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n this work we present an extension of the Boundary Integral 
Treecode (BIT), a grid free electrostatic O(N log N) field 
solver, to an implicit electromagnetic field solver. We start by 
formulating Maxwell's equations in vector potential form and 
make use of the Lorenz gage to arrive at,  

€ 

1
c 2
∂ 2ψ
∂t 2

−Δψ =
ρ
ε
, 1

c 2
∂ 2A
∂t 2

−ΔA = µJ . 

Focusing on the second equation, a method of lines transpose 
methodology is applied to the system, i.e., we discretize the 
time operator and construct an integral solution for the 
resulting modified Helmholtz equation, 
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Using the free space Greens function, we arrive at,   
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As in BIT, the volumetric integral is the particular solution, 
the boundary integral term is used to construct a correction to 
the particular solution.  After discretizing the volumetric 
integral, the resulting sum over the volume is efficiently 
evaluated using fast summation.  The new method computes 
a magnetic field that is by construction divergence free in the 
computational domain.  Further, the implicit Maxwell solver 
is Asymptotic Preserving, i.e., it recovers the Darwin 
approximation of Maxwell's equations in the long time limit.   
As a proof of concept, we apply the new method to simulate 
the wave equation. A potential criticism for the vector 
potential form of Maxwell under the Lorenz gauge, is that the 
method is not charge conserving. To explore this issue, we  
compute   solutions to Maxwell's equations for specified J 
and ρ, and leverage these test problems to numerically 
explore the issue of charge conservation, using the Lorenz 
gauge as a residual.  Further, we explore using the residual to 
construct an iterative algorithm, based on defect correction, 
in which each update improves change conservation.  Time 
permitting, we will explore some basic particle based EM 
solutions for the Vlasov-Maxwell system. 
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