -195 by Myron (Mike) L. Crawford.
In this issue, we are publishing the fourth most-referenced IEEE Transactions on EMC paper of the first 50 years of the EMC
Society and it is by a well-known EMC technical person, Clayton Paul.
The title of the paper is “Frequency Response of Multiconductor Transmission Lines Illuminated by an Electromagnetic
Field.” It can be found in EMC-18, No. 4, November — 1976 starting on Page 183.
We hope you read and appreciate the significance of this historical article.

Frequency Response of Multiconductor
Transmission Lines Illuminated by an
Electromagnetic Field

CLAYTON R. PAUL, MEMBER, IEEE

Abstract—A well-known result [1], [2] for the response of a two-wire ¥ € M
transmission line illuminated by a nonuniform electromagnetic field is
extended to multiconductor lines. A simple matrix equation for the ®

currents induced in arbitrary termination networks is obtained.
T
1. INTRODUCTION

HE BASIC problem considered in this paper is a @
determination of the currents induced in termination )
networks associated with the (n + 1)-conductor uniform
transmission line shown in Fig. | by spectral components *
of an incident, nonuniform electromagnetic field. The line
is considered to be uniform in the sense that the (n + 1) b )
conductors are parallel to each other and the x direction
and are circular wires having no cross sectional variation e
along their axes. One of the conductors, the zeroth con-
ductor, is designated as the reference conductor for the line
voltages and has a radius r,o. The remaining n conductors
have radii r,; with i = 1,*-+,n. The various separations
between conductor pairs are d,o,d;q,d;; with i,j = 1,***,n.
The solution for the special case of a two-conductor line x A pe
(n = 1) was obtained by Taylor, Satterwhite, and Harrison Fig. 1.
in [1] and later in a more convenient form by Smith in [2].
These formulations were used in [3] to predict the responses  of multiconductor lines. The application of this result to
multiconductor lines as in [ 3] is, of course, an approximation
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to lines consisting of more than two conductors. Charac-
teristic impedances of each set of isolated conductor pairs
were employed in [3]. This also is an approximation since
scalar characteristic impedances do not exist for multi-
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conductor lines and a characteristic impedance matrix is
the proper quantity to be employed [5], [6], [9]. The case
of a uniform plane wave incident on a three-conductor
line in the transverse direction (perpendicular to the system’s
longitudinal (x) axis) with the electric field intensity vector
polarized parallel to the line axis was obtained in [4].
Procedures for extending this result to multiconductor
lines were indicated.

The distributed parameter transmission line equations
for multiconductor lines with incident field illumination
can be derived and are similar (with matrix notation em-
ployed) to the familiar equations for two-conductor lines
[5], [6], [9]. Assuming sinusoidal excitation at a radian
Q’equency w = 2nf, the electric field intensity vector,
g{x »zt), and the magnetic field intensity vector,

(x ¥,2,t), are written as é’(x, »at) = E(x,y,2)¢’" and
.}f’(\', y,z,t) = H(x,y,2)e’*". The complex vectors E(x,y,z)
and H(x,y,z) are the phasor quantities. Line voltages,
¥ i(x,1) = V(x)e!", of the ith conductor with respect to
the zeroth conductor (the reference conductor) are defined
as the line integral of & between the two conductors along
a path in the y,z plane. ¥/(x) is the complex phasor voltage.
Line currents, J(x,t) = Ij(x)e/** associated with the ith
conductor and directed in the x direction are defined as the
line integral of # along a closed contour in the y,z plane
encircling only the ith conductor and /,(x) is the complex
phasor current. The current in the reference conductor,
Folx,t) = I,/ satisfies Iy = 37, (—=1,(x)).

It is convenient to consider the effects of the spectral
components of the incident field as per unit length dis-
tributed sources along the line [5], [9]. The sources appear
as series voltage sources and shunt current sources as
indicated in Fig. 2 for an “electrically small” Ax section of
the line. The multiconductor transmission line equations
may then be derived for the Ax subsection in Fig. 2 in the
limit as Ax — 0 as a set of 2n coupled, complex, ordinary
differential equations [5], [9]

V(x) + joLl(x) = V(x) (1a)
1(x) + joCV(x) = I(x). (1b)

A matrix M with m rows and n columns is denoted as
m % n and the element in the ith row and jth column is
denoted by [M];;. ¥(x) and I(x) are n x 1 vectors of the
line voltages and currents, respectively. The elements in
the ith rows are [F(x)]; = Vi(x) and [I(x)]; = I}(x) and
[#(x)]; = (d/dx)V(x). The n x n real, symmetric, constant
matrices L and C are the per-unit-length inductance and
capacitance matrices, respectively. From Fig. 2, one can
derive (1) and the entries in L and C become [9]

L]y =L+ 1o = 2my
[L]; =1o + my—my — my (2)
i%j

and

[Cli = ¢io + E. ¢y [C]i_; = —cije 3)

-
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The entries in V,(x) and I(x) are the per-unit-length
distributed sources along the line induced by the incident
field, i.e., [Vy(x)] = V,(x) and [L(x)] = I, (x), as shown
in Fig. 2.

In order to consider general termination networks (and
allowing independent sources in these networks) we choose
to characterize these as generalized Thevenin equivalents
[5]. [6]. [9]- For a line of total length %, the equations for
the termination networks at x = 0 and x = # are

V() = Vo — ZI(0) (4a)
V(L) = Vo + ZJ(Z) (4b)

where ¥, and V., are n x 1 vectors of equivalent open
circuit port excitation voltages, [¥,]; = Vo, and [Ve]; =
Ve, and Z, and Z, are n x n symmetric impedance
matrices as shown in Fig. 3 [5], [6], [9]. This is, of course,
a completely general and arbitrary characterization of these
linear termination networks. The entries in these termination
equations can be easily determined for a given network
by considering V(0) and V(%) (the termination port
voltages) as independent sources, and writing the loop
current equations for each network where I(0) and /(%)
are subsets of the loop currents in each network.

With the line immersed in a homogeneous medium (free
space) with permittivity g, and permeability p,, the product
of L and € becomes [5], [9]

LC = CL = pgl, (5)

where 1, is the n x n identity matrix with ones on the main



PAUL: FREQUENCY RESPONSE OF TRANSMISSION LINES

diagonal and zeros elsewhere, i.e., [1,]; = 1, and [1,];; =
0, i # j.' For this case, the solution to (1) and (4) is in a
simple form [5], [9]

[cos (kL) Zo + Zy} + J sin (kL) Ze + ZoZe Z)JI0O)
= —Ve + [Jsin kF)Z,Z:™" + cos (kL)1,]V,
+ V(2) - Z,1(2) (6a)
(%) = —jsin (kL)Z:'V,
+ [cos (k&)1 + jsin (kL)Z Z)10) + 1(2)
(6b)

where the wavenumber is k =2n/2, A=c/f, ¢ =
1)\ e, = 3 x 108 m/s and the characteristic impedance
matrix Z¢ is [5], [6], [9]

Z =cL. M

The inverse of an #n x n matrix M is denoted by M~!
and P(%) and I,(#) are given by [5], [9]

¥
PA2) = f (cos ((L — x)Vx)
[+]
— jsin((Z — NZI()}dx  (3a)
IL(#) = J‘g {cos (k(£ — x)I(x)
(1]

— jsin (& — x)Z." 'V (x)} dx. (8b)

Solution of (6a) for the current vector, I(0), requires the
solution of n complex equations in n unknowns (/,(0)).
Once (6a) is solved, (6b) yields the currents I(%) directly.

Although the equations may appear formidable, they are
in a compact form and can be straightforwardly programmed
on a digital computer. Furthermore, the form is not re-
stricted to any particular value of n. The only difficulties
are in determining L (or C through (5)), and determining
P, and I, (which require that we determine V{(x) and
I(x)). The determination of the equivalent sources V,(x)
and 7, (x) induced by the incident field will be the objective
of the next section.

II. DETERMINING THE EQUIVALENT INDUCED SOURCES

In order to determine the equivalent induced sources,
V,(x) and I, (x), consider Fig. 1. The method used in [1]
can be adapted here in a similar fashion. Faraday's law in
integral form becomes

H-ads, %)

5

3‘3 E-dC; = —jop,
Cy

where S; is a flat, rectangular surface in the x,y plane
between wire / and wire 0 and between x and x + Ax as
shown in Fig. 1. The unit normal fi is A = 2 where 2 is
the unit vector in the z direction, dS; = dx dy and C, is
a contour encircling §; in the proper direction (counter-

. ! The property in (5) restricts the use of these results to bare wire
lines in free space or other homogeneous media.
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clockwise according to the right-hand rule). Equation (9)
becomes for the indicated integration?

qu [Eh(yt x + Ax} - E,t(y,x)] dy
0

x+Ax
_ f (E(dox) — E(0,)] dx

x+Ax i
= f Hy(yo) dy d (10)
= (V]

where E,, is the component of the total electric field
(incident plus scattered) transverse to the line axis and
lying along a straight line joining the two conductors, i.e.,
E, = E,; E, is the component of the total electric field
along the longitudinal axis of the line, ie., E,, = E,; and
H,, is the component of the total magnetic field perpen-
dicular to the plane formed by the two wires, i.e., H, = H,.
Defining the voltage between the two wires as

Vix) = — _rm E (yx) dy (11)
]
then
_dV(x) _ .1 [ B
) _ jim L f [E(3> x + A%) — E,(y,0)] dy.
(12)

The total electric field along the wire surfaces is zero since
we assume perfect conductors. (One can straightforwardly
include finite conductivity conductors through a surface
impedance as was done in [1]). Therefore (10) becomes in
the limit as Ax — 0

dV{(x)
dx

The total magnetic field is the sum of an incident and a
scattered field

H,(y,x) = H(y,x)

dio
- fw,u.,f Ho(y.2) dy. (13)
1]

(scat) (inc)
= H(yx) + H(yx)
e il ——
scattered  incident (14)

and the scattered field here is produced by the transmission
line currents. The scattered flux passing between the two
conductors per unit of line length is directly related to the
scattered magnetic field and the per-unit-length inductance
matrix, L, as

(scat) dip  (seat)
Pix) = — fo HH(y,x) dy
I,(x)

= Dol 0] | 722 (15)
I(x)
2 In integrating from y = O to y = dio, we are implicitly assuming

that r.; and r.e are much less than dyg, i.e., the wires are sufficiently
separated so that they may be replaced by filaments.

31



32

186

where /;; = [L];;. Substituting (15) and (14) into (13) and
arranging for i = 1,* +,n yields

10 (inc)

V) + old) = |jon, [ v dy | a6
[}

and the source vector F(x) in (1) is easily identified by
comparing (16) and (1).

For transmission line theory to apply, the cross-sectional
dimensions of the line (wire spacing, etc.) must be electric-
ally small, i.e, kd;; « 1 and kd;; « 1. Thus the result
indicates that the voltage, V,, induced in the loop between
the ith conductor and the zeroth conductor and between x
and x 4+ Ax is equal to the rate of change of the incident
flux penetrating this “electrically small” loop which, of
course, makes sense.

Ampere’s law yields
_ ] OH, _ oM,

& [ oz ex] @

E, will consist of scattered and incident field components
and is written as

E (y:x)

E,(y,x)

(scat) {ing)

E(yx) + E(yx).

—

incident (18)

scattered
Substituting (17) into (11) we have
dio
v = = [ By dy
o

(scat) (ine)

1 J‘““ lah’(},x) OH,(y,x)

st 0x
{scat) {inc)
- x) ) g, g
0z 0z
Utilizing (15) we obtain
1
Vl{x) = = e {[I::l’tlb J,-,,]I(x)}
jou, d
dio ’ o (inc)
e a”*“"" dy - f‘ E(y%) dy. (20)
Jwe, dz °

If we assume that the currents on the wires are directed only

in the x direction, i.e., (there are no transverse components
(scat)
of the currents on the wire surfaces), then H,(y,x) =0

and (20) becomes

1
B ’a )‘l st
7 4 Tk

Vi(x) = "L J1(x)}

dig (inc)

-1 Ef(yx)dy. (21)

0
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Arranging these equations for i = 1,--
second transmission line equation

-,n we obtain the

I(x) + joug,L™'V(x)

'dig (iﬂc:J
= —jop,e L™ E(yx)dy |. (22)

0

Utilizing (5) in (22) (C = p,e,L™") we obtain by comparing
(16) and (22) to (1)

dia (in:}.

Vix) = jou, | [ Ho(p%) dy (23a)
u -
dio (inc:)

I(x) = —jooC f E(yx)dy|.  (23b)
0 -

The shunt current sources in I,(x) are therefore a result of
the line voltage induced by the incident electric field being
applied across the per-unit-length line-to-line capacitances
which, of course, satisfies our intuition.

III. SoLuTION FOR P(x) anD I(x)

The final problem remaining is to obtain simplified
versions of P, and I, in (8) to be directly used in (6). First
consider the determination of P,(#). Substituting (23) into
(8a) yields

L
P(#) = jwy,,j cos (k(& — x))

0

io (ln:]
_r w(3:%) dy | ) dx
o .

'
- kL sin (k(Z — x))

dip (inc)
f E (y,x)dy dx. (24)
0 .

From Faraday’s law we obtain

3 0 el (25)
Jjoou,

dy ax |

: {inc) {ine)
) g [as,' o,
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Substituting this into (24) yields

L4

reer = |

0

{inc) E finc)
{cos (k(Z — x)) I:E,‘(dw,x) = E,I(O,x)]] dx

*
— j cos (k(& — x))

(ine)
dig
LACE
0 ox

id
= i =
L sin (k(& — x))

dio ( Inc:)
J. E (y,x)dy |} dx. (26)
0 n

Utilizing Leibnitz's rule (see [7, p. 219]), (26) is equivalent
to

g

(&) = f

0

{cos k(& — x))
[(inc} : (inc) ]}
© | Ei(dig:X) o5 E (0x)|( dx

<+ 9
—J. — (cos (k(&£ — x))
0 ox

'din {lnc.'.l
f Edyx)dy | | @7)
0 d

and this may be written as

P(¥) = J‘y [cos (k(Z — x))
0
-(lﬂ:) (ing)
En(dlﬂ!x} - Eli(orx)J] d-'(
dip (inﬂ:
- | ["Eberar
0 .
dio ( l:l|=)
+ cos (kZ) f E.(y,0) | dy. (28)
n -

187

Similarly 7,(#) may be obtained as

g
L&) = —jz:! f

0

{inc) : (inc)
. [E,i{d,o,x) - E,l((),x}]] dx

[sin k(& — x))

(0 (inc)

— jZ: ! {sin (k2) r E (»,0)dy
o .

(29)

The important quantity in (6a) is P(%L) — Z I(2).
Combining (28) and (29), this becomes

P,(.Sf) _ Zfrs(g}

= J‘! {[cos (k(Z — X)), + jsin (k(£ — xX)NZL,Z1]
0
~(in.«.;p T (i)
E,(dig,x) — E:.(O,X]]] dx

io {il;c)
= J: E.‘:(ysg ) dy

+ [cos (k2)1, + jsin (kL)Z,Z:~ 1]

dio (inc)
f E(,0) | dy. (30)
0 .

Note that the equivalent forcing function on the right-hand

side of (6a), P(¥L) — ZI(#), given in (30) is simply

determined as a convolution of differences of the incident
(inc)

electric field vector along the wire axes, E;(d,x) —

{ine)

E;(0,x), and a linear combination of integrals of components

of the electric field vectors at the endpoints of the line which

(inc) (inc)

are transverse to the line, £,(y,%) and E,(»,0). This is,
of course, precisely the result obtained by Smith [2] for
two conductor lines. Substituting (30) into (6a) and setting
Ve =,0, Fy =,0,, ie., no independent sources in the
termination networks, one can verify that the result reduces
for two conductor lines (n = 1) to the result given by Smith
[2] since Z;,Z4,Z, become scalars for two conductor
lines and (6a) becomes one equation in only one unknown
1(0). For uniform plane wave illumination of the line (which
is usually the case of interest), (30) reduces to a much
simpler form although the result allows for the more general
case.
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The final equations for the line currents then become
(substituting (30) into (6))

[cos (kL) (Zy + Z,} + jsin (kL) Ze + Z,Z: ' Zo}]1(0)
= — Vo + [jsin (kLVZL,Z" + cos (kL)1,]V,

z
+ J. {[cos (k(Z — x)) ,
0

(inc)

+ jsin (K& — x)ZoZc™ IIEE:‘)} dx — E(2)
+ {[cos (k) + jsin (kF)Z,Z;~ ‘](II'Z':E{))}} (31a)
(£) = —jsin (kLVZ 'V,

+ [cos (k#)1, + j sin (kL)Z: ' Z,]1(0)

i (inc)
— jZ! f {sin (k(£ — x))E(x)} dx
o

— jZe~{sin (KL)ED)}. (31b)

{inc) {ine) {ine)
where E|(x), E(¥), and E(0) are n x 1 column vectors
with the entries in the ith rows given by

{inc) (ine) {ing)
[Er(x)]I - E|.(d|csx) =" Ei.(osx} (32a)
{inc) dio
(BN = [ Eu2) do, (320)
0
(inc) dig (ing)
[E©O)] = E, (p;,0) dp; (32¢c)

a

fori=1,"--,n

A word of caution in the interpretation of the notation is
in order. Although it should be clear from the derivation,
the reader should nevertheless be reminded that the in-

inc)

tegration path for the component l,E,l is in the y direction
when the ith conductor is concerned. When other conductors
are concerned, the integration path is a straight line in the
y,z plane which joins the conductor and the zeroth conductor
and is perpendicular to these two conductors. This is
designated as p; in (32) and replaces the y variable for the
path associated with conductors i and 0. The notation may
be cumbersome but the idea and implementation is quite
simple.

IV. THE PEr UniT LENGTH INDUCTANCE MATRIX, L

One final calculation remains; the determination of the
per unit length inductance matrix, L. Ordinarily this is a
difficult calculation [8]. However, if we assume that the
conductors are separated sufficiently such that the charge
distribution around the periphery of each conductor is
constant, then the conductors can be replaced by filamentary
lines of charge. Typically, this will be quite accurate if the
smallest ratio of conductor separation to wire radius is
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greater than 5 [8]. In this case, the entries in L are shown
in the appendix to be

(L] Puﬁv[c_ l].-.'

I

Il

B o (_di‘z—) (332)

2n Foil'wo

n

[L];j ; 2 .uu%[c_l]u £ (ﬂjﬁ&), (33b)

2n ryodij

For closer conductor spacings, proximity effect will alter
the charge distributions from constant ones and numerical
approximations must be employed to find C and L (through

) [8]-
V. CoMPUTED RESULTS

To show the simplicity of the result and indicate its
equivalence to the result obtained by Harrison in [4],
Example 1 considered in [4] will be computed by this
method. Three wires all of radius 107 m lie in the x,y
plane as shown in Fig. 4. A uniform plane wave with an
electric field intensity magnitude of | V/m is propagating
in the y direction and 500-Q (purely resistive) loads connect
each line to common nodes. The various distances in Fig. |
ared;g = 1072 m, dyo = 2 x 107 m,andd,, = 107 m.
Z, and Z, can be easily shown to be

1000 500
L= 0= {soo woo]'
The characteristic impedance matrix, using the values for
the per unit length inductance matrix given in (33), becomes
- In (100) In (20)
Ze=eli=H [m (20) In (400)
{inec)
E,, = 0in(30)and the electric field intensity of the wave is
{inc) )
E(y.x) = Ee™ V.

From this, one can determine

(inc) tinc) I )
E,(d,ox) — E (0.x) = - k1071 _ )
(inc) {inc)

E (dox) — E (0,x) = g JMI0=2 _
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Two frequencies are considered in [4] in terms of k%;
k¥ = 1.5, k¥ = 3.0. Equations (31) and (32) with the
above items were programmed on an IBM 370/165 com-
puter in double precision arithmetic. The execution time
(cpu time) was 0.01 s (1/100 s) and the results are
[15(0)] = 1.7662556E — 54 [I,(0) = 70.77°
k% = 1.5 311,(0)] = 9.0756083E — 84 [1,(0) = —13.9°
[7:(0)] = 1.7671218E — 54 [[,(0) = —109.52°
175(0)| = 5.4543875E — 54 [I,(0) = 9.845°
k¥ = 3.0<|1,(0) = 7.7363155E — 74 [1,(0) = —75.8°
1,(0)] = 5.4608110E — 54 [1,(0) = —170.96".
The computed results obtained by Harrison’s method and
given in [4] are

115(0)] = 1.766E — 54
k% =15 [II,({})I = 9.076E — 84
|1,(0)] = 1.767E — 54
115(0)] = 5.454E — 54
k& = 3.0 [Ifl(O)l = 1.736E — 74
11,(0)] = 5.461E — 54.
The results computed by this method are exactly those
computed by Harrison’s method in [4]. However, with this
method only 2 simultaneous equations in the 2 unknowns,
1,(0) and 7,(0), are required to be solved (/,(0) = —17,(0) —
1,(0)). Harrison’s method required the solution of 10
simultaneous equations in 10 unknowns. Furthermore,
Harrison’s method was restricted to uniform plane wave
illumination of the line with the wave incident perpendicular
to the line. Since Z, = Z, for this example and since the
uniform plane wave are propagating broadside to the line,
I(0) = I(2).

VI. SUMMARY

A simple matrix equation for determining the frequency
response of a multiconductor transmission line exposed
to a nonuniform electromagnetic field has been presented.
. The formulation includes all mutual interactions and relates
the response to the values of the electric field intensity
vector transverse to the line at the line terminations and
. along the wire axes. The number of simultaneous equations
to be solved for an (n + I)-conductor line is # and thus
may be considered to be a minimum. The method can be
easily extended to the case of n wires above an infinite
ground plane where the ground plane is the reference
conductor [9].

VII. APPENDIX

The purpose of this appendix is to show the relations in

(33) for the entries in the per unit length inductance matrix,
{scat)
L. The matrix L relates the scattered flux ¢  passing

between the wires to the wire currents as

(scat)

(scat) 4’I llll e f1m II

$ =|:||: AR
o '!lﬂl e "‘nn In
¢n —_———

189

dip %
=

The respective entries are determined as

(scat)

Iy = 2 (A-2a)
!i Bigo o limid a gyt e o dn=0
{scat)
= (A-2b)
i#) I Jne---matyen s da=0

and /;; = [;;. Large wire separations are assumed so that the
wires may be replaced by filaments of current. When the
wires are not widely separated, accurate values for L can
be obtained by numerical methods [8].

Consider Fig. 5(a). The magnitude of the magnetic field
intensity vector due to /; on wire i at a distance r > r;
away from wire i is

H, = —L (A-3)

and the total flux passing between wire i and wire 0 due to
both currents is

{scat) : d,
o = bl lf'“jdr+r'°ldr}
2n r g

Fwi Wil

= bliyy, (rd—"z) (A-4)

2n wil wo.

Thus /;; is easily identified as in (32a).
(scat)

Consider Fig. 5(b). The portion of the flux ¢; passing
between wire i and wire 0 due to —/; in the reference
conductor is as above

(scat) 1 d
b = et (do) (A-5)
2n Fwo
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HIGH INTENSITY RADIATED FIELDS (HIRF) COURSE

September 30 — October 3, 2008
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Location: OSU-Stillwater, OK

Time: 8.00AM to 5.00PM (T, W, TR) 8.00AM to Noon (F)
Fee: $2000 if registered before August 29, 2008
$2200 if registered after August 29, 2008
2.8 CEUs/28 PDHs
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Host

The workshop is hosted by the School of Electrical and Computer Engineering at Oklahoma State University. Technical and

equipment support is provided by the Cessna Aircraft Company, Wichita, Kansas.

About the Course

This comprehensive workshop will provide an awareness of all aspects of systems and aircraft HIRF testing as a route to com-

pliance. With the recent release of the finalized FAA rule, it is critical that anyone dealing with the EME certification

understand the following concepts:

e Why is HIRF important?

* The FAA/European requirements to demonstrate compliance — FAA/EASA Harmonized HIRF rule released in the Federal
Register for comment, and will replace the interim special conditions

* Equipment Qualification

 Aircraft certification and testing

e Pitfalls and problems

= Design issues

« An overview of lightning requirements and design

With emphasis on practical measurement, this workshop is particularly relevant to engineers and technicians involved in air-

craft HIRF and Lightning Clearance. As part of the practical presentations, the class will include demonstrations concerning

critical aspects of the HIRF/IEL testing.

Presenters

Dr. Nigel Carter (one of the pioneers of the low level test and BCI techniques employed in HIRF testing), Billy Martin (regard-

ed as one of the technical experts on HIRF and lightning in the United States), Dave Walen (FAA's Chief Scientific and Tech-

nical Advisor for HIRF, EMC and Lightning), Dr. Gus Freyer (expert in reverb chamber testing and analysis).

Contact

Dr. Charles F. Bunting. Email: reverb@okstate.edu



