

Experience with the AEMC Pylon Tester Model 6472

Presented to IEEE Lightning Performance
Working Group
On January 13, 2009 in Atlanta



Transport Transmission

### Lightning Performance Mitigation Using the AEMC 6472/74

- NB Power first learned about the AEMC 6472/74 Ground Tester at IEEE conference in Chicago in 2008
- NB Power has used this test set on two projects
  - First was a 138 kV line where it was demonstrated in May 2008 by AEMC
  - Second was on a 345 kV transmission line in Fall 2008
- NB Power purchased the test set in August 2008



#### Note

Some of the following information has been supplied by AEMC for this presentation with their permission



# AEMC® Instruments Tower Ground Resistance Testing System





Transport Transmission

#### GroundFlex Coil Sensors (Rogowski Coils)







Transport Transmission

#### **Specifications**

- Measures Ground resistance from 0.01 to 99,000 Ohms
- Selectable test voltages of 16 or 32 VDC
- Manual, automatic or sweep selection of test frequency from 41 to 5078 Hz
- Test currents up to 250mA
- Soil resistivity measurement from 0.01 to 99,000 Ohms
- Bond resistance measurement from 0.01 to 99,000 ohms
- Stores up to 512 test results
- Operates off of AC, battery or vehicular power
- Includes DataView software (free) to program, run tests and print reports
- Color coded inputs and test leads



#### 6472/74 GroundFlex<sup>™</sup> Adaptor

- •Heavy duty case to house both instruments such that they can operate from within the case.
- •Case has wheels and pull handle similar to travel luggage.
- •Lower compartment holds cables and GroundFlex sensors





#### 6472 Modes of Operation







#### 3 operating modes:

Automatic mode in each function the instrument performs a measurement at 128 Hz and then chooses the most appropriate frequency in the event of interference voltages.

Sweep mode (automatic measurements at different frequencies) allowing a graph of impedance as a function of frequency to be plotted. Frequencies used can be selected in Set-Up or using DataView

Manual mode (User chooses the measurement frequency, display of all the voltages measured, etc.) for expert customers



# 6472 Modes of Operation 3 Pole Fall of Potential Test

#### **Characteristics:**

- Resistance range  $0.01 \Omega$  to  $100 k\Omega$
- Selectable measurement voltage: 16 or 32 Vrms
- Adjustable measurement frequency:

Auto, Manual or Sweep from 41Hz to 5.078 kHz





#### 6472/74 GroundFlex<sup>™</sup> Adaptor

#### **GroundFlex® Method**

- Capable of testing ground resistance of towers without disconnecting the Overhead ground wire
- Tests both ground resistance of tower legs (individually and total) and Overhead ground wires
- Test at frequencies up to 5kHz to profile impedance, important to characterize for lightning strikes



#### 6472/74 GroundFlex<sup>™</sup> Adaptor

#### **GroundFlex® Method**

- •Connect flexible sensors and reference rods
- •Test individual legs and total resistance





# NB Power 138 kV Line 1183 Lighting Performance Improvement



- 38 wood pole shielded H-frame structures

Overhead shield wires present



#### Lightning Mitigation Criteria

- Maximize the lightning performance of overhead shield wires
- Minimize the risk outages due to an arrester failure



#### 138 kV Line 1183



- Field testing and computer modeling determined that good grounding could not be achieved at many of the structures
- Reasonable improvements were made to existing structure grounding systems
- Arresters were added where good grounding could not be achieved



#### Results of Demonstration Tests

- The AEMC 6472/74 test set was demonstrated at a suspension and a deadend structure
- The computed value for the suspension structure did not match the 6472/74 test result
- This is still being investigated by AEMC



#### 345 kV Line 3016

**Typical Tower** 





#### **Steel Foundations**





Transport Transmission

#### Foundation Design

- Steel culverts 1<sup>st</sup> installed
- Corrocoate coating on steel foundation





#### Test Equipment Used

- Soil Resistivity Testing using 4-point Wenner
  - Megger Earth Tester Model DET4TD
- Ground Impedance by Fall of Potential
  - AEMC Ground Tester Model 6472 and Model 6474

**Important Note** 

Resistivity and Resistance tests were done on the same day



#### Calculated Values of Impedance

- CDEGS Grounding Software was used to calculated the Ground Resistance Value



## Structure Grounding







Transport Transmission

#### Structure Electrical Circuit





#### Sensor Installation

- Top sensor measures shield wire impedance
- Bottom sensor measures structure impedance





#### **Test Setup**

- Two sensors on each pole
- Two turns in each sensor





#### Results of Testing

- Structure 243
  - Calculated 7.9 ohms
  - Measured 6.7 ohms
- Structure 248
  - Calculated 13.3 ohms
  - Measured 12.9 ohms

- Structure 184
  - Calculated 110.8 ohms
  - Measured 120 ohms
- Structure 144
  - Calculated 155 ohms
  - Measured 40 ohms



#### **Observations**

- An uncharged battery was a problem on one day of testing.
- Memory was full on another day and Sweep mode could not be used
- Shorter spools of wire would have been a help as shorter lengths were all that was required and each structure was the same
- Handles on the big case were uncomfortable to carry a long distance
- The complete setup for testing these towers was quite heavy to carry a long distance
- The cables to the sensors have colored numbered markers which would be better if they were larger
- The Megger test set was used for soil resistivity tests because it was lighter and more easily transported



# The End J'aime mon travail!

