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   Lattice Boltzmann (LB) representations are mesoscopic 
algorithms that exploit a simple collide-stream lattice scheme 
[1] to recover the dissipative incompressible MHD equations. 
With the linear collisional relaxation being purely local and 
the streaming requiring communication only between 
neighboring lattice sites, LB algorithms have shown ideal 
parallelization to all cores available. 
   These algorithms are based on a scalar distribution function 
for the density/velocity field and a vector distribution function 
for the magnetic field. Another excellent feature of these LB-
MHD algorithms is that div B = 0 can be enforced to machine 
accuracy since the magnetic field is recovered as the zeroth 
moment of the vector distribution function. The asymmetric 
magnetic stress term (in u – B interchange) is then determined 
from the 1st moment. From this it can be shown that div B is 
determined by the trace of an antisymmetric tensor [1,2]. 
   However, the standard vector-scalar distribution approach is 
prone to numerical instabilities for high Reynolds and 
magnetic Reynolds numbers. For Navier-Stokes turbulence, 
entropic LB algorithms have been developed in which the 
detailed balance arguments permits a stable algorithm for 
arbitrary high Reynolds number. The use of a vector 
distribution function precludes the introduction of a discrete 
H-theorem. Here, we investigate the use of a scalar 
distribution to model the magnetic field. While a discrete 
Htheorem can now be enforced with the positive-definiteness 
of both distribution functions, the asymmetric magnetic stress 
term is recovered by the introduction of appropriate forcing 
terms. 2D MHD turbulence is first investigated. Another 
advantage of the scalar representation is the reduction in 
computational memory requirements as well as simpler 
implementation of boundary conditions. 
   The Orszag-Tang vortex will be examined as well as some 
LES closure schemes using Elsasser variables. 
 
[1] P. J. Dellar, J. Computat. Phys.179, 95 (2002) 
[2] G. Vahala, M. Soe, J. Yepez, L. Vahala, J. Carter and S. 
Ziegeler, Comm. In Comput. Phys. 4, 624 (2008) 
________________________________ 
 *Work Supported by DoE 


