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By Clayton R. Paul

Electrical Engineering at the University of Kentucky. I

received a manuscript for review from the IBM Journal of
Research and Development. I was not familiar with the
author, Albert E. Ruehli, who was with the IBM T. J. Watson
Research Center at the Yorktown Heights, NY research facil-
ity. After reading and studying the manuscript in detail, I
strongly recommended that it be published. I was stunned by
the enormous insight in Al’s seminal paper! I was not familiar
with the main topic of his paper: partial inductance. Although
the topic of partial inductance had been the subject of much
research in the 1900-1920 times due to the introduction of
AC power distribution, the topic had fallen out of usage in
the intervening years until the emergence of high-speed
digital systems in the 1990’s. Although inductance is funda-

In 1971, 1 started by career as an Assistant Professor of
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Comments on the Paper by Al Ruehli

mentally related to the inductance of a closed loop of current,
I had no idea that an inductance could be #niguely attributed
to a section of that loop! Al’s thorough discussion opened a
new world to me and showed how we could uniquely deter-
mine things such as ground bounce where an inductive volt-
age could be attributed between two points on a portion of
that conductor. This also describes how we can quantify other
problems that are plaguing modern high-speed digital sys-
tems such as power rail collapse. Loop inductance has nothing
to do with solving these problems.

I strongly recommend that this paper be read and studied. I
am certain that doing so will have the same impact on how you
view how to quantify problems that you didn’t understand as
it had on me and will change your success in solving problems
that are starting to plague today’s high-speed digital systems.

A E. Ruchli

Inductance Calculations in a Complex Integrated

Circuit Environment
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A. E. Ruchli

Inductance Calculations in a Complex Integrated

Circuit Environment

Abstraci: This paper describes n method for calculating midifloop indieciances formed by complicated boreonncclion condugcton,
Knowledge of these induciances leads to useful information concerning the design of woch systems. In the approach pariied here, the
conducior loops ane divided into segments for which so-called partial inductandes ant calcalaied, The partial inductances are 1hen appro-

priately adied 1o yicld the desired Ipop ieductance,

1. Inireduction

Historically, inductance caloulations have been used
primarily in power engineering applications, While little
aftention % given in most ficld theory texts to inductance
calculations for electronic circuit geometries of practical
importance, Grover | 1] provides a more extensive treat-
ment of this subject, Additionally. Grover supplies a
thorough list of references,

im the lnst decade, integrated circuil technology has
n-p:-nﬂl new arcas of applicatismn for amducinnee calcula-
tiens. Previously, the role of induciance in electromic
circuits and digital systems was mostly limited 1o dis-
crete components, The coupling among these come
ponents could be ignored. In the microcircuil envinon.
meni, however, complicated multiconductor structures
serve as interconnections. The electrecal charactenzation
of such structures s doubdy important simce coupled
voliapes, signal delays and sipnal distortion all degrade
system performance. Analyiis of the electrical properties
of multiconductor syslems s also fundamental to system
synihesis and opEmiEalsbn.

The present paper 5 devoted fo the evaluation of
inductanecs for arbiteary microcircuil peometries, Thid
uwsually constitutes o first siep in ihe analysis of mter-
connechion Syslems.

A new comprehensive theory of mdustance is offered,
wivieh is called the theory of partial indluctance since the
calewlations nre based on the inductance of loopacgmenis.
This formadstion esteblishes o relateonship between
icomplete loops and closed loops and thus accommo-

dates Weber's covenat; I is importan 1o observe that
inductance of a picce of wire not forming a chosed loop
has no meaning™ [2], Further, the theoary presented here
is fundamental 1o a complete analysis via partial-clement
equivalent circuits [1]. All important aspects of modem
inductance calculaions in integrated cincuit systems nre
discussed, Special altention is given to systems withou
a local ground plane since the wsunl fwo-dimensional
calculations become mnvialid for this case, Mew formala-
tions ane paven that are suitable for implementation on &
cligatid computer. (As u practical consideralion, computer
analysr B the only way 1o gqualitatively characlenze
these minute struciures because ol their complexity.)
The size of the struciures o be considered is small com-
pared 10 the wavelength of the highest frequency in-
wolved, and ihe overall dimensions are typically less than
three centimeiers. The conductors, for example, can
be lines on a planas surface or small conductor ping. This
makes 3 guasi-siatic analysis feasible up 1o relatively
high frequencies. as will be shown in Section 3.

The conducions to be analyzed can inclisde both con-
neciions within the integriated circwits on the chip and
interconnections 1o the chip, The “or-chip” mductances
are generally so peghgible thin their reactances can be
ignered. (This assampion can be substantiated in each
particular ¢ase by the techniques developed here ) As a
further application for this woerk, the analysis and design
of lumped-clement microwave Sircuts s menationed, &g
[4]. The approach pursued here i related to o computer
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spproach for the calculation of magnetic felds [5] in
that segmenting of the currents is used in both cases,

Indiscimnces in 3 multiloop environment are the sibject
of the next section in this report. while the frequency,
where current spreading (nonaniferm current distriba-
tion) becomes imporiant, s assessed in Section 3, Cone
cepts and definitions of partial inductances are considered
in Section 4, while Sections 5 and 6 are devoted 1o the
actun! evaluntion of partind imductances, Sections 7 and
B discuss the application of the theory of partial induc-
tances o complicaled two- aml three-dimenssenal strue-
1ires.

2. Inductances of complex geametr|cs

In this section, inductances are considered for a general
Meloop sysiem, shown i Fig. Hak which is representi-
tive of the conductor arrangemenis of interest. 16 s rather
theoretical, however, and serves primarly in the develop-
ment of the method and ol as o sample applicatin. To
it with, all loops are assumed to be completely closed
cxcept for an infinitesimal gop between the connection
terminils. The inbuctinces of inleresi here are those
formed by the connections, unlike the usaal case in which
inductances consist of lumpesl elements and eonnectrns
are not significant. The inductances for such an N-boop
system are given by the deftmthon bolow,

= Ihefinition of indwctance
A set of N inductances is defined for a sysiem of N
loopa as

Luli%fuli*-lhl'k i, (n
where b, represents the magnelic Mux in loop § due 1o a
current J, in loop /.

The induciance con be relatesl 1o the geomelry by the
mignetie veetor padential A defincd by B=9 % A, The
vector potential generated by o current J in loop jis

ﬁl'!l
Ay =i j'; Jr el (2)
where r, = [r,— rJI and o1, s an element of conductor
A wath the direction slong the axis of the conducior, The
aren i, is the conductor cross section perpendicular o
the current Mow, A anifiem current densiny is assumed 1o
exisd mocomluctor o which is of a constant cross section

o, wlong the loop. The average magnetic Aux o in loog i
is casily relited bo the vector potentinl A, as

~>$ /[ A

where o, represenis the constant cross sectional area of
comdhiuctor . The imbiectance for the loops ¢ and § cun be
Found by mserting Fqs. (2) and (33 m1o Eq. (1)
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Figwre 1 {a) System of cospled comducior loops, (b Eguivas
lent circuit for the above geometry.

d'u:.l'n' {4h

vt $,7%

This resull can also be denved from energy concepls,
bt this formubition shows (hat avereges are 1aken over
the comducion cross sections for both the vector poten-
tial, Ee. (23, and the Mix, Eq. (3), The Neumann farmiila,
which i= a specinl case for the inductance af thin Maumen-
tury circuits { and £, s given by

B '“1| T ﬂl
by = i ij =, (5)

The letter T indicates that current flaments are consikl-
ered. Equention (4) can be written in o simple form wiith
Exq, {5 as

u ir "

f [ 16)

The idea of the averages i apparent in Eg. 16), For
masl geometries, closed form solutions Tor the multiple
miegrals are hard to find or are undisly complicaied. Haw-
ewed, e ﬂq:i'[hrL't.'i.imalil.'rn mielhods presenfed below resull
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Figure 2 Pulse speciem for dilferent pulse dumstions T,

in efficient caleulations, An equivalent circuit for the con-
figuration of Fig. 1{a) is shown in Fig. 1(b) An N x N
inductance matrix is formed for the system as L = (L]
where the clements are, w least i principle, evaluated
from By, (6), The af-disgonal terms of the L matris are
culled mutual inductances, while the diagonal terms are
called self inductances, The fux-current relation for the
general sysiem of Fig. | s

== LI (7

The element o, of the Mux vector Jf represents the taral
flux thiough the ith ksop penerated by all & correnis. In
relathod to network analysis, it is desirable 1o obiadn voli-
oge-curment relntions. Since the vollage is relnied io the
Aux by e, = o it is fowed in the s-domain that

Viiz) = sL1{x) . iR}

It Is mssumsed here thit the current in all condiscions
(wires) is uniform o, equivalently, that current crowding
effects wre small, The next section deseribes a method for
determining the fregeency ot which currem crowding
el .,

3. Estimation ol frequency dependence

AL first, 1 scems that Eq. (63 is limited in usclhulness by
the current redistribution due 10 eddy currents a1 high
frequencics. Howover, as shown by the example in Sec-
tion 7, the change in nductance values is smull excepi
i exklreme situptions where the comluctons are placed
in close proximity, Further, the length of a bead in o wire
condlucior 15 wsually small compared with the comdiscion
bempth. Thes, the current distribution and relistribution
with frequency in the comer regions is insignificant Fo
praciecal calculations aad convement approximations
can be mpplicd.

For usual geamelmes, il i impossible to obinin an ac-
curate gstimate of the frequency al which current crowd-
ing due to eddy currents becomes fmportant. However,
approsimate answers can be found from the usuul skin-
effect coleulations [6]. Modernte crowding is expected
in comluctors with the larger cross section dimension
if equal to the skin deph § = {If:rf._p-.rll‘ - where o s Uee
conductivity of the conduclors. As an example. if the
lurgest eross section o in oo system is 0. 2mm, then the
corresponding frequency f, is shout 0,1 MHz for copper
conduetors,

Mext. o relation is established between the frequency
aed time domakn representalions for digital system appli-
calions, The amplitude spectram of the trapezoldal pulse
shown in Fig. 2 s found from the Fourier integral 1o be

A = AT + toh|sined fadsine ST + 5,0 . {1

where T is the pulse duration and f, the rise time, and
sincr = sin (rcliry) . The ‘p|ﬂl of the mormalized JIHFH-
tude spectrum L4007 in Fig. 2 covers n large range of
pulse durations T. The pulse duration i varible inoa
digital system. The curves are easily npplied 1o values of
#, other than | ns. IF the new rise time is ¢ ms Lhen the rew
spectrum is found by dividing the frequency scule by x,
The fregisency fy o be used in the estimation of the skin
distance is found by compration of an equivalent band-
widdth

fom r |sine ( fr,)sine FIT + ¢, ) ldF, 1)
L)

The equivalent bandwidih caleulations inficated in Fig, 2
are oblained from Eg. {100, The same scaling procedures
also apply 1o the bandwidih caboulatbons, The frequency
Ja 15 then 8.9 MHz for o pulse of 100-ns duration with n
1kns nise time, The skin depih s, in this cose. of the or-
der of 20 Hm Tasr copper, a duiance smaller than the cross
seCting for mosl yslems.

However, for o conductor spaced al a detance lorger
than both thickness awl wiilih, the inductance wall be
only a weak function of frequency. This is subsiantiated
by comsidering Eq, (6), where L, s weighted by the
mniumlom  currenl distnbution, Pul for condisciors
spaced sulliciently apart, L, is nearly constant over the
cross section and thus L, will be insensitive to the cur-
rent redistribution, The inductance mpirices given in
Sectin 7 serve as cxamples Tor the sanateon of induc-
tance wilh respect o frequency and conductor spacing.

4, Concepts of partial induclance

This section deseribes a theory of partial inductance thai
related to modern network analysis and is suited for come
puler mnplementation, This represents a further develop-
ment of the concepls presented [ 1],
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The definition of mductance for s particular set of hoops
is given by Eq. (1). The Mux i, is induced in a closed
ksop where the area is bounded by the loop. [t seems,
therefore, that no umigue Mux is associated with an open
ksiop oF A segment of wire, 1t is also obvious that loop f
cannat support & current unless the loop is closad in some
way, Mevertheless, unique inductances are ohained for
incomplete beops as is shown below. Relations for the
indictance between parts of circuits can be developed,
starting with Eq, (4}, For this purpese, the integrations
over the lengths mre rewritten ns summations over the
straight boop scgments (which may be infinite in numibser
for curved condwctors) and all segments are allowed 1o
hawve a dilferent cross section, or

= g, ol

P
y g‘""‘”" (1

Here, the ith loop is assumed o consist of K segments
while the jih hbeop is divided into M segments, The limils
in the integrals are the starting points by , b and the end
points ¢, and ¢ of the segments,

'nﬂn'l

e Defindtion of porifad frductance

Partinl inductances are delined in general as the argu-
menl of the double summation in Eq. (11) for the con-
dibctor segments as

L

Partind inductinees are mamed [, In onder 1o diztin-
guish them from the loop inductanees L - (Balabanian
and Bickart [7] define the imluctance submateix of the
branch impedance matrix as L, matrix.)

4# @, o,

Sien rife for parsial imdircianges

The sign of L, & sccounted for by o factor 5, glven
in Eig. {13) below. The choice of the SERmens I|1I-J which
a circuit is divided is nol unigue, The Bines dividing the
conductor loops mto parts (for which the partiad induc-
imnces re to be calculatédll are calfled inductive parti-
trons, There nsually exisis a set ol partiions that 5 op-
timal for analysis in ench particular case. Then, Eq, (11)
is writhen in general as

L= "-" ":? Tyl i35
l o | lll--l

5, represents the sign (1) associnted with the [rurﬁ:u-
|J'|l 1:ld||l|n| inductance. The p.:lr'l.|1| induetances f..,
positive semidefinine by definiion. The sign §, hnﬂhtm
removed Trom the purely gwmr:rry-dtp:nd:nl puirtial
msluckinces, since .'.:"_ depends on the direction of cur
real Bow in the conducion,

The evalustion of the stgn 5, 15 discussed next. The
case of o multibeap shuation misst be considersd for gen-

“______.j"';-):“'
i "d_'_._'_'_,..--"'-'-'-\\‘
i ""'-._f_.--""'-'-.-.-.-.‘-"".\'
,‘__\_.r'_'_._._,_.—-—"-“
“'111!_.—-—"'_'_'_-‘"'&.

L
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Figore 3  Area associsted wilh two condscior segments,

mﬂly. Ana pri-nﬂ :.uig,nmﬂ'll of terminal viltnges and
current directiony B convenient for generalized caloula.
tons. The terminal voliages are always assigned in such
a way that the current lows from the poditive terminal
1o the negative terminal. A current vector 15 assigned 1o
all branches of the loop in the direction of eurrent flow,
Then, the sign 5, of the partial inductance £, is deter
mincd by the sign of the scalar product between the cur-
rent vectars i and j, L., is zero for the speckal case when
the scalar produet is ujmu-c-.nlly zero for orhogomal
currents, 1T the fMux dise to the currents assigned to any
pair of leops is in the snmie direction (additive fizlds), then
the coupled vollage is positive.

Flier areu of partial fnductarce

It s vital for an understamling of the concept of partial
inducitances to esiablish the relation 1o the flux aren as-
sociated with partial malueciances. The case of two
11.1-.1:'5111, not mecessandy coplanar, segments (shown in
Fig. 3) is considered firse.

# Fhearem:

Giiven @ thin straight conductor segment & between the
points b, and ¢, and given a second copducion segment
between b wml ¢ , then

bw ‘ij.,, By - iy

where a,. is the aren bounded ut ihe ends by the conduc-
tar segment & and infinity, and on the sides by two strmight
Imes which go throdgh the points b, and ©, and the nor-
iindil Lo Lhe lbee L‘l.ll'l.ﬂrfling the pans hq amd ©_ ad shiman
im Fig. 3. Then, aliernntively:

The prood is based on Stokes’ theorem, which relates
the surface integral over a,. o 4 line integral over I The
veclor polentizl i given by
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Figure 4 () A closed lisop wdth & tlied sagmend. (hi Flux area
mssociated with i'._“. L,.n. J‘,," adiil .f,.,“_

= ¢l
"*'J.I- "- i JJ i ¥
= i, Mim
whach s similar 10 Eg. (2), and therefore
B~ e, =, ‘J.*.§ J:- Mi_
e Ty doy  Fim

It must then be shown that the path [, can be resiricied
T the portion from b, 1o, . A, i3 2ero al infinity, which
implies that o contribution resulis from thes portion of
the loop, O the two paths perpendicular 10 the condue-
tor pr, Ay is in the direction of I and therefore normal
to o], . nnd thus the contribution to the integrl is again
zero. The integration over the loop {, reduces, therefore,
to integration over the path from &, 1o o, . as was o be
show,

The significance of the lux through the closed loop of
Fig. 44a) in relation tothe Aux associated with the partial
induciances is brought out in the example below, Sep-
ment | in Fig. 4in} is assumed 1o be tilted for penerality,
Equiution {13} gives the total loop inductance in terms of
partial inductances, which for this case is

[ ;2'. :_l, Spale . (1)

Each of ihe pariial imductances has o (hix area asso-
ciated with it in accordance with the above theorem.
Specifically, the arcas associnted with conductors 2 mnd
4 are considersd, The tled conductor segment | in Fig.
dAtap introduces an wbditsonal complication since this por-
tien must ke approximated by oon mfmite pumber of
minute steps, In this example, only a lmate single step
i shewn for clamy, The Mux area associated with the
partial selfinductanee I, extends from somowhere
ncar (e conductor (o infinity, since ihe partial sclf-
inductance piven by Eq. i12) is the nverage muiual in-
ductance over the cross wection of the condiector, The
sign nile lends o o negaitve mutual inductanee L, and
the corresponding fux ares extends from conductor 4
to miufindty, Thercfore, the Mux areas cancel outside of
conducior 4 jnd the only remalining fux aren is restnicied

o thie insicde of the loop. as is capected. The same prin-
ciple can be applicd 1o conduclor |, where 1™ cancels the
flus area ootsile mstead of conduster £ 17 s concept
is applied g0 all paniad inductances ia Eg, (04, 11 §s founs
that the only remadning fux area i restricted e the insade
of the loop,

Il nonpdanar koops are considersd, canceling pairs of
currents can be antroduced which reduce the gengral
proflem to o new el of locally planar loops. This is ans-
logous 1o the osoal proof of Stokes’ theorem in terms of
infermal currents,

The last topec 10 be discussed in this sectrn s incoan-
plete loops, For exnmple, the loops in Fig. | are all open
o the connections, A difficult problem occurs if the length
of the space beiween connection lerminals is comparalde
to the dimensions of the lesp, and this is aciually guite
common in inegrated cironits, Oflen, the external con-
neclions nre noi specificd, or are subject fo variation
amaong different applications. 1i (s nevertheless desiruble
to chivmelerize the inductance of such open loops.

Twao definitions are mtroduced al this point. Forunate-
Iy, the concepts of partial inductance lead to a value For
tee bndisctanee even if Lthe loops are open,

= Drefiniticen of oren Toop indectance

Ckpen loop induciance is defined as the inductance of an
mcomplete boop computed in accordance wilh the cons
cepts of partil imdisctmnce,

It s apparem from the shove development 1hat the
open loap induciance is the closed loop inductance with
the panial inductances of the chosing path remaeved. Thus,
as an altemate sobiution, the imbuctance of an open loop
can be calewlved I:I-}' d'-nﬁni:ll,g a rensonoble closing path.
Then, howewer, the closing path must be compleiely
specified, This approach leads 1o values of mductance
appropriale 1o specific cases, bui the open loop indue-
tance appears (o be an ensier genernl way to specify n-
disctance.

Another definnion s helplul for the situation wheee the
lerminals are close togethier comparsd 1o Uhe loop size.

= Defrnilion of indvctance for @ guasi-closed foup

The indoctance of o quasi-closed boop is obiained by
simply Fnocing the partial indectance between the 1er-
minals,

Unfertunately, if a loop is queasi-chosed, it does not
mezn Ehal the loop is decoupled From the conmections o
the loop. The enly sitwation for which conduciors are
bocally decoupled is thut in which they are perpendicular
o cach olher.

5. Evalualion of partial self-induttances
Partial seli-inductances are evabuated Trom the definition
of purtial inductsnce, Eq. (120, where inegration § and
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integration ; are both over the same conduetor, or

b, 'ﬁr—w';r’ J..E.‘,l'_'_r_d e

Partinl sell-inductance is the only case for which the
integrand 13 singular due fo inlegmtion over the sume
volume, The mosl Importan! geometry of inlerest is o
rectangulor comductor, which is shown i Fig. 5. The
solution of the six-fold miegrmtion s in genemnd obtnined
by introducing new variables u, of the formu, =y — 5",
where = &, ¥, . Use was mude here of a closed form
answer given in [8]. From this, a new formulation is
developed suitable for fast digital computations, Further,
the sccuracy of this formulation for kong thin condoctors
is subatantially improved. The following normalizstions
are introduced: v o= H and = T/H, The partial in-
ductance i% then

Ly Zpw I+,
A =
= {Hu ['"( ) "‘]

[In faw + A} =

i A+ g A=)

t[ln {u-ﬁ-.al

‘}—.-l,]+{;%: {an—A,)

g (A=A 4% 4, _Eiu tan”™" {ﬁl'_]

+."_A_EM'F{_L}+$-LH"|:E]
™6 wd,) " 4 bw o \A,

m,“nfli'—.ﬂf?'—'.ﬂl]i‘ 7 A, = A,

il i il

i
G0utn et gt e A

+:l“ (A, —A,)
el L oy B4
+ﬁ[ln{m+'ﬂ}—d]

E
Pﬁ%[“,—d’,h+!ﬂ—.~l.‘}][. (18}

whiere

A, = {1+t
A= (] +w')

A - (et "rr-;:
Ay (] + ot i)
I+,

A uhi{ -l.

L, el mm]

lu.l - i T [ro
i

Flgare 5 Pastial ssi-imlustance [, foresciangular conductors.

w A,
A

Ag=tn (Z57); ana

H"F'.-'I'.J

.'FT-T:I'I[ i

1

The evaluation of Eq. {15} should be performed by
summing from beginning to end, where the new terms are
added to the sum of ithe previous terms. The results,
shown in Fig, 5, were obiained on an [BM System/380
compiter in double precision. Since the errors become
birge for very large values of o and for small values of
o, & second formulation is given for infinitely thin con-
ductors thal is applicable with a small error forw = 0,00 .
The Tormulation, Bsed on the assumption thal w =0,
eg [Elis
"'.

i
T Byt et 0 1]

4+ 3uin [1!.- + |[$ - |}| I - [rﬁ + H}E]!} (16)

The normalizations are the same a5 in Eq. (150 The
dofted line in Fig, § shows the evaluation of Eq. (16),
Simplifiedl formulas are avnilable for muny other silua-
fiens, For example, the inductance of a roumd wire of
lemgth § il dhiameter W given by J'.. I (el 2w) [Inddw)
— 1] nppwosimates Eg. (E5) for u > 10 aind w1

Meal, a formulation for parial sell-inductance for con-
ductors of an arbitrery cross section is developed to
extend the usefulness of the theory, Use is made of the
above result for reclangular conductors.

= Thewrem for conduciors of arbitrary cress secilon
Ciiven a straight conductor & of kength § with an arbitrary
cross secton, |t the condisctor cross section be approsi-
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Figmre &  Panitioning of areas o, and iy,

mated by aset of subconductors each having rectangular
eross section; then the partial sell-induciance is given by

N=i w5 Al =|
=2 col £, + % col & J det L., I
o [E,-E o+ X ol by, an
where cof indicates the cofactor of the element in the
matnx and det is the determnant.

The prool 15 based on the definition of mdiciance

H
Ly, = I-"/: 3,

simce the volinge drop along the subconducions is relabed
10 the currenl vector by ¥ = o1 1 and since all voltages
along the conductors are equal 10 ¥, = F, Use is made
also of the symmeiry of the mairix of “partin] sub-
inductances.” This symmetry is evident from Eq, {12}

Thus, seli-inductances for arbittary conductor cross
seclions can be calculated with the aid of Eqgs, {15) and
(BT,

B, Computation of partial mufual Induclances

A mubitude of geometries must be considered Tor the
compuiatien of partial mofusl induciances becmme of
the many possible relative conductor locntions. A useful
collection of closed form answers for rectangular con-
ductors 15 given in [E]. However, closed form solutions
for mutual inductances become even more extensive than
Eq. (13} with a corresponding incresse in errors. Helow,
o new filoment approsimation is developed which is
convenient for computer implementation, (Filament
npproximations wsed in the past were mostly developed
bin fucilitite hand cnlowlations. ) Further, o scheme s de-
veloped by wluch the sccuracy of the solution can be
found, The line integrals inside the area integrations in
Eq. (12} are defined ns

o J||:ﬂ|':ﬂJ|
L"'u--lfr.f:J; oo (18)

in accordance with B, (5} L"".. can be viewed ns the in-
diciance between any bwo filaments of the two dilferent
conductors for which the mutual inductance is 1o be cal-
culated,

The conductor cross sections a, and a_ are partitioned
into & set of rectangles as shown in Fig. &, and a simple
formalation is obtained when Eq. (12} is rewritien as
B ELE,

T e
r,,hﬂyl_::H;ELﬁ”. 193

-
where K und M comrespond 1o conductors & and m re-
spectively.

For a practical evaluntion of Eq. (19) only a Anite nam-
ber of filaments 15 used, In foct, occurate calculaions
can be obtained with o small number of flaments, as is
shown below. Also, a reciprocal relation exists between
accuracy and computation thme. A chosed form solutkon
for the filment inductance. e.g [1], is

L,
L_TH-‘I;: E'II'.“'I".'LE|'"£[£‘+{#|,t+fjlll

- (&' + 7)), (20)
where
g=1+p;
BE=l4p=wp;
Ky = p =t and
E,=p.

[}
The normalizations used are o = i,-'- = %nnd

re [, = a4 v — w1,

where f_ — 2. b, (v, — v and Dz designate the respec-
tive differences in the filnment coordimaies and 1, amd
Iy are the lengths of the Blaments, The accurscy of the
evaluntion of Eq. (19) for fixed & and M depends on the
relative position of the conduclors, Examples for the
Iwo cases requiring the largest number of flamenis ure
shown in Figs. 7 and 8. This supgests that the number
of fEuments per conductor B clisen o be 6n inverse
function of the disiance between conductors, This resilis
i a conswlerable reduction in the necessary number of
wonmipirlalions, since only a small number of conduciors
wan be physically close 1ogether in a multiconducior
siluation. Yery few hlaments are needed for accunite
calculations nf distances belween the comluctors that
are lurger than the cross sectional dimensions, In this
cise, partial mual isducance is o weak function of the
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Figure 7 Comparison of ppprosimations fof maiial e
RnmEs.

conductor cross sections. A heornistic algorithm is easily
developed for the selection of an appropriate number of
filaments for each geometry,

Further, the farmulation given above sugpests immedi-
ately an extension of the concepls to conductors of any
cross section, The partial mutoal inductance can be fmimd
by representing a conductor in terms of o set of ilaments
in the direction of current fow, This assumes, however,
that the direction of currenl flow & known, It i thus
misted that this fermulation clhedes arbilirary cross sec-
tions for all conductors, af least in an approximate scnse.

The remainder of this section is devolted to evalupling
the nccuracy of the Mlament solution, In essence, the for-
mulations given below are used 1o compare the accuracy
of the filument representation, Eg. (19, with closed form
answers for the worst epse positions shown in Flgs. 7
and &,

To start with, a formulation for copduciors on a com-
mon axis s deveboped, as s shown in Fig. 7. Then the
computntion of the mituil inductances is reladed 1o the
self-inductinces as follows:

= Thearem for conduciors on the aaue axi

Civen two conductors £ and m on the same axis of
lengihs J'I mrd I_. with cross sections wlentical bt arbi-
trary {a, =@ = a}, let the partial self-mductance of a
conductor § with cross section o and length £ =1, +{_
be callesd L,". Then, a)

.‘-"I.- = ![L-H - """I.l 2 ’" ] '

il e two conductors are o contimeation of each olher,
anal 1)

r—r‘_ - +ILI.-H — L-ﬂ L Lp" + lr-p“] .

Figure 8 Comparson of approximsstions Tor muolual indscs
Rnses,

Figure ¥ Eguaivalent cirewil far two condistlon on same axis.

I+ ¥ = | el |
| | :
I i :‘_.-ﬂ
I Ey b I
b i S~ S

h .ﬂm:':‘w--,:.,__::-4""r

if the copducters are separated by a distance [ . L, is
the inductance of a conductor of length 1 -+ I, + [, , and
L,_, i,- refer to conductors of length {_ + [, ond I, + 1,
respectively.

A prool i3 oatlined for the simpler part a) of the
theorem. The equivalent circuit for this case iy shown
in Fig. % The inductance of o conductor of length {, + 1
is then
K -

by == il

iyt = I._“ ¥ ,"'l- L J'.,'“ » L"u-'

The desired result follows immediately since by =
o N

'ﬂ*pum. the curves in Fiz. 7 can be obained from this
theorem amd Eg. (15), The curves evaluated from the
theorem coincide with the answers for two lilaments
in the 5 direction and five filaments in the v direction,

The other case of intgrest is the computation of the
partial iductances between conductors with the relative
locatbons shown in Fig, 2.

= Thearem for parallel condicion

Cilven v I'ﬂhngul:u comluctars with cross sections
ar, and a_ of length [ and with one parallel side towsching,
anid .F.,,H the sell-inductance of & conducior of Cross sec-
tiom a; + a_ . then,



(b}

Figure 10 (a) A twoodimensional three comducior structure.
b Equavabent circuit in lerms of pariis] indoctances.

Ly, =Ly, + (L) by =Ll + by Y.

The prool is similar to the proof for the partial self-
inductance theorem for arbitmary cross sections given
nbove,

Again, the two theorems above are useful in determin-
ing the appropriate number of filaments for the repre-
sentution of partin] mutun] indoctances. Numerical ¢al-
ciilations show that the filament representalion works
elliciently for all relative condictor locallons, excepl
the worst case position shown in Fig 8 where both
conductors are very thin. For the lalier case, however,
the conductors can be approximated to be infinitely thin
and the inductance determined by a different formila,
A closed form soluten (8] leads 1o accurate partinl in-
ductances for this special case, which is mosily of mtercse
in the two-dimensional formulation given in the next
section,

7. induciances of two-dimensional struclures

The represemation of any physical structure by an
infinitely long two-dimensional model is clearly an ap-
provimition, This s especially true if o lurpe number of
parallel conductors are involved, since not ull of them can
be physically closs (comipared with thelr length) 1o all
other conductors, The approximation of & set of conduc.
tors by n two-dimensional model can be very cofivenbent,
however, since the inductance matrix must be specified
for a wnit leagth only,

The formulation given below is not & true two-dimen-
sional representation. The length will be set equal 1o
the phvsical lengih of the acheal geometry. This has
the mdvantage that the seasitivity wilth respeet Lo length
of the inductance per unit length can be investignted, It
% wlso noted that the conductors are assumed o be
“guasi-closed” s both ends in the sense of the defini-
tim given above,

A section of a three-conductor geometry is shown in
Fig. 10da). The pamial induciances in the equivalent
circwit of Fig. 1B} con be evahiated by the formailation
piven abave. The malrix of partinl indociances muost be

related to the induciance matnix L, which is useally speci-
fied for a set of coupled two-dimensional transmission
Hnes hnving 4 common ground conductor, Conducior 3
in this example i% assumed 1o be the common ground re-
furn pith, The inductance matnix i then caleulated from
the system of partial induetznces divided by the lengih 4,

¥oe=gsll 210
and the sign mile as

I =
[f—u“ Ly — L * f—-di[f—-" g Pt We g W
I:'L"'u - L"u . 'L"'Jl u L"n'l rL-H 5 L"u - L’u i) L‘":l.'l:I
{22}

The inductance matnx L for the genemnl system wath
a common ground return is found by o genermlizntion of
the above example. The generil system consists of &
conductors with an inductance matrix of the order N-1.
The comman returmn conductor is chosen 1o be conduetor
A, Then, the elements of the inluctance maltrix ane

A e T A (23)

where
‘I-J- Il:l---l-le
ek,

Very large ground conduciors may present a problem
in some coses, Judgment ot be used in selecting an
effective ground width in such a situpfion, The low-
frequency inductances found here are an upper bound
on ihe induciance as a funciion of frequency. The in-
duciance mnirix is usually calculated from the capaci.
tance matnx |9, 10]. This leads to the inductances at an
infmate frequency, which is a lower bound on L. Hence.
the vamation of mductanee with frequency can be
bounded from below and abeve. An example = given for
six conductors localed in parallel on a planar surface,
All conductors are assumed fo be 12.Tum thick and
30 Ham wide. The center-io-center spacing b5 chosen 1o
be |52 4pm. Then, the inductance matnix corresponding
to Eg. (23) is

[ 159
17 15.0
74 9h0 g
T.00 148 ]| e
| &2 528 55 6l

|
0,45 |

for mm overall lengih of 3.8lem The clements of ihe
mutrix are in nHlcm. If the same geometry is esed. the
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iwfuctonce  matnin  obtiined from  the capacitance
mntrix [10] i

[ 14,7
10.1 138

815 .06 127

.54 H89 T.68 1.1
465 4.76 5.0 551 B35

For this structure, the two bounds differ by less than
ten percent, Also, a greater difference is noted in L,
Tor the conductor near refercnce conductor &, compared
o the conductors funher away.

As aomore general epse. inductances can be evalunted
between loops formed by the connection of sets of any
two conductors at the far end. If we assume that one loop
consists of conductors § and § and that a second loop is
constructed with conductors L and [ then the loop
mnductinces are

Ly=Ly, =Ly ~ Loy +lw, 24}
where i j & 0=1,2, -« N.andl, [, areinthe same
direction

Errors may be mtroduced in Eqs, (23] apd (24 if the
resulinnt calowlated mutunl inductances are much smaller
than the partinl imduciances on the righi-hand side of
1he equation,

8. Inductance of throe-dimansional geomelries
All physical systems are three-dimensionzl in & strict
semae, Besides the class of geometres comsidered
the kst section {which can be represented by two-
dimenssonul spproximations), there exists a large cluss
of problems which must be solved in three dimensions,
Frgure 11 shows two conduclors which are considered
o be of a genernl Noop system. This example illus-
trates some of the diffcullics common o many physical
struciures that must be characterfzed. Loop | in Fig 1]
forms o quasi-closed Joop sccording 1o the definition,
since the gap is small. Loop 2 is an open loop and, there-
fore. the open [oop inductnnce cun be evaluated for this
case, |t seems approprinte to close the path as indicared
in Fig. | 1{a), since a more realistic value of inductance
is obtained, The cross section of the closing path musd
also be specified to completely charactenze the situn-
tion. It should be noted, however, that this path s only
specificd in licw of further information concerning ihe
continuation of the conductor., Conceivably, the entity
shown in Fie 11 may be wired inte diferent configura-
LI

Al Hiductances of the svstem enn be evaluated fram

B i
Ly=F % Sk i2%)

Fel o=l

(b}
Figure 11 {a) Two loops of o systerm und (h) cquivalest carci,

For the pantitions shown in Fig. 11, Again, loop § has K
partial conductors while loog j consists of M partial
conductors. Thes amalysis is, at least in an approximate
sense, applicable 1o any interconpection syslem. A sam-
Me example i given in Fig, 12, Since only a few con-
figurations of interest con be discussed here, it is geneml-
Iy noted ihat the partial inductances themselves follow
the rales of metwork analysis. Thos, algonithms for
other configurmtions can easily be developed,

8. Measuremant of small inductances
Most conventional inductance bridges fuil 10 give ac-
curide readimgs (o inductonees of o voalse less than aboaut
100 nH. Errors are madnly the resuli of coupling between
ihe instrudment and the unknown inductanee,
Mensuremenls are possible, however, with & conven-
tional bridge if the unknown loop is planar and is placed
al such a distance from ihe instrument (as shown in
Fig. 131 that coupling is neghgible. A coupling loop is
placed perpendicular 1o both the unknown sl the in-
striment, in such a way that ithe perpendicular conducior
segments nre decowpled. Two measurements nre re-
quired. For the Arsi messurement, the lermimals ore
shored with comndbuctor 4 (shown dashed in Fig. 135 Wik
the assumption that the imstrument can be represented
by o single partial inductance £, . the shorted loop
indugiance "

La=SL, —2L, 26}
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Figwre 12  Inductance of a rectangular kop,

Figare 13 Measurcmenl of small isdeciances.

L

Trdit wiuw
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il 1, i% small due to the large distance,

A ‘second measurement with the unknown loop of an
inductance Ly, vonnecied, and .L,.“ removed, leads 1o
the tolal inductance

Loriims = s — ‘-“ g - {27

il the couphag berween L, ond the unknown is small,
Then, the inductance of the unknown is easily found @s

Lo ™ Loy — dun + f-:-“- (18]

11 is moted that L, and L, ore independent of the un.
known, and therefore an o prion calibration is possible.
Aden, the measured indociance L., will be the open
lewsp inductance nccording bo ihe defimition given above,

The mensured values of inductunces shown in Fig 12
have been fownd by the technigue described abave,

10, Conclusions

Irluctinces i o microcircui environment are of mieres
for many reasons. The major motivatson lor this wark
was 1o develop o means for determining inductive voliage
drops and inductively conpled voluges for o large num-
ber of loops.

As stated in the introduction, a theory of inductance
culoulations for small inductance walises has been de-
wveloped. This theory concems itsell with so-colled
partinl inductances, which represent the basic building
blocks mlo which a system of conductors can be arti-
ficially subdivided to permil inductonce caloulations for
complex pesmetries, The theory of partil induciances
ms presented in this paper is directed towand the circuit
designer or the engineer concerned with overall systems
perfomunce, Chiel pmong its sdvaniages is the fect that
very complex gpeomctnies cun now be easily deall with,
Further, the analysis has been designed for dightal com-
putation, which represents an advantage over previous
work that dates prior to the time when digital computers
were widely availuble, To cite a further example of the
wseliiness of partial mductances. the inductance of open
loops on integrated circuits can be unigquely chamc.
terizedd.

To review, the geomeiries consldered have been
mthematically dedcribed, at least in an approximate
sense, by a sei of sirmight conducior segments with o
locally eonstant cross section. Current has been adsumed
o fAow in ihe direction of the axes of the conduclors,
Funher, sharp comers have been approximated in the
mosl conveniend wny, since the extent of the comers is
mastly small compared o the length of the conductors,
Copductors of an afbitrary ¢ross section can be m-
clsded by the formulstion given here, Also, the methosd
s not limited to simple armangemsents sinoe  parial
inductnnces follow the rubes of network analysis. How-
ever, approsimalions afre NeCEssary in many cnses,

All the necessary expressions for o computer imple-
mentution of the concepls have been given here.
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