
Abstract—Real-time fusion of data collected from a variety of co-
located radars that acquire information in a cooperative manner
from multiple perspectives and/or different frequencies, is being
shown to provide a more accurate and effective way of tracking com-
plex targets in a multi-target scenario. This is more advantageous
than employing a single radar or a group of radars operating inde-
pendently. This paper describes a cooperative multi-sensor approach
in which multiple radars operate together in a non-interference lim-
ited manner. A three-fold approach is presented: (i) applying mul-
tiobjective joint optimization algorithms to set limits on the opera-
tional parameters of the radars to preclude electromagnetic interfer-
ence; (ii) measuring and processing radar returns in a shared man-
ner for target feature extraction based on electromagnetic diversity
principles in conjunction with target scattering cross sections; and
(iii) employing feature-aided track/fusion algorithms to detect,
discriminate, and follow real targets from clutter noise. The results
of computer simulations are provided that demonstrate the advan-
tages of this approach.

Keywords—Electromagnetic Interference/Compatibility; System of
Systems; Sensor Fusion; Radar Cross Section; Sensor Integration;
Multi-Sensor Feature-Aided Extraction

I. Introduction
Electromagnetic diversity can be achieved in a variety of ways. For
the present application, we first emphasize the use of frequency
and spatial diversity schemes for the multi-sensor, multi-target
environment. This is done in an effort to optimize targeting
objectives while simultaneously minimizing electromagnetic
interference i.e., “collisions” that might arise when deploying a
cooperative multi-radar network and the intercommunications
and coordinations that must take place.

The exploitation of frequency and spatial diversity in a
cooperative multi-radar scenario is intended to enhance our
current abilities to detect and track multiple moving tar-
gets in a highly dynamic battlespace. The challenge is one
of accurately detecting and tracking true targets in real
time and in the presence of clutter. The clutter in this case
is attributed to the adversary noise cloud which is intended to
mask the real targets from radar detection and thus defeat
the radars at their own game. The multi-target discrimina-
tion and tracking problem is further exacerbated by
requirements for minimizing interferences among the
cooperative radar elements. Because target scenario states
are constantly changing and the radars must adapt as nec-
essary, it is important to ensure that the collection of radar

sensors do not interfere with each other based on signal-to-
interference plus noise ratio (SINR); otherwise, efficient
real-time data throughput within and between sensor plat-
forms can be compromised resulting in the loss of target
tracking ability. Real-time performance is also predicated
on having sufficient signal/data processing speed and
capacity at the sensor side, as well as ensuring that the sen-
sors are properly calibrated.

Furthermore, the goal of data fusion is to operate on a com-
bination of radar sensor measurements, features, track states,
and object type and identification likelihoods to produce a sin-
gle integrated picture of the air space to a high degree of accu-
racy. Technologies that enable this synergistic fusion and inter-
pretation of data at several levels from disparate, distributed
radars and other sensors should enhance system acquisition,
tracking and discrimination of threat objects in a cluttered
environment and provide enhanced battle space awareness.
Again, limiting the effects of environmental electromagnetic
interference (EMI) on the collection of radars in relatively close
proximity is paramount.

To reiterate, the emphasis here is on exploiting frequency
and spatial diversity. This is accomplished using multiple next
generation (XG) aperture radar systems for target feature extrac-
tion and to provide useful information to tracking/estimation
algorithms for multi-target tracking tasks and to assist in dis-
criminating true targets from noise objects. The general
scenario is illustrated in Figure 1. Such radars employ adaptive
waveform techniques that provide the basis for the frequency
diversity in order to evoke a certain desired response based on
the target characteristics, and maximize the probability of real
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Figure 1.  Ground-Based Multi-Radar Target
Detection/Tracking.
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time target detection/tracking. Spread spectrum waveforms and
frequency agility are used to provide the added advantage of low
probability of intercept (LPI) and anti-jam (A/J) capabilities.
However, the electromagnetic environment produced by the
radars themselves can generally lead to catastrophic interference
and an overall reduction in multi-radar performance unless the
adaptive functions of the radars can be properly managed. One
technique to preclude interference-limited operation of this
type is through the application of Transmission Hyperspace
schemes [1]. Once the potential for EMI is minimized, cooper-
ative radar scattering returns can be used in the feature-aided
tracking and detection algorithms to achieve the desired objec-
tives of the multi-target tracking/discrimination problem.

II. Multi-Sensor Interference Management
Essentially, the radars will produce time-variant electromag-
netic signals as they adapt waveforms to “match” dynamically
changing target conditions. Consequently, a redistribution of
the power spectral densities occurs in accordance with changes
in operational modes of the radars and variations in waveform
parameters to enhance target detection and tracking perfor-
mance. However, time-variant and randomly changing power
spectral densities can lead to potential interference conditions
for the system of cooperating radar sensors. Several techniques
have been researched in recent years to alleviate the potential
EMI problem at this level by employing multi-sensor inter-
ference management. For instance, one approach is to enable
the sensors with a Transmission Hyperspace (TH) broker. Here,
multiobjective joint optimization schemes (alternatively, game
theory based approaches can be equally applied) are used to
optimally assign frequency, time, code/modulation, location,
etc. in order to satisfy a specific multiobjective function (e.g.,
target detection), including minimizing EMI for the system of
sensors. Although the concept of TH-enabled cells has been dis-
cussed in the literature [1], we briefly recap some of the salient
features of the approach below, as it applies to interference
management.

A. Multiobjective Joint Optimization
The TH approach enables the effective and efficient joint uti-
lization of all orthogonal electromagnetic (EM) transmission
resources, including, but not limited to, time, frequency, geo-
graphic space, modulation/code, and polarization. This multi-
dimensional environment is intended to convey the notion of
an n-dimensional resource space in which each dimension
allows orthogonality amongst users. Currently, there are no
known technological approaches to RF transmission in spec-
trum management that consider all of these dimensions joint-
ly, and certainly none that consider them in the context of a
system optimization problem. One of the benefits of employ-
ing this approach is the ability to effectively manage the spec-
trum for a distributed multi-sensor system in order to reduce
or essentially eliminate the potential for EMI.

There are a number of possible approaches to achieving mul-
tiobjective joint optimization for the present problem. Statistical
optimization is one approach. Linear and nonlinear optimization,
meta-heuristics, constraint satisfaction, and multidisciplinary
optimization are yet others. Evolutionary algorithms offer a very

promising approach assuming the computational bottlenecks
can be overcome to support real time requirements. However,
the details of these various approaches are left to the literature
[1]. Suffice it to say that many promising methods exist to attack
the spectrum management and interference reduction problem.

B. Relevant EMI/C Factors
There are increasing demands for improved performance of
future communication and radar systems that will be co-located.
One approach to optimizing performance is through the design
of novel diverse waveforms. Recent advances in hardware tech-
nology make it possible to design waveforms in real time that
maximize SINRs, improve resolution, and increase information
transfer. Temporal and spatial waveform diversity can support
the following concepts: reliable communications in realistic
multipath environments, radar with multiple mission (tracking
and imaging capability), interferometric radar and communica-
tions for better resolution and throughput, multistatic radar for
improved discrimination, and integrated radar/communications
in severe interference environments.

The successful implementation of the multiobjective joint
optimization implies electromagnetic compatibility (EMC)
between its many users. A user is said to be electromagnetically
compatible provided it satisfies three criteria: (1) it does not
cause interference with other users, (2) it is not susceptible to
emissions from other users, and (3) it does not cause interference
with itself. Central to the goal of EMC is the concept of orthog-
onality between the users as determined by how TH cells are
assigned in the multi-dimensional RF resource space.

However, perfect orthogonality between users is unlikely
to be achieved in typical real world applications. For example,
in the spatial dimension it is possible to design the main
beams of transmit and receive antennas such that they do not
overlap in specified directions. However, all antenna patterns
include sidelobes which do overlap. Analogous statements
apply to frequency domain spectra. These overlaps can lead to
severe interference when a high power emitter, such as a radar,
is collocated near a highly sensitive digital receiver, such as a
wireless device. In the polarization domain, orthogonality
between users can be compromised by multiple reflections. As
another example, the nonlinearities present in all electronic
systems can generate unintended consequences for users of the
RF Resource Space. Thus, a frequency hopping spread spec-
trum system produces a complicated pattern of harmonics,
intermodulation products, and spurious responses that may
cause problems for users in both nearby and distant frequency-
domain cells of the RF Resource Space. In addition, the
various domains of the resource space are all interrelated, as
predicted by Maxwell’s equations and Fourier analysis. There-
fore, orthogonality in one domain can lead to undesired results
in another. For example, shorter duration times for pulses in a
time-division multiple access scheme causes wider frequency
spectra that could be troublesome to some of the users.

In the present context, perfect orthogonality between users is
referred to as strict orthogonality. Orthogonality that is intended,
but not strictly achieved, is referred to as loose orthogonality.
EMC applies automatically to those users for which strict
orthogonality exists. On the other hand, EMC may or may not
apply to those users for which there is loose orthogonality. Loose
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orthogonality is not necessarily to be avoided. In the following
paragraphs, we briefly review this approach where loose orthog-
onality is employed in order to increase the number of users in
a CDMA direct sequence spread spectrum (DSSS) system. This
will be the fundamental basis for the scheme applied to the
multi-radar, multi-target tracking/discrimination problem.

C. CDMA DSSS System Illustration
Consider a CDMA DSSS system for which all users have the
same chip rate, Rc, data rate, Rb, and carrier frequency, fo, but
are assigned different spreading codes which are nearly orthog-
onal. The chip rate is chosen such that the power spectral den-
sity (psd) of each user fills the common frequency band cen-
tered at fo having bandwidth, Bo. This scheme is illustrated in
Figure 2(a) where all users have identical power spectral densi-
ties and a maximum processing gain given by Lo = Bo/Bb

where Bb is the data signal bandwidth. Because the codes are
nearly orthogonal, a residual component due to each undesired
signal exists at the correlator output of each receiver and limits
the total number of users in the band to Ko such that a pre-
specified probability of error, Pe , is achieved. Because each
DSSS signal has the maximum possible processing gain, it
might be conjectured that the number of DCMA DSSS users
for the given frequency band and probability of error cannot
exceed Ko.

However, consider the scheme illustrated in Figure 2(b)
where the original frequency band has been subdivided into 5
sub-bands. The center frequency bandwidth Bo has been subdi-
vided into 5 sub-bands, where each sub-band is given by

f1 = fo − Bo/3, f3 = fo f5 = fo + Bo/3
f2 = f0 − Bo/6, f4 = fo + Bo/6

(1)

Let Kk, k = 1, 2, . . . , 5, denote the number of CDMA
DSSS users in each sub-band where Kk is maximized such that
the probability of error for each user does not exceed that of the
scheme in Figure 2(a). It has been shown both by analysis and
computer simulation that the total number of users for the
scheme of Figure 2(b), given by

K = K1 + K2 + K3 + K4 + K5 (2)

is approximately 20 percent larger than Ko. This result is partly
explained by the loose orthogonality that exist between the
overlapping sub-bands of Figure 2(b) (Note that the peak of
one sub-band is placed at the null of the neighboring sub-
band). Also, the loose orthogonality of the spreading codes
allows for more different codes of a fixed length to be generat-
ed that would be possible if strict orthogonality was enforced.

Nonetheless, loose orthogonality may result in electromag-
netic interference (EMI) which reduces the quality of service
(QoS) required by one or more users of the RF resource space.
Consequently, it is proposed that the approaches to be identified
in this research for joint optimization of the multiple orthogo-
nalizing transmission parameters be constrained by EMC con-
siderations. Assignments that are likely to cause unacceptable
losses in QoS will be removed from consideration.

For this purpose, users of the RF resource space having
potential for undesired signal coupling will be identified.
These will be divided into sets of emitter and receptor ports
having specified coupling paths. It will be assumed that one or
more emitters can couple to a given receptor while a given
emitter can couple to one or more receptors. Using the resource
space dimensions, multidimensional profiles are established for
each emitter and receptor port. These are used, along with
characterizations of the coupling paths, to determine whether
or not the power from unintentional users at each receptor port
exceeds the susceptibility threshold for that port. Because of
the complexity of the above approach, simple rules of thumb can
be used to demonstrate the EMC constrained joint optimiza-
tion procedure. These can then be refined so as to yield more
accurate predictions.

These EMC considerations should be embedded into the
development of the system so that users who are assigned par-
ticular coordinates are not prevented from operating at accept-
able levels of performance.

III. Measuring Scattering Cross Sections
Before you begin to format your paper, first write and save the
content as a separate text file. Keep your text and graphic files
separate until after the text has been formatted and styled. Do
not use hard tabs, and limit use of hard returns to only one
return at the end of a paragraph. Do not add any kind of pagi-
nation anywhere in the paper. Do not number text heads-the
template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when proof-
reading spelling and grammar:

IV. Measured Scattering Cross Sections
Next, we return to the basic problem of target object discrim-
ination and tracking as illustrated in Figure 1. Three ground
radars are shown. In this example illustration, each is assigned
to operate at a different frequency, and has a 120 deg. scan
angle sweep and an elevation/depression look angle of 45 deg.
with respect to the ground and target region. The multi-radar
target detection/tracking system will include the following
functions: target detection, measurement acquisition, feature
extraction, target tracking, discrimination and classification.
These functions are mutually dependent, and the performance
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Figure 2.  PSD of (a) each CDMA DSSS system and (b)
sub-division of original frequency band.
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of one function will affect or be related to another. Therefore,
these function entities should be considered and designed
jointly to achieve a better system level performance.

One of the major functions of these radars is to measure the
target scattering cross sections and provide information to a
central communications hub for processing of the raw returns.
The advantage of having frequency and spatial diversity is
somewhat intuitive in that these cooperative radar elements
working together in a “network” can provide much information
about the physical characteristics of the target object(s).

Next, consider techniques for combining the measurements
of radar returns or measured target cross sections. This is done
in order to perform feature extraction and provide amplitude
information to the support the estimation and tracking stages of
the radar signal processing chain. Here we assume that the
radars are high resolution range (HRR) radars [2], which are
spatially distributed and where again, each operates at a differ-
ent frequency. The HRR return data is used as part of a feature
extraction process. Features (amplitudes) are then provided to
an estimator/tracker and then to a discriminator/classifier.

Figure 3 shows a representative composite “snapshot” of the
multi-target scattering returns using the multiple radar system.
The peaks observed in Figure 3 generally correspond to specific
features of the measured targets for vertically (VV) polarized
radar returns, which were “measured” at different aspect angles
and frequencies. Depending on the occurrences and phase infor-
mation related to the measured target returns, one can discern
the true targets from the noise objects. In particular, the various
frequencies of the multiple radars will evoke a different set of
responses (e.g., resonant peaks) from the target objects as a func-
tion of their electrical size at the frequencies of interest. The
radars may then adapt their waveforms to further interrogate
targets in order to optimize multi-target recognition, tracking,
and discrimination in real time. This stochastic-based process is
used to further evoke and measure target returns over time in an
effort to accurately discriminate and keep track of the multiple
targets in the battlespace. The importance of limiting interfer-
ence noise in the process of performing these functions is key
and is based on the interference management scheme discussed
above.

Recall in the example shown in Figure 3 that there may be
multiple targets present including noise objects. The simula-
tions performed focused a small number and limited class of

canonical target objects such as perfectly electrically conducting
(PEC) cones and frusta, which exhibit multiple segments, sur-
face areas and rim-edges. The objects simulated were also of
varying physical size and dimensions. As expected, the highest
amplitude returns for the various-sized objects in the simula-
tions correspond predominantly to the broadside and rim-edge
scatter from these objects. It is up to the discriminator to deter-
mine which returns (amplitudes) correspond to real targets ver-
sus decoys based on a predefined set of signature criteria.

Next, these amplitudes are extracted as part of the feature
extraction process and this information is then fed to the esti-
mator/tracking block of the multi-radar processing chain.

V. Feature-Aided Tracking and Discrimination
Using Radar Cross Sections
The task of traditional radar target tracking is to establish tar-
get kinematic trajectories from sequences of noisy kinematic
measurements in the presence of false alarms and countermea-
sures [3], [4]. However, difficulty arises in traditional target
tracking when target density becomes high and targets move
together, and when ambient electromagnetic noise and clutter
arise which could result in merged tracks and switched track
identities. Again, the importance of reducing interferences at
all levels is underscored here!

Once the tracks are initiated, the multiple targets should be
tracked accurately. One of very important issues in multi-target
tracking is the data association problem. The association step
compares measurements, and attempts to collect measurements
originating from the common real world object into a single
track. The difficulty is in distinguishing from which target, if
any, each measurement originates. This is addressed by
measurement-to-track association techniques.

With the advance in sensor devices such as HRR radar and
synthetic aperture radar (SAR), additional information regard-
ing target identification becomes available, which could be very
valuable in helping data association using feature (electromag-
netic signature) data. These data are extracted from HRR radars
and fed to the tracker to enhance data association capability, and
hence the tracking performance, especially for stressing and
complicated scenarios.

On the other hand, the output of the trackers, such as veloc-
ity and acceleration of the targets, can be very helpful for the
identification and classification of the targets. In [5], the
authors have applied both Bayesian and Dempster-Shafer meth-
ods to develop target identification algorithms, using features
including target speed and acceleration estimated by a tracker.

As a result, by limiting the adverse effects of EMI at the
start of the radar signal processing chain, to allowing informa-
tion transmitted from feature extractor to tracker, and from
tracker to classifier, the system performances, including both
for target tracking and target classification, should be
improved significantly.

A. Multi-Target Tracking
There are many algorithms to solve the problem of multi-target
tracking in the presence of clutter and ambient noise. There has
been some research indicating that considerably improved per-
formance is achievable when some amplitude information (AI)
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Figure 3.  Composite of Vertically Polarized Multiple
Radar Returns for Multi-Target Tracking/Discrimination.
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is delivered to the tracker along with the location measurements
[9], [10]. Target tracking with the assistance of feature or fea-
ture-aided tracking (FAT) is a relatively new research area
[11]–[14]. The feature (or its wavelet transform) obtained by
HRR radar has been shown to be very effective to improve the
data association performance.

Since data association performance and tracking robustness
against misdetections, decoy and debris can be improved through
the FAT methods, HRR profile or other feature information is
incorporated, such as signal amplitude or target ID to the track-
er. The benefits of the additional feature information can then be
assessed. Note that the track initiation process can also be aided
by extra features other than amplitude, to achieve a higher prob-
ability of track detection and a more accurate track estimate.

B. Target Discrimination Based 
on Interference Reduction 
and Scattering Cross Sections
Target discrimination is essential for any type of weapon or bal-
listic missile defense system. For example, decoys may have
radar cross-section (RCS) levels similar to those of the warhead,
which makes robust target identification based solely on RCS
levels difficult.

Narrowband radars usually lack sufficient range resolution
to allow a direct measurement of target length, although they
are generally useful for tracking and coarse motion estima-
tion. Unlike narrowband radars, wideband radars allow a
much larger suite of target discrimination algorithms to be
employed for real-time range Doppler imaging and phase-
derived range estimation.

In [15], coherent fusion of electromagnetic signature data
from multiple sensors operating over different frequency bands
is discussed within the context of an EM interference suppressed
environment. In [16]–[19], target recognition/identification
based on HRR radar signatures has been studied. In [20], a
wavelet de-noising scheme is used to aid the automatic target
recognition based on HRR signatures. The authors show that a
large portion of HRR signature content is non-discriminatory.
The wavelet de-noising process removes the non-discriminatory
information, and leads to a remarkable improvement in classifi-
cation accuracy.

In addition to the features extracted from the HRR data, we
have the target state estimates, as outputs from the tracker. They
provide the dynamic motion information regarding the multiple
objects in the radar field of view, which are very helpful in target
recognition and should be incorporated in the target classifier.
This is due to the fact there exist differences not only in size and
shape, but also in motion dynamics between the real targets and
non-threatening objects (decoys, countermeasures, and debris).

To fuse different features, including target state estimates and
HRR signatures, a target identifier is needed. Either a Bayesian
or a Dempster-Shafer combiner can be used to accomplish this.

VI. Example: Amplitude Feature-Aided 
Tracking at Reduced Electromagnetic 
Inteference Levels
To illustrate the advantage of feature-aided tracking in the
absence of interference, a ballistic vehicle tracking example is

assumed, where the amplitude information is transmitted to
the tracker as well as the position information. In the discus-
sions which follow, emphasis is placed on the parameters used
to characterize amplitude and how clean amplitude informa-
tion is needed in certain target tracking algorithms. The details
of the step-by-step derivation of the target dynamic model and
corresponding measurement models as well as the calculation
of covariance and false alarm rate are omitted in the present
discussion.

A. Signal Amplitude Model
We denote by a the amplitude (magnitude-square output of a
matched filter) of a radar return signal. The pdf of a when the
signal is due to noise only is denoted by f0(a) and the corre-
sponding pdf when the signal originated from the target is
f1(a). Assuming a Swerling I target fluctuation model, we
have

f0(a) = exp(−a), a ≥ 0 (3)

f1(a) = 1

1 + ρ
exp

(
− a

1 + ρ

)
, a ≥ 0 (4)

where ρ is the average SNR.
A suitable threshold, denoted by τ is used to declare a detec-

tion. As a result, the probabilities of detection and false alarm
are

PD =
∫ ∞

τ

f1(a) da = exp

(
− τ

1 + ρ

)
(5)

PFA =
∫ ∞

τ

f0(a) da = exp(−τ) (6)

The density functions corresponding to the output of the
threshold detector are truncated versions of the previous pdfs.

f τ
0 (a) = 1

PFA
f0(a) = exp[−(a − τ)], a ≥ τ (7)

f τ
1 (R) = 1

PD
f1(R) = 1

1 + ρ
exp

[
− (a − τ)

1 + ρ

]
, a ≥ τ

(8)

Finally, we define the amplitude likelihood ratio l, which is
used in the derivation of the amplitude feature aided tracker, as

l(a) = f τ
1 (a)

f τ
0 (a)

= 1

1 + ρ
exp

[
ρ

1 + ρ
(a − τ)

]
(9)

B. PDAF and PDAF-AI
First, we assume there is only one target for simplicity. We also
assume that at each scan, among the measurements of a radar,
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at most one of them originates from
the target, whereas the others are
just false alarms. To track the target
in the presence of clutter and other
noise (false alarms), we adopt a
probabilistic data association filter
(PDAF).

If amplitude information (AI) is
available, a modified version of the
PDAF, i.e., the PDAF-AI has been
developed to take advantage of the
extra feature, where amplitude
information functions as a discrimi-
nating feature, and the improve-
ment relative to the original PDAF
can be dramatic. Interested readers
can find a detailed description about
the PDAF and PDAF-AI in [6].

The procedure is then extended
to two or more sensors which at first
are collocated and then spatially separated. Then, frequency
diversity as a function of the AI is introduced to demonstrate
the improvements in overall discrimination and tracking per-
formance.

VII. Simulation Results
Simulation results were obtained using 100 Monte Carlo runs
with the following scenario: the ballistic vehicle enters the sen-
sor surveillance region at t0 = 0s with initial position
ξ0 = η0 = 105m and initial velocity ξ̇0 = η̇0 = 1500 m/s.
σv = 0.5 m/s2, σm = 100 m, T = 0.5s.

An example is shown in Figure 4. As can be seen, the PDAF
loses the track of the target very quickly, while the PDAF-AI
holds the track for the full 50 scans, due to the extra amplitude
information.

Next, we compare the performance of the PDAF and
PDAF-AI under various system parameters. Here, we not only
investigate the single-sensor case, but a two-sensor case, to
have a better understanding on how the tracking performance
improves as more resources are available to the fusion center.

In the two-sensor case, the performances of the two sensors
are assumed identical, and measurements at the two sensors are

assumed independent of each other. Data are fused in a central-
ized manner, meaning that raw measurements are transmitted
to the fusion center for target tracking. The PDAF or PDAF-AI
filter sequentially updates its state estimate with data from the
two sensors [6].

The in-track percentage for various system parameters is
shown in Table 1. A simulation is judged as in-track if at the
100th scan, the total number of validated measurements in the
validation gate [6] is less than or equal to 10, and the true and
estimated positions are less than 10

√
2σm apart. From this

table, it is clear that the PDAF-AI has a significant improve-
ment over the PDAF, especially when the clutter density is
high (λ = 5 × 10−6 m−2).

In Table 2, tracking performance in terms of root mean
square error (RMSE) is listed. Note that only results from the
“in-track” simulation runs are included to calculate the RMSE.
We can see that in most situations, the PDAF-AI has a lower
RMSE error than the PDAF.

A. Conclusions
From both tables, we observe that the PDAF-AI has a very
robust performance, even when the SNR is as low as 5 dB and
the clutter density is very high. Another important conclusion
is that by utilizing data from multiple sensors, the perfor-
mances of the tracker, both in terms of in-track percentage and
RMSE, are improved significantly especially under EMI-free
conditions.

This example shows that, even with the help of very simple
signal amplitude features and reduced EMI plus external
noise/clutter, the system can achieve a much better performance
for data association and target tracking.

However, more simulations are required using addi-
tional sensors and associated feature information. This will
help to further confirm trends and determine the critical
number of sensors that would be needed and to more fully
quantify anticipated gains in performance. An effort to
accomplish this is currently underway, which will also
investigate levels for acceptable interference under non-
ideal conditions.
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Figure 4. Example of Track with ρ = 10 dB, Clutter 
Density λ = 5 × 10−6 m−2 , Number of Sensors: 1.

Table 1. In-track percentage for various situations.

PDAF PDAF-AI PDAF PDAF-AI 
ρ (dB ) λ(m−2) 1-Sensor 1-Sensor 2-Sensor 2-Sensor

5 5 × 10−6 0 53 9 90
5 5 × 10−7 34 70 74 93

10 5 × 10−6 0 88 19 95
10 5 × 10−7 86 99 91 99

Table 2. RMSE for various situations.

PDAF PDAF-AI PDAF PDAF-AI 
ρ (dB ) λ(m−2) 1-Sensor 1-Sensor 2-Sensor 2-Sensor

5 5 × 10−6 — 109.0 74.0 77.4
5 5 × 10−7 143.0 138.9 95.3 117.5

10 5 × 10−6 — 79.8 70.8 46.2
10 5 × 10−7 88.5 69.6 85.3 46.5

emcsNLsummer07_2ndhalf.qxd  10/23/07  10:45 AM  Page 77



VIII. Summary
This paper discussed the results of investigations aimed at
applying a cooperative multi-sensor approach to enhance the
acquisition, tracking, and discrimination of moving targets
with reduced electromagnetic interference and low false alarm
rate. Multiple radars were assumed to operate together in a
non-interference limited manner. A three-fold approach was
discussed: (1) applying multiobjective joint optimization algo-
rithms to set limits on the operational parameters of the radars
to preclude EMI based on the Transmission Hyperspace paradigm;
(2) measuring and processing radar returns in a shared manner
for target feature extraction based on waveform diversity tech-
niques; and (3) employing feature-aided track/fusion algorithms
to detect, discriminate, and track real targets from the adversary
noise cloud.

Computer simulations showed that with the help of simple
signal amplitude features obtained from scattering cross section
measurements using spatially and frequency diverse radars, the
overall sensor system can achieve a much better performance for
data association and target tracking.
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