EFFECT OF PREPULSE ON FAST ELECTRON LATERAL TRANSPORT AT THE TARGET SURFACE IRRADIATED BY INTENSE FEMTOSECOND LASER PULSES

Y. T. Li, ¹X. X. Lin, ¹X. Lu, ¹S. J. Wang, ¹B. C. Liu, ¹^aF. Liu, ¹ F. Du, ¹C. Li, ¹M. L. Zhou, ¹L. Zhang, ¹X. Liu, ¹J. Wang, ¹^bF. Liu, ¹X. L. Liu, ¹L. M. Chen, ¹Z. H. Wang, ¹J. L. Ma, ¹Z. Y. Wei, ¹J. Zhang, ^{1,2}

¹ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

²Shanghai Jiao Tong University, Shanghai 200240, China

The effects of preplasma on lateral fast electron transport at front target surface irradiated by ultraintense (>10¹⁸ \dot{W} /cm²) laser pulses are experimentally investigated. A spherically bent quartz crystal is used to record two-dimensional spatially resolved K_{α} x-ray emission resulting from fast electron transport. A large (~ 600 μ m in diameter) annular K_a halo structure surrounding a central spot is observed when a preplasma is presented. Furthermore, the halo size increases with the preplasma scale length, and it finally vanishes when the scale length is sufficiently large. Moreover, an obvious reduction of the K_{α} yield measured by a single photon counting charge-coupled device (CCD) is observed for a large preplasma scale length. Specially designed step-like target is used to identify the possible electron transport mechanisms resulting in the experimental observations. It is believed that the halo of the K_{α} x-ray emission is mainly generated by the out-going fast electrons laterally diffused in the self-generated magnetic and electrostatic fields in the preplasma. This understanding is supported by the simulated fast electron trajectories in specified magnetic and electrostatic fields using a two-dimensional numerical model.