
36 ©2011 IEEE

Practical Papers, Articles  
and Application Notes
Flavio Canavero, Technical Editor

Dear Readers,

This is my farewell message. I will miss this quarterly 
appointment with you, by means of the papers that I 
was regularly offering for your reading and medita-

tion. However, I know that the incoming Technical Editor 
(Professor Kye Yak See from Nanyang Technical University, 
Singapore), with his enthusiastic leadership and competence, 
will bring to your attention a new wave of interesting and 
challenging papers. This is what we need for keeping the 
freshness and success of our Newsletter. 

In ending my term, I wish to express my sincere thanks 
to the Board of Directors of the EMC Society for their confi-
dence in my work, and in particular to the Newsletter Editor, 
Janet O’Neil, for her invaluable support during these years; I 
really enjoyed working with her. During my turn, I was very 
lucky to find a large number of experienced contributors who 
gifted the Newsletter with very informative papers. I wish 
to thank these authors for the time and zeal they put into 
the preparation of their contributions. I also would like to 
mention the anonymous reviewers, who worked behind the 
scenes; their very enlightening comments frequently helped 
the authors to focus and polish their papers.

In the current issue, I bring to you two outstanding con-
tributions. The first article is entitled “A Simpler Alterna-
tive to Wave Tracing in Solving Transmission Lines” and is 
authored by Professor Clayton R. Paul, who presents a prac-
tical and simple method for rapidly sketching the terminal 
waveforms of a transmission line. Professor Paul’s intent is to 
suggest a clever technique avoiding the cumbersomeness of 
tracing all the individual waves propagating along the line 

and adding their effects at the terminals (please think of how 
you would do using the “lattice” or Bergeron method). This 
paper provides general equations for the terminal voltage and 
current waveforms in terms of symbols, so that the result is 
applicable for all problems and does not have to be rederived 
for every line. Also, the validity of this technique is not lim-
ited by specific source waveforms.

The second article is entitled “Shielded Cable Transfer Im-
pedance Measurements; High Frequency Range 100 MHz–
1 GHz” by Bernard Démoulin and Lamine Koné, with the 
TELICE Lab of Lille University of Science and Technology, in 
Lille, France. This is a second contribution of a series on the de-
termination of the transfer impedance of cables and connectors, 
and brings us the highly competent view of one of the labs that 
mainly contributed to the IEC Standard on transfer imped-
ance characterization of cables. Professor Démoulin, recently 
retired, has graciously agreed to share with us the significant 
experience he cumulated in the former Laboratory for Radio-
propagation and Electronics (now TELICE), where testing pro-
cedures for cable shielding effectiveness were developed. 

EDITOR’S NOTE: It is with mixed emotions that I edit this 
column. I have enjoyed working with Professor Canavero for several 
years on the EMC Newsletter. His tremendous work, and that of 
his colleague before him, Professor Bob Olsen of Washington State 
University, was critical to the IEEE approval of the transition of 
the EMC Newsletter to a magazine in 2012. Professor Canavero’s 
dedication to this column and his professionalism in dealing with the 
numerous authors and reviewers over the years will always be ap-
preciated. I look forward to working with Professor Kye Yak See and 
welcome him in our next issue as the new Technical Editor. 

Abstract—A simple method for rapidly sketching the terminal 
voltage and current waveforms of a lossless, two-conductor 
transmission line is given. The resulting simple equations for 
the terminal voltages and currents of the line are given in terms 
of symbols and do not have to be rederived for every problem. 
The method easily accommodates source waveforms having 
arbitrary wave shapes.

Index Terms—transmission lines, time-domain solution, 
wave tracing

I. The Basic Transmisssion-Line Problem
The basic transmission line considered is shown in Fig. 1 and 
consists of two parallel conductors having uniform cross sec-
tions along their total length l that are directed along and 
parallel to the z axis. A source represented with a Thevenin 
equivalent representation consists of an open-circuit voltage 
waveform, VS 1 t 2 , and a source resistance RS. The line is termi-
nated with a load consisting of a resistance RL. The line param-
eters such as length, spacing of the two conductors, and all 
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conductor dimensions are assumed known. The terminal 
impedances RS and RL as well as the waveform of the open-
circuit voltage source, VS 1 t 2 , are also assumed known. The line 
voltage and current are functions of position along the line, z, 
and time, t, as V 1z, t 2  and I 1z, t 2 . The task here is to produce 
the solution waveforms of the terminal voltages and currents: 
V 10, t 2 , V 1l, t 2 ,  I 10, t 2 , and I 1l, t 2 . This is the primary task 
in determining the signal integrity of a digital system.

Waves of voltage and current propagate along the conduc-
tors where they are reflected at the terminals. In order to sketch 
the terminal solution waveforms, we can trace the individual 
waves as they are reflected at the terminals and then sum in 
time all the waves present as illustrated in reference [1]. In this 
paper we will derive general equations for the terminal voltage 
and current waveforms in terms of symbols rather than numeri-
cal values for a specific problem so that the resulting equations 
apply for all problems and do not have to be rederived for a 
specific problem. The results are predetermined for any source 
waveform, VS 1 t 2  and don’t require any further wave tracing or 
other derivations for a new problem. Replacing VS 1 t 2  with a 
different waveform but retaining the other problem parameters 
doesn’t change the process.

II. The Transmisssion-Line Equations
The line voltages and currents, V 1z, t 2  and I 1z, t 2 , are governed 
by the transmission-line equations [1]:

 
'V 1z, t 2
'z

5 2l 
'I 1z, t 2
't

 (1a)

 
'I 1z, t 2
'z

5 2c 
'V 1z, t 2
't

 (1b)

which are a set of coupled, partial differential equations. All 
cross-sectional dimensions of the line are contained in its per-
unit-length inductance, l, and its per-unit-length capacitance, 
c. The electric and magnetic fields along the line lie in the x-y 
plane transverse to the axis of propagation, the z axis. Hence 
the field structure is referred to as the Transverse Electro Mag-
netic (TEM) mode of propagation. The velocity of propagation 
of the TEM waves along the line is

 v 5
1

"lc
 

m
s

 (2)

So we can obtain one parameter from the other:

 l 5
1

cv2  
H
m

 (3a)

 c 5
1

lv2  
F
m

 (3b)

The general solution of the transmission line equations is

 V 1z, t 2 5 V1at 2
z
vb 1 V2at 1

z
vb  (4a)

 I 1z, t 2 5
1

ZC

V1at 2
z
vb 2

1

ZC

V2at 1
z
vb  (4b)

where ZC is the characteristic impedance of the line:

 ZC 5Å
l
c
 V 5 vl 5

1
vc

 (5)

The V1 and V2 are, as yet, undetermined functions but depend 
on z, t, and v only as t 1 1z/v 2  and t 2 1z/v 2 . These functions 
are determined by the source and load: VS 1 t 2 , RS, and RL. Also 
note that there is an important negative sign in the solution 
for the current. The V1 represent forward-traveling waves 
traveling in the 1z direction, whereas the V2 represent back-
ward-traveling waves traveling in the 2z direction. So in 
general we have waves of voltage and current (or equivalently 
waves of electric and magnetic fields) traveling back and forth 
down the line. We see that the voltage and current waves are 
in general being reflected at the source and at the load, and the 
combination of these waves determine the total voltage and 
current solution waveforms at the source and the load ends of 
the line.

III. Reflections At the Line Terminations
The time required to transit the line from one end to the other 
is the one-way time delay on the line:

 TD 5
l
v  (6)

At the load end of the line, z 5l, the voltages and currents are 
denoted as

 V 1l, t 2 5 V1 1 t 2 TD 2 1 V2 1 t 1 TD 2  (7a)

 I 1l, t 2 5
1

ZC

V1 1t 2 TD2 2
1

ZC

V2 1t 1 TD2  (7b)
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Fig. 1. The general configuration of the two-conductor, transmission lines to be studied.
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If the load is matched, i.e., RL 5 ZC, then we will only have a 
forward-traveling (incoming) wave at the load and there will be 
no reflected wave at the load. But for some general load that is 
not matched, RL 2 ZC, we must have an incident (forward-
traveling) wave and a reflected (backward-traveling) wave at 
the load in order to satisfy Ohm’s law. Define the voltage reflec-
tion coefficient at the load as the ratio of the reflected and incident 
voltage waves:

 GL 5
V2 1 t 1 TD 2
V1 1 t 2 TD 2

 (8)

If we know the load reflection coefficient, GL, we can determine 
the reflected voltage wave knowing the incident voltage wave. 
The total voltage and current at the load can then be written in 
terms of the load reflection coefficient as

 V 1l, t2 5 V1 1t 2 TD2  311GL4
 I 1l, t2 5

1

ZC

V1 1t 2 TD2  312 GL4 (9)

Taking the ratio of these two relations gives

 
V 1l, t 2
I 1l, t 2 5 RL 5 ZC c

1 1 GL

1 2 GL
d  (10)

Solving this gives the voltage reflection coefficient at the load as

 GL 5
RL 2 ZC

RL 1 ZC

 (11)

Observe that since there is a minus sign in the current relation, 
the current reflection coefficient is the negative of the voltage 
reflection coefficient:

 GL 0 current 52GL 0 voltage (12)

The process of reflection at the load is like a mirror: the reflect-
ed wave is coming out of the mirror and the incident wave is 
going in as illustrated in Fig. 2. The total voltage is the sum of the 
incident and reflected waves.

The voltage or current wave that was reflected at the load 
travels back to the source in another time delay of TD where it 
is reflected with a voltage reflection coefficient at the source of

 GS 5
RS 2 ZC

RS 1 ZC

 (13)

and sent back to the load. The current reflection coefficient at 
the source is, again, the negative of the voltage reflection coef-
ficient at the source:

 GS 0 current 52GS 0 voltage (14)

Finally we obtain the initially sent out wave. We reason that 
when the source voltage is initially applied, an initial forward-
traveling wave is sent out towards the load. This initial wave 
will take a time delay of TD to get to the load. Any reflections 
of this initial wave at a mismatched load will require another 
one-way time delay of TD to get back to the source. Hence no 
reflected wave will have arrived at the source over the time in-
terval 0 , t , 2TD. So the total voltage at the source is just the 
initially sent out forward traveling wave and hence the ratio of 
the total voltage to total current at the source end of the line, 
z 5 0, will just be

 
V 10, t 2
I 10, t 2 5

V1 1 t 2 0 2
1

ZC

V1 1 t 2 0 2
5 ZC  0 , t , 2TD (15)

So the input impedance to the line initially appears to be ZC. 
Hence we can calculate the initially sent out voltage and cur-
rent waves from

 Vinit 5
ZC

RS 1 ZC

 VS 1 t 2  (16)

 Iinit 5
VS 1 t 2

RS 1 ZC

 (17)

as illustrated in Fig. 3.

IV. Closed-Form General Solutions of  
the Terminal Voltages and Currents
We can trace the incident and reflected waves giving closed-
form solutions for the terminal waveforms in terms of symbols 

Fig. 2. Illustration of reflection at a mismatched load.
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which do NOT have to be repeated for every different problem. 
To obtain these solutions we will use a form of a “lattice dia-
gram” shown below in Fig. 4 that is normalized for a unity wave 
that is launched initially. Time is recorded on the vertical axis 
in increments of the one-way time delay TD, and positions 
along the line are recorded on the horizontal axis. At a time 
point on the vertical axis where an incident and a reflected wave 
are present, the incident wave is multiplied by the reflection 
coefficient and the two waves are added.

The following TOTAL solutions have identical FORMS for 
ALL problems. For the terminal voltages these are

V 10, t 2 5
ZC

RS 1 ZC

VS 1 t 2 1  
ZC

RS 1 ZC

11 1 GS 2  GL 3VS 1 t 2 2TD 2

 1 1GSGL 2VS 1 t 2 4TD 21 1GSGL 2 2VS 1 t 2 6TD21c4
 (18a)

and

V 1l, t 2 5
ZC

RS 1 ZC

111GL2  3VS 1 t 2 TD21 1GSGL2VS 1 t 23TD2

 1 1GSGL2 2VS 1 t 25TD 2 1 1GSGL 2 3VS 1 t 27TD21c4
 (18b)

The terminal current solutions are similarly obtained from 
the voltage solutions but with the reflection coefficients for 

 currents being the negative for those for the voltages as shown 
in (12) and (14) and the initially sent out wave is given by (17). 
Hence the symbolic solutions for the total terminal currents are

I 10, t 2 5 1

RS 1 ZC

VS 1 t 21 
1

RS 1 ZC

112GS 2 12GL 2  3VS 1 t22TD 2

 1 1GSGL 2VS 1 t 2 4TD 2 1 1GSGL 2 2VS 1 t 2 6TD 2 1c4
 (19a)

and

I 1l, t 2 5
1

RS 1 ZC

11 2 GL 2  3VS 1 t 2 TD 2 1 1GSGL 2VS 1 t 2 3TD 2

 1 1GSGL 2 2VS 1 t 25TD21 1GSGL 2 3VS 1 t 27TD21c4
 (19b)

where GS and GL in the current expressions are the voltage 
reflection coefficients but their signs reversed.

Observe in these expressions that the total voltages and cur-
rents at the input and the output to the transmission line are 
combinations of the source waveform, VS 1 t 2 , that are delayed 
by two time delays. Also note that the magnitudes of the source 
and load reflection coefficients are less than or equal to unity:

 0GS 0 # 1 (20a)

 0GL 0 # 1 (20b)

Fig. 4. The lattice diagram.
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Observe that the total terminal voltage waveforms, V 10, t 2  and 
V 1l, t 2 , in (18) and total terminal current waveforms, I 10, t 2  
and I 1l, t 2 , in (19) are sums of delayed replicas of VS 1 t 2  mul-
tiplied by products of the source and load reflection coeffi-
cients, 1GSGL 2 n, which are also progressively less than unity. 
Hence if the source resistor is less than the characteristic 
impedance, RS , ZC, and the load resistor is greater than the 
load resistor, RL . ZC, or vice-versa, the source and load reflec-
tion coefficients are of opposite sign. Hence a resulting terminal 
voltage will have a portion added to it and subtracted from it 
resulting in oscillations. On the other hand if the source resistor 
and the load resistor are both less than the characteristic imped-
ance, RS , ZC, RL , ZC, or are both greater than the charac-
teristic impedance, RS . ZC, RL . ZC, the source and load 
reflection coefficients are of the same sign and the terminal volt-
age will steadily build up to its steady-state value. These obser-
vations apply also to the terminal currents.

The voltage results in (18) are multiplied by a factor rep-
resenting the voltage division at the source that was used to 
determine the initially sent out voltage: ZC/ 1RS 1 ZC 2 . Simi-
larly the current results in (19) are multiplied by 1/ 1RS 1 ZC 2 . 
Finally, each result is multiplied by a constant: 11 1 GS 2  GL 
for V 10, t 2  and 11 1 GL 2  for V 1l, t 2  and 11 2 GS 2  12GL 2  
for I 10, t 2  and 11 2 GL 2  for I 1l, t 2  where these current coef-
ficients result from negating the voltage reflection coefficients 
to give the corresponding current reflection coefficients. Once 

these coefficients are determined, the component waveforms are 
plotted in terms of the delayed source waveform VS 1 t 2 . Once 
this is completed, these waveforms are summed to give the to-
tal waveforms V 10, t 2 , V 1l, t 2 , I 10, t 2 , and I 1l, t 2  and the 
analysis is complete.

V. Examples
Sketch the voltage at the input, V 10, t 2 , and the current at the 
output, I 1l, t 2  of the line versus time for the problem in Fig. 5.

This problem illustrates the case where the source volt-
age waveform, VS 1 t 2 , is a pulse of amplitude of 100 V and 
6 ms duration that is several one-way time delays of the line, 
TD 5l/v 5 2 ms, in duration. Hence the incident and re-
flected pulses from opposite terminations overlap in time and 
combine to give very complicated total wave shapes at those 
terminations. First perform the initial computations:

 ZC 5Å
l
c

5Å
0.25 3 1026

100 3 10212 5 50 V

 v 5
1

"lc
5

1

"10.25 3 1026 2 1100 3 10212 2 5 200 
m
m s

 TD 5
l
v

5 2 m s

Perform the initial computations for the voltage:

 Vinit 5
ZC

RS 1 ZC

 VS 1 t 2 5
50

150 1 50
 100 5 25 V

 GS 5
RS 2 ZC

RS 1 ZC

5
150 2 50

150 1 50
5

1

2
 

 GL 5
RL 2 ZC

RL 1 ZC

5
0 2 50

0 1 50
5 2 1

For this example we compute the factors ZC/ 1RS1ZC 2 51/4, 
11 1 GS 2  GL 5 23/2 for V 10, t 2  and 11 1 GL 2 5 0 for 
V 1l, t 2 . For the plot of V 10, t 2  the series expression in (18a) 
becomes

Fig. 5. An example.
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V 10, t 2 5
1

4
VS 1 t 2 2

3

8
cVS 1 t 2 2TD 2 2

1

2
VS 1 t 2 4TD 2

 1
1

4
VS 1 t 2 6TD 2 2

1

8
VS 1 t 2 8TD 2 1cd

 5
1

4
VS 1 t 2 2

3

8
VS 1 t 2 2TD 2 1

3

16
VS 1 t 2 4TD 2

 2
3

32
VS 1 t 2 6TD 2 1

3

64
VS 1 t 2 8TD 2 1c

which is shown in Fig. 6:
Adding the pulses gives the solution for V 10, t 2  shown in 

Fig. 7.
The series solution for voltages in (18) can be easily modified 

for currents as in (19) by (1) negating the voltage reflection coef-
ficients to give the current reflection coefficients AND (2) using

 Iinit 5
1

RS 1 ZC

VS 1 t 2  (21)

as shown in (19). For the plot of current the coefficients are 
1/ 1RS 1 ZC 2 5 1/200, 11 1 2GS 2  12GL 2 5 1/2, for I 10, t 2  
and 11 1 2GL 2 5 2 for I 1l, t 2 . The series expression for 
I 1l, t 2  in (19b) becomes

 I 1l, t 2 5
1

200
 2 cVS 1 t 2 TD 2 2

1

2
VS 1 t 2 3TD 2

 1
1

4
VS 1 t 2 5TD 2 2

1

8
VS 1 t 2 7TD 2 1cd

 5
1

100
VS 1 t 2 TD 2 2

1

200
VS 1 t 2 3TD 2

 1
1

400
VS 1 t 2 5TD 2 2

1

800
VS 1 t 2 7TD 2 1c

Figure 8 shows this summation in terms of the source pulse, 
VS 1 t 2 .

Adding the pulses gives the solution for I 1l, t 2  shown in 
Fig. 9.

As another example and one in which VS 1 t 2  is complicated, 
suppose VS 1 t 2  is again a pulse of 100 V and duration of 6 ms 
but steadily ramps from 0 V at t 5 0 s to 100 V at t 5 6 ms at 
which time it goes to zero as shown in Fig. 10.

Since none of the parameters except the waveform for VS 1 t 2  
has been changed, the equation for V 10, t 2  is unchanged:
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Plotting the individual components is shown in Fig. 11.
Adding the pulses gives the solution for V 10, t 2  shown in 

Fig. 12.
All of the results of the above examples were validated us-

ing the PSPICE circuit analysis computer program. Use of 
the exact lossless transmission line model in PSPICE for more 
complicated lossless transmission-line problems is highly rec-
ommended [1].
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Shielded Cable Transfer Impedance  
Measurements High frequency range  
100 MHz–1 GHz
B. Démoulin, L. Koné  
TELICE-IEMN Group, Université Lille 1, (France)

Introduction
In our previous paper [1] we described the setup for the mea-
surement of the transfer impedance of shielded coaxial cables. 
We demonstrated that the conventional triaxial setup does 
not allow to reach frequencies higher than 100 MHz, mainly 
due to the onset of propagation phenomena. In fact, for a 
cable sample of 1 m in length, the maximum frequency 
attainable by means of a measurement of the near-end cross-
talk voltage does not exceed 30 MHz. On the other hand, if 
we measure the far-end crosstalk voltage, the maximum 
attainable frequency can grow up to 100 MHz. However, the 
technology of the transfer impedance bench setup must be 
modified, in order to be able to explore the bandwidth 
between 100 MHz and 1 GHz.

It is a known fact that the accuracy produced by a purely com-
putational compensation of propagation phenomena is not ac-
ceptable; hence, a more rational approach to the reduction of the 
propagation effects is the reduction of the physical length of the 
sample under test. The rule of proportionality with wavelength 
teaches us that we need to reduce the dimension by a factor of 

10 (i.e., adopt samples of 10 cm), in order to reliably measure up 
to 1 GHz, without being affected by propagation. On the other 
hand, at higher frequencies, mismatches of the perturbation line 
tend to amplify, especially at the line extremities where the signal 
source and the matched load are connected. The consequence of 
such defects is to produce an uncertain estimate of the perturba-
tion current, which–in turn–results in a non-negligible error of 
the transfer impedance estimate. All the above reasons call for an 
adjustment of the technology of the transfer impedance bench 
setup to the extension of the frequency range [2], [3].

The first Section of this article concerns the description of 
two transfer impedance setups, whose configurations have been 
devised in particular for reducing the mismatch defects for cable 
samples of 10 cm in length. We first describe the wire injection 
method, the construction principle of which resides in a pertur-
bation line made by a thin ribbon conductor glued on the cable 
insulating jacket. Then we introduce the shield discontinuity 
method, by which the sample under test represents the inner 
conductor of a coaxial cavity terminated by a short circuit. The 
second Section deals with the calibration of the above setups by 




