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A Simpler Alternative to Wave
Tracing in Solving Transmission Lines

Clayton R. Paul,

Mercer University, Macon, GA (USA), paul_cr@Mercer.edu

Abstract—A simple method for rapidly sketching the terminal
voltage and current waveforms of a lossless, two-conductor
transmission line is given. The resulting simple equations for
the terminal voltages and currents of the line are given in terms
of symbols and do not have to be rederived for every problem.
The method easily accommodates source waveforms having
arbitrary wave shapes.

Index Terms—transmission lines, time-domain solution,
wave tracing

I. The Basic Transmisssion-Line Problem

The basic transmission line considered is shown in Fig. 1 and
consists of two parallel conductors having uniform cross sec-
tions along their total length & that are directed along and
parallel to the z axis. A source represented with a Thevenin
equivalent representation consists of an open-circuit voltage
waveform, VS(I), and a source resistance Rg. The line is termi-
nated with a load consisting of a resistance R;. The line param-
eters such as length, spacing of the two conductors, and all
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Fig. 1. The general configuration of the two-conductor, transmission lines to be studied.
conductor dimensions are assumed known. The terminal /= 1 H
impedances Ry and R, as well as the waveform of the open- T 42 m (a)
circuit voltage source, Vy(#), are also assumed known. The line 1 F
voltage and current are functions of position along the line, z, ‘= (3b)
i ; m
and time, #, as V(z, #) and I(z, 7). The task here is to produce v
the solution waveforms of the terminal voltages and currents:  The general solution of the transmission line equations is
V(0,7), V(Z, 1), 1(0, 7), and I(Z, ¢). This is the primary task
in determining the signal integrity of a digital system. 2 2
— z - z
Waves of voltage and current propagate along the conduc- V(z, ) =V (s = v TVt v (4a)
tors where they are reflected at the terminals. In order to sketch
the terminal solution waveforms, we can trace the individual | z 1 z
. . (z,0)=—VHr—=)——V[r+= (4b)
waves as they are reflected at the terminals and then sum in Z: v Ze v
time all the waves present as illustrated in reference {1}. In this
paper we will derive general equations for the terminal voltage  where Z . is the characteristic impedance of the line:
and current waveforms in terms of symbols rather than numeri- ; )
cal values for a specific problem so that the resulting equations Z.= \/ Q=y=— 5)
apply for all problems and do not have to be rederived for a ¢ v

specific problem. The results are predetermined for any source
waveform, V,(7) and don’t require any further wave tracing or
other derivations for a new problem. Replacing Vi(#) with a
different waveform but retaining the other problem parameters
doesn’t change the process.

I1. The Transmisssion-Line Equations
The line voltages and currents, V(z, ¢) and I(z, ¢), are governed
by the transmission-line equations {1}

aV(z, 1) - ol(z, 1) (1a)
dz Jtr

3l(z, 1) . aV(z, ) (1b)
dz Jaz

which are a set of coupled, partial differential equations. All
cross-sectional dimensions of the line are contained in its per-
unit-length inductance, /, and its per-unit-length capacitance,
¢. The electric and magnetic fields along the line lie in the x-y
plane transverse to the axis of propagation, the z axis. Hence
the field structure is referred to as the Transverse Electro Mag-
netic (TEM) mode of propagation. The velocity of propagation
of the TEM waves along the line is

The V' and V™ are, as yet, undetermined functions but depend
on z, ¢, and v only as # + (z/v) and 7 — (z/v). These functions
are determined by the source and load: V(z), Ry, and R,. Also
note that there is an important negative sign in the solution
for the current. The V' represent forward-traveling waves
traveling in the +z direction, whereas the V™ represent back-
ward-traveling waves traveling in the —z direction. So in
general we have waves of voltage and current (or equivalently
waves of electric and magnetic fields) traveling back and forth
down the line. We see that the voltage and current waves are
in general being reflected at the source and at the load, and the
combination of these waves determine the total voltage and
current solution waveforms at the source and the load ends of
the line.

I11. Reflections At the Line Terminations
The time required to transit the line from one end to the other
is the one-way time delay on the line:

E4

Ty = m ©6)

At the load end of the line, z = &, the voltages and currents are
denoted as

.l m — V(- -
=T s (@) V(£ 1) = V1 (r=1Tp) +V i; +Tp) (7a)
So we can obtain one parameter from the other: 1(£,1) = ?VJr (t=1p) — ?V_ (¢ +1p) (7b)
c c
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Fig. 2. Ullustration of reflection at a mismatched load.

If the load is matched, i.e., R, = Z, then we will only have a
forward-traveling (incoming) wave at the load and there will be
no reflected wave at the load. But for some general load that is
not matched, R, # Z., we must have an incident (forward-
traveling) wave and a reflected (backward-traveling) wave at
the load in order to satisfy Ohm’s law. Define the voltage reflec-
tion coefficient at the load as the ratio of the reflected and incident
voltage waves:

vV (r+Tp)

Fovi(e=1Tp)

If we know the load reflection coefficient, I';, we can determine
the reflected voltage wave knowing the incident voltage wave.

The rotal voltage and current at the load can then be written in
terms of the load reflection coefficient as

®

V(L,0)=V"(—1Tp)1+T,]
1
(L,)=—V"(—1,) 1—T,] )
Zc
At Ry 1(0.1)
i i su{ on
i z
Rs 1(0, l‘)

- V(0,1)
0 t)
i .| R + zc
Fig. 3. lllustration of the input impedance to the line for
0=1t<2Tp.

Taking the ratio of these two relations gives

V(Sﬁ,t)_R _, [1+FL} 10)
(2, 1) S S
Solving this gives the voltage reflection coefficient at the load as
R, —Z.
r,=—r—=¢ an
R, +Z.

Observe that since there is a minus sign in the current relation,
the current reflection coefficient is the negative of the voltage
reflection coefficient:

r,| =-T

current

L‘voltage (12)
The process of reflection at the load is like a mirror: the reflect-
ed wave is coming out of the mirror and the incident wave is
going in as illustrated in Fig. 2. The total voltage is the sum of the
incident and reflected waves.

The voltage or current wave that was reflected at the load
travels back to the source in another time delay of T}, where it
is reflected with a voltage reflection coefficient at the source of

I's= Ry~ Zc (13)
R+ Z.
and sent back to the load. The current reflection coefficient at
the source is, again, the negative of the voltage reflection coef-
ficient at the source:

—I] (14

s ‘ current voltage

Finally we obtain the initially sent out wave. We reason that
when the source voltage is initially applied, an initial forward-
traveling wave is sent out towards the load. This initial wave
will take a time delay of T}, to get to the load. Any reflections
of this initial wave at a mismatched load will require another
one-way time delay of T}, to get back to the source. Hence no
reflected wave will have arrived at the source over the time in-
terval 0 < 7 < 2T So the total voltage at the source is just the
initially sent out forward traveling wave and hence the ratio of
the total voltage to total current at the source end of the line,
z = 0, will just be

v(0,7)  V'(r—0)
0.0 = . =Z, 0<r<2T, (15
’ —V*(r—0)
C

So the input impedance to the line initially appears to be Z.
Hence we can calculate the initially sent out voltage and cur-
rent waves from

Zc

= 16

mt&+&wm (16)
Vdlz

,ngil, 17
Ry + Z

as illustrated in Fig. 3.

IV. Closed-Form General Solutions of

the Terminal Voltages and Currents

We can trace the incident and reflected waves giving closed-
form solutions for the terminal waveforms in terms of symbols
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Fig. 4. The lattice diagram.

which do NOT have to be repeated for every different problem.
To obtain these solutions we will use a form of a “lattice dia-
gram” shown below in Fig. 4 that is normalized for a unity wave
that is launched initially. Time is recorded on the vertical axis
in increments of the one-way time delay 7, and positions
along the line are recorded on the horizontal axis. At a time
point on the vertical axis where an incident and a reflected wave
are present, the incident wave is multiplied by the reflection
coefficient and the two waves are added.

The following TOTAL solutions have identical FORMS for
ALL problems. For the terminal voltages these are

__Zc _Ze _
v(0,7) = R+ chs(z) + Rt Zc(l +T) T, [Vs(r = 271p)
+ (FSFL)VS(f - 4TD) + (FSI‘L)ZVY(Z - 6TD) +e]
(18a)
and
7.
V(ﬁB, f) = RSfCZC(l +FL) [Vs(f - TD) +(FSFL)VS(1‘ - 3TD)

+ (FSFL)ZVS(I _STD) + (FSFL)}VS(“ _7TD) +0
(18b)

The terminal current solutions are similarly obtained from
the voltage solutions but with the reflection coefficients for

currents being the negative for those for the voltages as shown
in (12) and (14) and the initially sent out wave is given by (17).
Hence the symbolic solutions for the total terminal currents are

1

1(0,7) = mvs(f) + ﬁ(l —T5) (=T ) [Vi(r —2T})
+ (D) V(2 — 4T)) + (IL) V(2 — 6T)) + -+ -]
(19a)

and
I(ga f) = (1- FL) [Vs(f - TD) + (FSFL)VS(I - 3TD)

R+ Z,

+ (FSFL)zvs(f - 5TD) + (FSFL)BVS(t - 7TD) t-- ]
(19b)

where I's and I'; in the current expressions are the voltage
reflection coefficients but their signs reversed.

Observe in these expressions that the total voltages and cur-
rents at the input and the output to the transmission line are
combinations of the source waveform, Vi(z), that are delayed
by two time delays. Also note that the magnitudes of the source

and load reflection coefficients are less than or equal to unity:
Ty =1 (20a)

Tl =1 (20b)
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Fig. 5. An example.

Observe that the total terminal voltage waveforms, V(0, 7) and
V(&Z, 1), in (18) and total terminal current waveforms, (0, 7)
and I(£, 1), in (19) are sums of delayed replicas of V(z) mul-
tiplied by products of the source and load reflection coeffi-
cients, (I'sI';)”, which are also progressively less than unity.
Hence if the source resistor is less than the characteristic
impedance, Ry < Z, and the load resistor is greater than the
load resistor, R, > Z, or vice-versa, the source and load reflec-
tion coefficients are of opposite sign. Hence a resulting terminal
voltage will have a portion added to it and subtracted from it
resulting in oscillations. On the other hand if the source resistor
and the load resistor are both less than the characteristic imped-
ance, Ry < Z., R, < Z, or are both greater than the charac-
teristic impedance, Ry > Z., R; > Z, the source and load
reflection coefficients are of the same sign and the terminal volt-
age will steadily build up to its steady-state value. These obser-
vations apply also to the terminal currents.

The voltage results in (18) are multiplied by a factor rep-
resenting the voltage division at the source that was used to
determine the initially sent out voltage: Z./(Rs + Z). Simi-
larly the current results in (19) are multiplied by 1/(Rs + Z,.).
Finally, each result is multiplied by a constant: (1 +T's) I,
for V(0,7) and (1 +T,) for V(£,7) and (1 —T%) (-T,)
for 1(0, 7) and (1 —I',) for I(<£, #) where these current coef-
ficients result from negating the voltage reflection coefficients
to give the corresponding current reflection coefficients. Once

1
vt 7 Vst 3
= Vgt — 4T,
o5V 16 S( D)
18.75V 5
6_4VS(t - BTD)
R O R I =V
2 4 6 8 10 14 16 t(us)
_oa75v | 20 22
18
3
—Evs(t - GTD)
—-37.5V
3
—g Vslt = 2Tp)
Fig. 6.

V(0,1)

25V
18.75V
9.375V
469V
——————————————— ———
2 4 6 8 10 12 14 1 t(us)
18 20 22
-12.5
—4.69V
-9.375V
—18.75
375V

Fig. 7.

these coefficients are determined, the component waveforms are
plotted in terms of the delayed source waveform Vi(#). Once
this is completed, these waveforms are summed to give the to-
tal waveforms V(0, 7), V(Z, ), 1(0, 7), and I(¥, ¢) and the
analysis is complete.

V. Examples
Sketch the voltage at the input, V(0, ¢), and the current at the
output, I(X£, #) of the line versus time for the problem in Fig. 5.
This problem illustrates the case where the source volt-
age waveform, Vy(z), is a pulse of amplitude of 100 V and
6 s duration that is several one-way time delays of the line,
Tp=2%/v="2pus, in duration. Hence the incident and re-
flected pulses from opposite terminations overlap in time and
combine to give very complicated total wave shapes at those
terminations. First perform the initial computations:

7 - \f _ [o2s x107
“ Ne 100 X 1012
m
v=—rF= =200 —
Vie V(025 X 1079)(100 X 10~ 12) s
£
Tp="=2us
Perform the initial computations for the voltage:
Zc 50
Vinie = V() = 100 =25V
R+ Z¢ 150 + 50
 Ry+Zc 150450 2
R.—Z: 0-50
FL L C _

TR +Z. 0+50

For this example we compute the factors Z./(Rs + Z.) = 1/4,
(1+T) T, =-3/2 for V(0,7) and (1+T,)=0 for
V(&Z, t). For the plot of V(0, ) the series expression in (18a)
becomes
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va>=th>—§x«r—zm)—5w0—4n»

1 1
Vs = 6Tp) = Vilr = 8T,) + -+

1 3 3
= sz(f) - ng(f - ZTD) + RVS(Z‘ - 4TD)
- ivs(z —6Tp) + iVS(t —8Tp) + -
32 64

which is shown in Fig. 6:

Adding the pulses gives the solution for V(0, 7) shown in
Fig. 7.

The series solution for voltages in (18) can be easily modified
for currents as in (19) by (1) negating the voltage reflection coef-
ficients to give the current reflection coefficients AND (2) using

V() 21

Linie =
R+ Z.
as shown in (19). For the plot of current the coefficients are
1/(Rg + Z) =1/200, (1 + —T) (=T,) =1/2, for 1(0, )
and (1 + —I;) =2 for I(£,#). The series expression for
1(£, #) in (19b) becomes

1 1
I(if, t) = %2 Vs(t - TD) - EVS(t - ?)TD)

1 1
4= 5Tp) = Vil = TT) + -

1
—V(t —1Tp) —

1
=100 —V(r = 3T)p)

200

+ 1v( 5Tp) 1V( 7T,) +
LI -
00 ° b7 go0 0 P

4

Figure 8 shows this summation in terms of the source pulse,
V(7).

Adding the pulses gives the solution for I(<£, 7) shown in
Fig. 9.

As another example and one in which Vi(z) is complicated,
suppose Vs(7) is again a pulse of 100 V and duration of 6 us
but steadily ramps from 0 Vatz=0s to 100 V at 7 = 6 us at
which time it goes to zero as shown in Fig. 10.

(<, t)

1A

0.063 A

l_\ﬂ\zqug 20 22 24
1 1 1 1 1 1 1 1 1 : 1 1 1 'T‘ 1 1

I2I4;rlél8ll1lol1'2l1l416:—‘l I_I0_063A t(us)
-0.25A -0.125A
-05A
Fig. 9
Vo(t) 4
s 100 V
6 us
Fig. 10.
V(0,t)
25V
7 Vs() %Vs(t a1, 1875V
3
=1 Vs(t - BTD)
e 4.688 V
SR B S~ sl
2 4\ 6 8 |10 12 14%’1820 22t(H5)
3 -9.375V
—3—2V3(t - 6Tp)
_%Vs(t - 2TD)
-37.5V
Fig. 11.

Since none of the parameters except the waveform for Vy(#)

has been chang

v(o, 1) =

©2011 IEEE

ed, the equation for V(0, #) is unchanged:

1 3 1

ZVS(Z) - g V(2 —2Tp) — EVS(Z‘ — 4Tp)
1 1

+ ZVS(t - 6Tp) — ng(t —8T,) + -

lvs(x) - évs(t —2Tp) + iVS(t — 4Tp)

4 8 16

3 3
- 3—2vs(¢ —6Tp) + 6—4vs(¢ — 8Tp) + -

41



V(0,1) 16.67 V

Fig. 12.

Plotting the individual components is shown in Fig. 11.

Adding the pulses gives the solution for V(0, #) shown in
Fig. 12.

All of the results of the above examples were validated us-
ing the PSPICE circuit analysis computer program. Use of
the exact lossless transmission line model in PSPICE for more
complicated /Jossless transmission-line problems is highly rec-
ommended {1}.
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