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Abstract—This primer offers a simple and comprehensive
overview of the properties and usage of the scattering
parameters of linear n-port elements. The primer is divid-
ed into two parts, addressing the basic basic theory and
some key applications of the scattering equations, respec-
tively. In this first part, the crucial role of the reference
impedances defining the wave variables and scattering
equations is thoroughly discussed. The normalization of
the wave variables, the time-domain scattering equations
and examples of the scattering equation for a transmis-
sion line segment are illustrated.

I. INTRODUCTION
The characterization of parts of electromagnetic systems as
linear multiport elements is a fundamental tool for the analysis
and simulation of EMC problems. In this context, the scatter-
ing equations have gained increasing importance. The scatter-
ing responses, in fact, are the primary quantities arising from
high-frequency measurements [1] and the most suitable for
full-wave analyses. As a consequence, the use of scattering data
for the characterization of multiport elements as well as for the
development of macromodels for system-level simulations has
become a standard approach.

In this primer, the usage and the properties of the scatter-
ing equations of linear n-port elements are explained and illus-
trated by examples. The aim is to help readers not familiar with
scattering equations to exploit them to characterize the linear
n-port elements that occur in signal integrity and EMC prob-
lems. The presentation is devised to be as simple as possible
and, at the same time, to highlight the important concepts
involved in the use of the scattering equations.

II. PORT RELATIONS FOR LINEAR 
N-PORT ELEMENTS
In order to introduce the scattering equations of n-port ele-
ments, it is expedient to address the problem from a circuit
theory point of view. Linear n-port elements are best character-
ized in the frequency domain, where the relations between the
port variables take the form of linear algebraic equations. All
possible set of equations can be easily defined by considering
the characterization of a two-port element. For a two-port, the
electrical status is defined by four port variables: the two port
voltages and the two port currents. If either the two port cur-
rents or the two port voltages are selected as independent vari-
ables and the remaining port variables are expressed for the
independent ones, then either the impedance or the admittance
equations are obtained

V(s) = Z(s)I(s) (1)

I(s) = Y(s)V(s) (2)

where V and I are the vectors of the Laplace transforms of port
voltages and currents, respectively, and Z and Y are the imped-
ance and admittance matrix of the characterized element,
respectively. Throughout this paper, s = σ + jω is used to
indicate the complex frequency variable and boldface symbols
to indicate matrices. Of course, the above equations hold for an
arbitrary number of ports, as well.

Other set of equations can be defined by using as indepen-
dent variables the current of one port and the voltage of the
other port. In this case, hybrid equations arise, like the follow-
ing one [

I1(s)
V2(s)

]
=

[
H11(s) H12(s)
H21(s) H22(s)

] [
V1(s)
I2(s)

]
(3)

where I1, I2, V1 and V2 are the port variables of the two-port
element. Finally, if both variables of a port are selected as inde-
pendent variables, then the chain parameter equations are
obtained.

It is important to remind that the elements of the character-
istic matrices are always network functions (i.e., responses) of
the circuit defined by the n-port with the ports closed on a spe-
cific set of loads. Such reference loads are the two terminal ele-
ments impressing the independent port variables of the equa-
tion that defines the characteristic matrix at hand. For equation
(3), this concept is illustrated in Fig. 1, where the voltage and
current sources apply the independent variables of the hybrid
equation of the two-port element. According to this meaning,
for a given n-port a specific characteristic matrix exists provided the net-
work defining the matrix has unique solution.

From a formal point of view, the reference loads of a charac-
teristic matrix do not limit its use in predicting the responses of
the n-port element for arbitrary loads. In fact, the response of
the n-port terminated by its actual loads is computed by means
of the n-port equations and the load equations. The solution of
this new set of equations leads to the sought responses.

III. THE SCATTERING MATRIX
Scattering equations relate auxiliary port variables that are
defined by a linear transformation of port voltages and cur-
rents. The simplest auxiliary variables are named voltage waves
and are defined by [1], [2]

A = 1

2
(V+ Zr I)

B = 1

2
(V− Zr I) (4)

where V and I are the voltage and currents at the terminals of
a port (defined by associate reference directions, see Fig. 2) and
Zr is the reference impedance defining the transformation. The
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port voltage and current can be obtained from the voltage
waves as 

V = A + B

I = Yr (A − B) (5)

where Yr=1/Zr and either current and voltages or wave vari-
ables can be used to describe the electrical status of a port1.
Equations (4) can be readily generalized to n ports by replacing
each variable with the corresponding vector of variables and Zr

with a diagonal matrix Zr whose elements are the reference
impedances of each port.

The scattering equation of an n-port element relates the vec-
tor of the B and A variables of the ports of the element

B(s) = S(s)A(s) (6)

where S is the scattering matrix of the element for the reference
impedance matrix Zr defining the wave variables.

Now, as in the case of the equations relating port voltages
and currents, the identification of the reference loads defining
the scattering equations is in order. Since the reference loads of
a matrix equation are the elements impressing the independent
variables of the equations (e.g., see Fig. 1), the reference loads of
(6) are those impressing the components of vector A at the ports
of the n-port element. When the A variable of a port is given,
from the first equation of (4) it follows that the voltage and the
current of the port become related by

V = −Zr I + 2A (7)

This is the constitutive relation of a Thévenin element with an
open circuit voltage 2A and equivalent impedance Zr. For a
two-port element, therefore, the entries of S are the responses
of the network shown in Fig. 3. This demonstrate that, for the
scattering matrix defined by the voltage waves, the reference
load of the p-th port is the reference impedance of the voltage
waves of that port with a series voltage source.

The entries of the scattering matrix are named scattering para-
meters or scattering functions. Every scattering function expresses
one of the Bs when all the As are null, but one of them

Bp = Spq(s) Aq for Ak = 0 ∀ k �= q (8)

When the A variable of a port is null, its load is defined by
V = −Zr I and the port is said to be matched to its reference imped-
ance. Then Spq yields the Bp due to Aq when all the port of the
element but port q are matched.

A. Example #1: Scattering Matrix 
of a Lumped Two-Port Element
This simple example illustrates the calculation of the scatter-
ing matrix on the two-port element of Fig. 4. The reference
impedances are chosen equal to Zr at both ports. For the net-
work of Fig. 4, the Millman theorem yields 

V1 = V2 = Yr2A1 + Yr2A2

Yr + sC + Yr
(9)

Since B = V − A, the following scattering matrix arises

S = 1

2Yr + sC

[−sC 2Yr

2Yr −sC

]
(10)

B. From Z to S
A classical problem in the characterization of n-port elements
is the conversion of impedance and admittance equations into
scattering equations. Figure 5 shows the network for the calcu-
lation of the scattering matrix of a two-port element character-
ized by its impedance matrix. The definitions of the voltage
waves yield

2A = V + ZrI

2B = V − ZrI (11)

where V = ZI and Zr = diag{Zr1, Zr2}. The impedance equa-
tion allows to eliminate I from (11) as follows

(Z + Zr)
−1 2A = I

2B = (Z − Zr)I (12)

leading to

S = (Z − Zr)(Z + Zr)
−1 (13)
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Fig. 1.  Schematic of the network defining the hybrid char-
acterization of (3).

Fig. 2.  Reference directions for the definition of the voltage
waves of a port.

Fig. 3.  Network defining the scattering responses for a
two-port element. The port voltages of this network leads to
the B voltage waves of the ports and hence to the scattering
equations for the reference impedances Zr1 and Zr2.
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As an example, this equation can be used to compute (10)
directly from the impedance matrix of the two-port element of
Fig. 4

Z = 1

sC

[
1 1
1 1

]
(14)

Finally, it is worth noticing that (13) is the vector analogous of
the relation defining the reflection coefficient of a scalar
impedance Z with respect to the impedance Zr. The reasons of
this analogy are unfolded in Section V.

IV. THE REFERENCE IMPEDANCES
In contrast to equations involving port voltages and currents,
scattering equations are defined by a set of (in principle) arbi-
trary reference loads, and this is of great help in many appli-
cations. In general, reference loads defined by finite imped-
ances are termination conditions milder than the shorts and
open circuits defining impedance, admittance, hybrid and
chain equations. As a result, the conditions for the existence of
the scattering equations (i.e., for the existence of the solution
of the network of Fig. 3) are weaker than the conditions for the
existence of the equations involving port voltages and cur-
rents. In particular, S defined by a set of strictly positive reference
resistances exists for any passive n-port [2]. Scattering equations,
therefore, can handle a larger class of n-port elements.

Of course, the reference impedance of (4) can be also complex
and frequency dependent, however this general case greatly com-
plicates the discussion and is out of the scope of this primer. Hence,
throughout this primer (except for Example #4), we restrict to real
positive constant reference impedances (i.e., to reference resistors).

The reference impedance values can be exploited to obtain
scattering functions defined by reference loads closer to the oper-
ating load of the n-port element. This can be beneficial in mea-
surement and modeling applications. In fact, even if, as pointed
out in Sec. II, any characteristic matrix can be used to predict the
responses of the n-port to its actual loads, there are practical lim-
itations for matrices affected by errors. If the responses one is
interested in are defined by loads very different from those defin-
ing the characteristic matrix that is available, then the limited
precision of the matrix can lead to large errors. This problem can
be best visualized by considering the poles of the characteristic
matrix and those of the sought responses. If the two sets of poles
are very different, the limited accuracy of the characteristic
matrix will lead to large inaccuracies in the prediction of the new
set of poles. The dependence of the poles of S on the reference
impedances can be appreciated in the examples of Sec. VII.

A. The Change of Reference Impedances
In order to cope with different sets of reference impedances, it
is useful to compute the scattering matrix S ′ of a reference
impedance matrix Z ′

r from the matrix S that holds for Zr.
Let

V = A ′ + B ′

I = Y ′
r(A

′ − B ′) (15)

be the expression of the port voltages and currents for the volt-
age waves defined by Z ′

r = (Y ′
r)

−1. Then the voltage waves
defined by Zr are given by

2A = V + ZrI

= A ′ + B ′ + ZrY
′
r(A

′ − B ′)
2B = V − ZrI

= A ′ + B ′ − ZrY
′
r(A

′ − B ′) (16)

These relations also write

2A = (1 + ζ )A ′ + (1 − ζ )B ′

2B = (1 − ζ )A ′ + (1 + ζ )B ′ (17)

where ζ is the diagonal matrix ZrY ′
r . When these expressions

are replaced into the known scattering relation B = SA, S ′ is
obtained

S ′ = [(1 + ζ ) − S(1 − ζ )]−1[S(1 + ζ ) − (1 − ζ )] (18)

If Zrk = Zr and Z ′
rk = Z ′

r ∀k, then S ′ simplifies to 

S ′ = (1 − PS)−1(S − P1) (19)

where P= (Z ′
r − Zr)/(Z ′

r + Zr) is the reflection coefficient of
Z ′

r with respect to Zr.

V. PHYSICAL MEANING 
OF SCATTERING RESPONSES
The circuit theory point of view is very useful to define the
scattering equations and to compute S, yet it does not point
out their physical meaning, which is covered in this Section.
Let V and I be the voltage and current in a generic section
of an ideal LC transmission line with characteristic imped-
ance Zo (that is a real positive constant). Then they can be
written as [3]

©2008 IEEE

Fig. 4.  The two-port element of Example #1 (dashed box)
and the network defining its scattering matrix.

Fig. 5.  Network for the calculation of the scattering
matrix of a two-port element from its impedance matrix.
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V = V + + V −

I = Yo(V + − V −) (20)

where V + and V − are the forward and backward voltages trav-
eling on the transmission line, respectively. The comparison of
the above equations to (5) shows that the voltage wave vari-
ables coincide with the forward and backward voltages of an LC
line with characteristic impedance Zo = Zr.

This interpretation of the wave variables highlights that S
describes the scattering process of the traveling waves imping-
ing on the n-port element. Figure 6 illustrates this idea. Let
the n-port element be connected to n LC transmission lines
with characteristic impedances Zrp, p = 1, . . . , n. Then the
transmission lines carry to the ports the forward waves of A
and the element reacts by exciting on the transmission lines
the backward waves B = SA. If all transmission lines are
matched, but the q -th one, then the q -th column of S
describes the conversion of the wave impinging on the q -th
port in backward waves excited at every port. In particular, the
Sqq entry, describe the reflection at port q and Spq the trans-
mission from port q to port p . 

The identification of wave variables with the waves propa-
gating on a transmission line also explains why the wave vari-
ables are the primary quantities obtained from high-frequency
measurements. For high-frequency fields, in fact, the size of the
probing system becomes comparable to the wavelength and,
from an experimental point of view, voltages and currents
become ill defined quantities. The only quantities that remain
well defined and measurable are the amplitudes of fields propa-
gating in TEM waveguides of known geometry, namely the
wave variables that are detected by vector network analyzers [1].

VI. POWER AND CURRENT 
WAVE VARIABLES
In addition to the voltage waves defined in Sec. III other defi-
nitions of the wave variables are possible. Since the wave vari-
ables are related to the waves on a transmission line, they are
also related to the power flowing in the transmission line. The
average power absorbed by a port during sinusoidal operation
can be expressed for A and B as

P= Re

{
1

2
V( jω) I∗( jω)

}

= Re

{
Yr

2
[|A|2 − |B|2 + 2(BA∗ − B∗A)]

}

= Yr

2
[|A|2 − |B|2] (21)

where Yr is assumed real. In order to avoid the admittance fac-
tor in the expression of the average power, a different definition
of the wave variables can be used

Ă = 1

2
√

Zr
(V+ Zr I)

B̆ = 1

2
√

Zr
(V− Zr I) (22)

that leads to

V = √
Zr(Ă + B̆)

I = (Ă − B̆)/
√

Zr (23)

The wave variables defined in this way are named power waves
and are preferred in microwave applications. They allow to
write the average power as

P= 1

2
[|Ă|2 − |B̆|2] (24)

Finally, wave variables based on a current normalization are
sometimes used. They are defined by

Ā = 1

2
(YrV+ I)

B̄ = 1

2
(YrV− I) (25)

The normalization used to define the wave variables, however,
modifies the scattering functions only by a normalization fac-
tor, leaving their properties not affected. In fact, if K is a diag-
onal matrix collecting a set of arbitrary normalization coeffi-
cients, then the scattering matrix for the wave variables
Ã = KA and B̃ = KB is S = KSK−1. In the rest of this
paper, therefore, voltage waves are used.

VII. SCATTERING MATRIX OF 
TRANSMISSION LINES
Most applications of the scattering equations are in the
area of high-frequency and microwave circuits, and
involve n-port elements exhibiting propagation effects.
This Section addresses the characterization of a segment of
transmission line, that is the simplest example of distrib-
uted 2-port element.

A. Example #2: Scattering Matrix 
of an LC Line Segment for Zr1 = Zr2 = Zo
The scattering matrix of an LC transmission line segment of
length L, characteristic impedance Zo and time delay T = L/v
for Zr1 = Zr2 = Zr = Zo is obtained from the responses of the
network of Fig. 7. In every section of the transmission line, one
can define the voltage waves associated to the current and volt-
age of the section. For Zr = Zo, such voltage waves coincide
with the forward and backward voltages of the transmission
lines, resulting in 

A1 = V +(0)

B1 = V −(0)

A2 = V −(L) = e +sTV −(0) = e +sTB1

B2 = V +(L) = e −sTV +(0) = e −sTA1 (26)

S =
[

0 e −sT

e −sT 0

]
(27)
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Consistently, there is no reflection from the ports and the
transmission function is an ideal delay. It is also worth notic-
ing that the scattering functions are entire functions (no poles
for finite s), as the network of Fig. 7 has no resonant behavior.

B. Example #3: Scattering Matrix of an 
LC Line Segment for Zr1 = Zr2 = Z̄r �= Zo
The scattering matrix of the transmission line segment for
arbitrary reference impedance can be easily computed by
replacing the reference loads of Fig. 7 or by applying (19) to
the scattering matrix (27). Here the latter way is demonstrat-
ed. This requires the following replacements in (19): the refer-
ence impedance for which S is known must be set to Zr = Zo;
the reference impedance for which S′ is desired must be set to
Z ′

r = Z̄r. Then P= (Z̄r − Zo)/(Z̄r + Zo) and 

S′ =
[

1 −Pe −sT

−Pe −sT 1

]−1 [ −P e −sT

e −sT −P

]
(28)

that leads to

S ′
11 = S ′

22 = P(e −2sT − 1)

(1 − P2 e −2sT)

S ′
12 = S ′

21 = (1 − P2)e −sT

(1 − P2 e −2sT)
(29)

In contrast to (27), the scattering functions of (29) do have
poles, arising from the multiple reflection process that takes
places between the ends of the transmission line segments, that
are closed on Z̄r �= Zo. The poles of S′ are located at 

σk = 1

2T
log(|P2|)

ωk = kπ/ T, for k = . . . . − 2,−1, 1, 2, . . . (30)

i.e., for a given line delay, they are at (1/ T) log(|P|) from the imag-
inary axis, spaced of π/ T. The larger is the mismatch of Z̄r with
respect to Zo, or the longer is the line segment, the closer are the poles
to the imaginary axis. If Z̄r were infinite or null, i.e., impedance or
admittance equations were adopted, then the poles would be on the
imaginary axis. As a consequence, the frequency responses associated
to (29) feature periodic peaks of growing amplitude for growing |P|.
This effect is demonstrated in Fig. 8, that shows the frequency
responses of S ′

21 for different Z̄r values. The simple transmission line
segment, therefore, highlights one of the advantages of the scattering
functions: for distributed structures that are prone to resonance, they
can be much simpler and better behaved than impedance, admittance
and transmission functions. Even if voltage and currents were mea-
surable for high-frequency signals, the dynamic range of impedance
and admittance functions would cause severe measurement problems.

C. Example #4: Scattering Matrix 
of an RLCG Line Segment 
for Zr1 = Zr2 = Z̄r = √

�/c
This example deals with the scattering functions of a lossy
transmission line segment for Z̄r coinciding with the character-
istic impedance that the line would have if losses were removed.
A possible application of this case is the measurement of the
scattering responses of a low-loss 50 � TEM guiding structure

by means of a network analyzer with 50 � reference impedance.
Let �, c, r(s) and g(s) be the per-unit-length inductance,

capacitance, resistance and conductance of the line, respectively
and T = L

√
�c the time delay of the line segment. Again the

scattering matrix is obtained by using (19) and the scattering
matrix of the matched transmission line segment2

S =
[

0 e−γ (s)L

e−γ (s)L 0

]
(31)

where

γL = sT

√(
1 + r

s�

) (
1 + g

sc

)
(32)

The resulting scattering functions are

S ′
11 = S ′

22 = P(s)(e −2γ (s)L − 1)

1 − P(s)2 e−2γ (s)L

S ′
12 = S ′

21 = (1 − P(s)2)e−γ (s)L

1 − P(s)2 e −2γ (s)L (33)

where

P=(1 − ζ )/(1 + ζ )

ζ =
√

1 + r

s�
/

√
1 + g

sc
(34)

The magnitudes of the scattering functions (33) are plotted
versus frequency in Fig. 9 for a PCB trace. The geometry of the
trace is assumed of stripline type and the following typical para-
meter values are used: T = 1 ns,

√
�/c = 50 �, trace width and

thickness 150 μm and 35 μm, respectively. The per-unit-length
conductance of the structure is neglected, whereas the per-unit-
length resistance is described by means of the Holt’s model

r(s) = rdc + rdc

√
s/π fs (35)

©2008 IEEE

Fig. 6.  Interpretation of the scattering functions of a two-
port element as components of a scattering process. The
ports of the element are connected to LC transmission lines
with characteristic impedances Zr1 and Zr2 and the line on
port #2 is matched.

Fig. 7.  Network for the calculation of the scattering matrix of
an LC transmission line segment and the relevant variables.
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where the estimated values of  rdc and fs are 3.4 �/m and
14.8MHz, respectively.

The frequency responses of Fig. 9 can be explained by observ-
ing that, for large s values, S′

11 → 0 and
S′

21 → exp(−γ (s)L), namely S′ tends to the scattering
matrix (31) of the matched RLC line segment. Besides, the
high-frequency decay of the transmission function is due to
the attenuation introduced by skin losses, i.e., for
ω → ∞ , exp(−γ ( jω)L) → exp(− jωT) exp(−Rs

√
ω) ,w i th

Rs = rdcL/2
√

2π fs
√

�/c . The mismatch introduced by losses
has a weak effect on the behavior of the scattering functions,
that remain well behaved over a wide bandwidth and are well
suited for measurement purposes.

D. Time Domain Considerations
In signal integrity and EMC problems involving digital cir-
cuits, the time-domain analysis based on the transient charac-
terization of n-port elements is particularly useful. For this
application, the scattering equations have important advan-
tages. The transient scattering equation of a n-port is defined by
the inverse transform of (6)

b(t ) = s(t ) ∗ a(t ) (36)

where s is the inverse transform of S and ∗ denotes the convo-
lution integral. The entries of s(t) are the scattering impulse
responses, i.e., the responses of the reference circuit defining
the scattering functions to ideal impulse sources. 

Regardless of the way the convolution integral of (36) is
computed3, the cost of computing the scattered wave variables
grows with the complexity and duration of the scattering
impulse responses. For distributed n-ports, scattering impulse
responses defined by matched reference impedances are well
behaved and short lasting, thereby leading to efficient and accu-
rate time-domain characterizations. In contrast, the scattering
impulse responses defined by strongly mismatched reference
impedances (and therefore also the impulse responses of imped-
ance, admittance and hybrid equations) are comb functions
describing the multiple reflection process in the time domain,
and are scarcely useful for the solution of transient problems.

The behavior of the scattering impulse responses defined by
matched reference impedances can be appreciated from Example
#2 and  #4 above. In fact, in example #2, s21(t) = δ(t − T),
with δ(t) ideal pulse, is the ideal delay operator. Similarly, in
Example #4, the transmission scattering function of the per-
fectly matched transmission line segment is

S21(s) = e−γ (s)L = e−sT
√

(1+ r
s� ) = e−sTH(s) (37)

and s21(t) = h(t − T), where h(t) is a single-sided pulse, tak-
ing into account the distortion and attenuation effects intro-
duced by losses. The h(t) function of the RLC case of Example
#4 is shown in Fig. 10 by means of a logarithmic time scale in
order to highlight the short-time distortion caused by the high-
frequency losses of the resistance model (35). Finally, the comb
structure of the impulse responses defined by mismatched ref-
erence impedances can be verified in Example #3.

VIII. Conclusion
This first part of the primer illustrates the features and proper-
ties of the scattering equations both from a circuit and a trans-
mission line theory point of view. The crucial role of the refer-
ence impedances defining the scattering functions and the other
network characteristic functions is pointed out and thoroughly
discussed. The normalization of the wave variables, the time-
domain scattering equations and examples of the scattering
equation for a transmission line segment are also illustrated.

The advantages of the scattering equations stems from the nature
of the variables their relate and from the role of their reference imped-
ances. The wave variables are the only ones that can be measured up
to microwave frequencies and the simplest variables for problems
involving propagation effects. On the other hand, owing to the finite
values of the reference impedances, the scattering equation are
defined for a wide class of n-port elements. The reference impedances
can be set by the user to obtain scattering functions simple and well
behaved both in frequency and in time domain, facilitating the analy-
sis and modeling of circuits and electromagnetic problems.

The second part of this primer will discuss the important rela-
tions between the passivity of an n-port and its scattering matrix.
Besides, the use of scattering functions for the characterization of
cascaded n-ports, the chain scattering parameters, and the devel-
opment of macromodels from scattering data will be illustrated.

62 ©2008 IEEE

Fig. 8.  Magnitude of S ′
21 versus frequency for an LC

transmission line with T = 1 ns and Zo = 50 �, and 
for Zr = 50, 100, 250, 500, 5000 �. The frequency 
responses is flat for Zr = 50 � and increasingly resonant
for growing Zr.

Fig. 9.  Magnitude of S ′
11 (red line) and S ′

21 (blue line) ver-
sus frequency (log scale) for the RLC transmission line seg-
ment of Example #4.
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Fig. 10. Transmission impulse (blue line) and step (red line)
responses of the RLC line segment of Example #4 for matched refer-
ence impedances. For representation purposes, the impulse response
is scaled by a factor 5 × 10−11 s. A logarithmic time scale is used to
highlight the short-time distortion produced by the high-frequency
losses of the resistance model. The step response shows how the edge
of and ideal step would be smoothed by the skin losses.
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