

Harmonic Sources and Solutions

For IEEE San Antonio

Harmonics

- Introduction to Harmonics
- Symptoms
- Characteristic Harmonics from non-linear loads
- Harmonic Resonance
- Understanding IEEE 519-1992
- Harmonic Solutions

Harmonics – Who Cares!

- Recent technology changes
 - Switch Mode Power Supplies (SMPS) change over to PF Corrected Power Supplies

Harmonics – Who Cares!

- Recent technology changes
 - Active front end on UPS and some drives

Harmonics – Who Cares!

- What remains why are we here?
 - What level of harmonics is a problem?

"Harmonics are not a problem unless they are a problem!"

4 O N

Harmonics

- Introduction to Harmonics
- Symptoms
- Characteristic Harmonics from non-linear loads
- Harmonic Resonance
- Understanding IEEE 519-1992
- Harmonic Solutions

- Generator Sync Failure
- Generator 1 (Loaded)

Generator Sync Failure

Transfer Switch Frequency Sync Check Failure

- Notching from UPS rectifier
- Transfer switch indicated
 > 99 Hz on generator
 source
- Could not re-synchronize with utility
- Batteries depleted

Solution: (Temporary) Disable over-frequency check **Solution:** (Permanent) 480 V UPS Filter or Notch Filter

- UPS reporting "UPS not synchronized to input power"
- Frequency/slew rate issue
- Undersized generator
- Solution: Increase generator size (i.e. lower impedance)
- Control (PLC) could not tolerate square wave voltage
- Standby UPS
- Solution: Apply sine wave output UPS

- System with large UPS system (11th harmonic filter), undersized generators and soft starts on HVAC
- Parallel resonant point of UPS filter shifts on generator causing amplification of 5th and 7th harmonics from S.S.
- High harmonic distortion causes misfiring of the UPS rectifiers further aggravating instability.

Solution: (Temporary) Disable UPS Filter(s) **Solution:** (Permanent) Replace w/Active Filter(s)

Harmonics

- Introduction to Harmonics
- Symptoms
- Characteristic Harmonics from non-linear loads
- Harmonic Resonance
- Understanding IEEE 519-1992
- Harmonic Solutions

Harmonic Distortion

• Harmonic problems are becoming more apparent because more equipment that produce CIE harmonics are being applied Harmonics to power systems ariations

Harmonics Yesterday

Which came first?.....

Voltage Distortion

- In this case...the Egg!
 - Current distortion causes Voltage distortion
 - Voltage distortion is created by pulling <u>distorted</u> <u>current</u> through an impedance
 - Amount of voltage distortion depends on:
 - System impedance
 - Amount of distorted current pulled through the impedance
 - + If either increases, V_{THD} will increase

Harmonics Today

Expected Harmonics

Source	Typical Harmonics*
6 Pulse Drive/Rectifier	5, 7, 11, 13, 17, 19
12 Pulse Drive/Rectifier	11, 13, 23, 25
18 Pulse Drive	17, 19, 35, 37
Switch-Mode Power Supply	3, 5, 7, 9, 11, 13
Fluorescent Lights	3, 5, 7, 9, 11, 13
Arcing Devices	2, 3, 4, 5, 7
Transformer Energization	2, 3, 4

* Generally, magnitude decreases as harmonic order increases

$\mathbf{H} = \mathbf{NP} + \mathbf{/-1}$

i.e. 6 Pulse Drive - 5, 7, 11, 13, 17, 19,...

Harmonic Sources – VFDs

FAT•N

Harmonic Sources – Transformer Inrush

Waveform Display

Harmonic Spectrum

Event	Num	be	r	1	4						()h	a	m	ne	;1]	B				5	Se	t	պ	2	1	6				1	2,	/1	16	/	9	B				1	.3	:	Ø?):	5	8	.47
100;		Т.																							•						-																			
90	•	·	• •	•	•	• •	•	·	•	• •	•	·	·	• •	•	·	•	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	-	·	·	• •	• •	·	·	• •	·	·	•	• •	·	·	• •	
80	•	·	• •	•	•	• •	•	·	·	• •	•	·	·	• •	•	·	·	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	•	·	·	• •	• •	·	·	• •	·	·	·	• •	·	·	• •	
70	•	·	• •	•	•	• •	•	·	·	• •	•	·	·	• •	•	·	•	• •	• •	·	•	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	•	·	•	• •	• •	·	·	• •	•	·	•	• •	·	·	• •	
60	•	·	• •	•	•	• •	•	·	•	• •	•	·	·	• •	•	·	•	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	-	·	·	• •	• •	·	·	• •	·	·	•	• •	·	·	• •	
50	•	·	• •	•	•	• •	•	·	•	• •	•	·	·	• •	•	·	•	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	-	·	·	• •	• •	·	·	• •	·	·	•	• •	·	·	• •	
40	•	÷	• •	•		• •	•	·	·	• •	•	·	·	• •	•	·	·	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	•	·	·	• •	• •	·	·	• •	·	·	•	• •	·	·	• •	
30	•	·	• •	•	·	• •	•	·	·	• •	•	·	·	• •	•	·	·	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	•	·	·	• •	• •	·	·	• •	·	·	·	• •	·	·	• •	
20	•	÷	• •	•	·	• •		·	·	• •	•	·	·	• •	•	·	·	• •	• •	·	·	• •	• •	·	•	• •	·	• •	• •	·	•	•	·	• •	•	·	·	• •	• •	·	·	• •	·	·	·	• •	·	·	• •	
10	•	÷	• •	•	·	• •	I	·	·	• •	ī.	·	·	• •	•	·	·	• •	• •	·	·	• •		•	•	• •	·	• •	• •	·	•	•	·	• •	•	·	•	• •	• •	·	·	• •	·	·	•	• •	·	·	• •	
Ĩ Ā	-	┛		ī	┦	I	-	I	I	T	-	T	-	T	T	I	1	I	-	1	ī	I	-	I	Ť	I	I	I	1	-	1	1	1	-	1	ī	I	I	1	ī	I	ī	T	T	I	ī	T	T	T	
		ŕ			5					1	Ø			-	15	5			2	zø)			2	:5				З	żØ				3	5				46	3			4	ŀς	i			5	ø	
HAR	MONI	С	NI	J٢	1B]	EI	R:												Ę	50						Ę	5t	h	:			36	ò.	7:		P	h	a:	se	::		1	55	5	d	e	ır	۰e	e	s
TOT	TOTAL HARMONIC DISTORTION:									4	1 1		2;	2			7	?t	h	:			15	5.	1;		P	h	a	se	::		34	1 2	2	d	eč	'n	۰e	e	5									
ODD CONTRIBUTION:								4	11		2;				11	Lt	h	:			7	۰.	9;		P	'n	a	56	::		17	27	,	d	eč	'n	۰e	e	5											
EVEN CONTRIBUTION:								2		2;	Ζ.			13	3t	h	:			3	}.	9;		P	h	a	se	:			16	ò	d	eį	jr	۰e	e	S												
	-																																																	
Horiza	onta	1:		H	la:	r	nc	m	i	С	ľ	łu	m	be	er	•															Ų	er	٠t	i	Cē	ιl			2		0	f	F	ัน	n	dā	1 M	ie	nt	ta I
																F	r	e	αı	le	m	C	u :		6	Ø.	.0		Hz	2																				

Text and Phase Angle

╢

Event Nu	umber 14	C	hanne l	B	Setup	16	12/16/98	13:09	:58.47
Fnd: 1 2nd: 3rd: 4th: 5th: 6th: 7th: 8th: 9th: 10th: 12th: 13th: 13th: 15th: 16th:	Imber 14 117.24A (0.4% 2 0.9% 3 36.7% 1 0.2% 3 15.1% 3 0.3% 2 0.4% 1 0.1% 3 0.1% 3 0.1% 3 0.1% 3 0.2% 2 0.4% 1 0.1% 3 0.1% 3 0.2% 2 0.6% 20 0.6% 20 0.1% 3	64 deg 88 deg 92 deg 20 deg 20 deg 34 deg 97 deg 35 deg 20 deg 20 deg 27 deg 16 deg 15 deg 15 deg	namme1 18t 19t 20t 21s 22n 23r 24t 25t 26t 27t 28t 30t 31s 32n 33r	B h:: h:: h:: h:: h:: h:: h:: h:: h:: h:	Setup 0.1% 250 3.4% 6 0.1% 0 0.7% 20 0.4% 350 3.7% 13 0.2% 7 1.6% 6 0.2% 3 0.1% 140 0.4% 8 1.8% 15 0.1% 20 1.2% 70 0.2% 14 0.2% 15 0.1% 20 0.2% 14 0.2% 20 0.2% 15 0.1% 20 0.2% 15 0.1% 20 0.1% 20 0.2% 15 0.1% 20 0.1% 14 0.2% 7 0.2% 20 0.1% 14 0.2% 7 0.2% 20 0.1% 14 0.2% 7 0.2% 20 0.1% 14 0.2% 7 0.2% 20 0.1% 20 0.1% 20 0.2% 20 0.1% 20 0.2% 20 0.1% 20 0.2% 20 0.2	166deg7deg0deg0deg0deg2deg2deg3deg5deg5deg6deg6deg7deg6deg7deg6deg7deg6deg7deg9deg	12/16/98 35th: 36th: 37th: 38th: 39th: 40th: 41st: 42nd: 43rd: 43rd: 43rd: 43rd: 45th: 45th: 46th: 47th: 48th: 49th: 50th:	1.5% 166 0.2% 260 1.0% 70 0.2% 87 0.3% 352 0.5% 109 0.8% 188 0.2% 34 0.9% 90 0.1% 27 0.0% 93 0.2% 270 0.7% 192 0.0% 324 0.4% 104 0.2% 6	deg deg deg deg deg deg deg deg deg deg
T.H.D.:	41.2%	13 uey	ODD CO Fr	n . NTRI eque	B.: 41 mcy: 60.0	7 ueg .2% 0 Hz	EVEN CO	NTRIB.:	2.2%

WARNING: % alone (without reference to actual Amps or Volts) can be misleading – especially on the neutral conductor!

Sources of Harmonics

- General sources of harmonics
 - Power electronic equipment (drives, rectifiers, computers, etc.)
 - Arcing devices (welders, arc furnaces, florescent lights, etc.)
 - Iron saturating devices (transformers)
 - Rotating machines (generators)
- Most prevalent and growing harmonic sources:
 - Adjustable frequency drives (AFD)
 - Switch-mode power supplies (computers)
 - Fluorescent lightning
- Single loads or groups of loads

Harmonic Symptoms/Concerns

- Equipment Failure and Misoperation
 - Notching (electronic control malfunctioning, regulator misoperation)
 - Overheating/Failure (transformers, motors, cables/neutral)
 - Nuisance Operation (fuses, breakers)
 - Insulation deterioration
 - Audible noise in electrical equipment
- Economic Considerations
 - Oversizing (equipment is sized larger to accommodate harmonics)
 - Losses/Inefficiencies/PF Penalties
 - Inconsistent meter reading

Harmonics and Heating

Std Transformer – Max Temp – 176 F

HMT – Max Temp – 105 F

Loss Comparison - Linear vs Nonlinear Load

Copyright 2007 Mike Holt Enterprises, Inc.

Harmonics

- Introduction to Harmonics
- Symptoms
- Characteristic Harmonics from non-linear loads
- Harmonic Resonance
- Understanding IEEE 519-1992
- Harmonic Solutions

PF and Harmonics

Harmonic Resonance

On November 7, 1940, at approximately 11:00 AM, the Tacoma Narrows suspension bridge collapsed due to **wind-induced vibrations**...the bridge had only been open for traffic **a few months**.

Harmonic Resonance

- The "Self Correcting"
 Problem
 - Blown Fuses
 - Failed Capacitors

Harmonic Resonance

Harmonic Resonance - Solutions

- **1. Change the method** of kvar compensation (harmonic filter, active filter, etc.)
- 2. Change the size of the capacitor bank to over-compensate or under-compensate for the required kvar and live with the ramifications (i.e. overvoltage or PF penalty).

Harmonic Resonance – Switched Capacitor

Harmonic Resonance – SKM Output

Harmonics

- Introduction to Harmonics
- Symptoms
- Characteristic Harmonics from non-linear loads
- Harmonic Resonance
- Understanding IEEE 519-1992
- Harmonic Solutions

Harmonic Limits IEEE Std. 519-1992

- Some harmonic sources are internal – VFDs, switch mode power supplies, etc.
- Other harmonic sources are external
 - Customers sharing the same line
- Is the voltage distortion caused by you or your neighbor?
 - Establish a baseline (your neighbor's load)
 - Determine the incremental change (your load)

Harmonic Limits IEEE Std. 519-1992

- Utility is responsible for providing "clean" voltage
- Customer is responsible for not causing excessive current harmonics
- Utility can only be fairly judged if customer is within its current limits
- The Point of Common Coupling (PCC) is the location where the IEEE 519 limits should be applied
- Some customers choose to "voluntarily" select a PCC downstream near the loads

Harmonic Distortion Standards

Harmonic Voltage Distortion Limits IEEE Standard 519 – 1992

Maximum Voltage Distortion in % at PCC*Below 69kV69-138kVMaximumfor IndividualHarmonic3.0Total HarmonicDistortion (THD)5.02.51.5

* % of Nominal Fundamental Frequency Voltage

Harmonic Limits - System Issues

Harmonic Limits

Current Distortion Limits for General Distribution Systems (120 V Through 69000 V)

Maximum Harmonic Current Distortion in Percent of IL						
Individual Harmonic Order (Odd Harmonics)						
I _{SC} /I _L	<11	11≤ <i>h</i> <17	17≤ <i>h</i> <23	23≤ <i>h</i> <35	35≤h	% TDD
<20*	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0
Even harmonics are limited to 25% of the odd harmonic limits above.						
Current distortions that result in a dc offset, e.g. half-wave converters, are not allowed.						
* All power generation equipment is limited to these values of current distortion, regardless of actual I_{sc}/I_{L} .						
Where						
l _{sc}	<i>I</i> _{sc} = maximum short-circuit current at PCC.					
IL I	= maximum demand load current (fundamental frequency component) at PCC.					
TDD = Total demand distortion (RSS), harmonic current distortion in % of maximum demand load current (15 or 30 min demand).						
PCC	= Point of common coupling.					

Harmonic Limits

Update for IEEE 519

The Point of Common Coupling (PCC) with the consumer/utility interface is the closest point on the utility side of the customer's service where another utility customer is or could be supplied. The ownership of any apparatus such as a transformer that the utility might provide in the customers system is immaterial to the definition of the PCC.

Note: This definition has been approved by the 519 Working Group.

http://home.nas.net/~ludbrook/519error.html

From IEEE519A Draft

Harmonic Limits

•PCC (Point of Common Coupling) is defined as the point where another customer can be served

From IEEE519A Draft

Future of IEEE 519 (2006+)

- More concise document
- PCC clarified
- New voltage range
 - 1.0 kV and below
 - 8% THD_v
 - 5% individual voltage harmonics

Harmonics

- Introduction to Harmonics
- Symptoms
- Characteristic Harmonics from non-linear loads
- Harmonic Resonance
- Understanding IEEE 519-1992
- Harmonic Solutions

Harmonic Solutions

Harmonic Solutions -Commercial

Commercial/Data Center Systems

- UPS Filter
- UPS Active Front End (Rectifier)
- Harmonic Mitigating Transformers
- K-Rated Transformers
- 3rd Harmonic Blocking Filter
- Low Distortion Loads
 - Low Distortion Lighting Ballasts
 - PF Corrected Power Supplies

PF Corrected Power Supplies

- Data Centers/Servers
 - Switch Mode Power Supplies (SMPS) have changed over to PF Corrected Power Supplies

Industry driven toward component (load) solutions

AON

Rectifier Solutions

- Drives, UPS, Battery Chargers
 - Active front end on UPS and some drives

Industry driven toward component (load) solutions

1

Neutral Heating – Oversize Equipment

3rd Harmonic Blocking Filter

- Application of 3rd Harmonic Blocking Filter addresses the most dominant harmonic in the distribution system.
- Makes the current waveshape significantly more linear
- K-rating the transformer is no longer necessary.
- Most appropriate for retrofit

3rd Harmonics and Delta/Wye Transformers

- Third harmonic current flowing in the phases adds up in the neutral.
- On the primary, the third harmonic current is trapped in the delta if it is balanced. Otherwise, the difference flows in the phases.
- Balanced third harmonic currents are called "triplen" harmonic currents (3rd, 9th, etc.).
- Delta-wye transformers are said to "trap" triplen harmonic current in the delta. They do not eliminate other harmonics.

Transformers and Harmonics (HMT's)

Harmonics 1 THD103.1 %f 1 K 814 ٥ 0:00:20 -C-108% 5th & 7th harmonics 50% Use Phase-**Shifting** to ---treat these тнппс 15 17 13 1201 6002 3.0 WYE 03/27/06 13:4 DEPRULT 2 L3 ALL V A W **Triplen Harmonics**

Use *different secondary* winding to treat these

Transformers and Harmonics (HMT's)

Harmonics 1 THD103.1 %f 1 K 814 ٥ 0:00:20 -C-108% 5th & 7th harmonics 50% Use Phase-**Shifting** to ---treat these тнппс 15 17 13 1201 6002 3.0 WYE 03/27/06 13:4 DEPRULT 2 L3 ALL V A W **Triplen**

Use different secondary winding to treat these

Harmonics

Secondary Treatment of Triplens (HMT's)

HMT Secondary

- Opposing magnetic fields triplens aren't magnetically coupled to primary
- Loads continue to operate as designed
- Minimizing impact on electrical infrastructure

Efficiency

Affect of Harmonic Load vs. Resistive Load

Transformer Technology 'Rule of Thumb' Comparison Chart

Transformer Type	Approx. Cost	Energy Usage	Power Quality Attributes
Standard Delta-Wye TP-1, Copper, 115C	1X	say 100W	None
K-Factor K13 Copper, 115C	1.5X - 2X	130W 30% more	Designed to Withstand Heating Effects
HMT TP-1, Copper, 115C	1.5X - 4X	40W 250% less	Corrects Root Cause

- YES, The INITIAL cost of an HMT is greater than the other transformers, however the Energy Savings you receive over the life of the HMT (20-30 years) pays back that difference multiple times!
- Same mentality as using a Compact Fluorescent vs. Incandescent Lamp

Harmonic Solutions – Industrial

Industrial System (Drives and Rectifiers)

- Line Reactors
- Drive Isolation/Harmonic Mitigating Transformers
- Tuned Filters LV/MV Fixed/Switched
- De-Tuned Filters
- Static Switched (Transient Free) Filters
- Harmonically Hardened Capacitors
- Active Filters
- Clean Power (18 Pulse) Drives
- Broadband Drive Filters
- Active Rectifier Drives

FAT•N

Drive and Rectifier Solutions

Drive without line reactor

Drive with line reactor

Effect of Drive Line Reactors

FAT-N

Reactor/Isolation Transformer

w/ isola trans

Order	Magnitude	Angle
1	33.41	-16
3	0.90	-186
5	9.92	101
7	2.00	-182
11	1.87	-154
13	1.10	-127
17	0.67	-70
19	0.67	-50

w/o isola trans

Order	Magnitude	Angle	
1	33.41	-14	
3	0.60	-160	
5	15.97	114	
7	7.48	-110	
11	1.77	-89	
13	1.40	-1	
17	0.87	60	
19	0.57	122	

Phase Shifting/Cancellation

12 Pulse, 18 Pulse or 24 Pulse Cancellation by Design

Phase Shifting/Cancellation

Without Cancellation

With Cancellation

18 Pulse Rectifier

18 Pulse Design

Drive/UPS Dedicated Filter

Standard Drive

Drive with Dedicated Filter

Video Demonstrations

http://www1.eatonelectrical.com/pqlab /pqvideos

- 4 drives without phase shifting
- 4 drives with phase shifting (24 pulse system)
- Active Fitler
- 18 pulse (clean power) drive
- Tacoma Narrows Bridge

Harmonics and Motor Heating

Motor Heating and Vibrations

AON

Magnetic fields caused by negative sequence harmonics currents of the 5th and 11th order rotate in the opposite sequence as the fundamental: C-B-A to A-B-C.

Copyright 2007 Mike Holt Enterprises, Inc.

V_{THD} and Motors – Results

Induction Motors

- Measured ~0.1% decrease in efficiency for each 1% increase in voltage THD
- Effects:
 - Slight capacity reduction
 - Slight increase in energy consumption
 - Higher temperatures and resultant life reduction
 - Arrhenius Equation
 "10°C increase decreases component life by 50%"
- More Testing Required

Cost of Harmonic Correction

Description	Cost \$/kVA	Cost p.u.		
Reactor	3	1		
Capacitors (LV)	12	4		
Filter (MV)	12	4		
Filter (MV) Switched	15	5		
K-Rated Transformer	20	7		
Capacitors (LV) Switched	25	8		
Filter (LV)	35	12		
Filter (LV) Switched	45	15		
Harmonic Mitigating Transformer	50	17		
Blocking Filter (3rd's)	100	33		
Broadband Filter (Drives)	100	33		
Active Filter	150	50		
		-		
Per unit costs compared to reactor pricing				
Note that prices are generalized for comparison only				
Some equipment must be fully rated for loads - others can be partially rated				
Canacitors are shown for reference only				

Harmonics and Energy Efficiency

- EPRI Presentation "You can only save energy that is wasted"
 - Infrastructure (system) losses are generally 1-4%
 - Saving 25% of your "losses" is not equal to saving 25% of your energy bill (ex: 25% X 2% = 0.5% of your bill)
 - UPS losses may be 2-10% or more
 - PQ solutions are often sold as "energy-saving"

Reducing Harmonics – Saving Money

- How can reducing harmonics save you money?
 - Physical damage from overheating and misoperation
 - Energy savings
 - -HVAC savings
 - Oversizing equipment / Release Capacity
 - Motor failure or overheating
 - Low PF

Thank You!

Questions?

