2015 PES Annual Meeting Lightning WG Meeting – Update to:

Panel Paper 2010TD0683: Grounding of Overhead Transmission Lines

William A. (Bill) Chisholm Kinectrics / UQAC W.A.Chisholm@ieee.org

Emanuel Petrache, Kinectrics

Fabio Bologna, EPRI

KINECTRICS

Experts Teaching from Practical Experience

2010 IEEE T&D Expo Panel Session on Lightning Performance of Overhead Lines

How Grounding Affects Overhead Groundwire (OHGW) Protection

KINECTRICS

Experts Teaching from Practical Experience

Dealing with Lightning Challenges

- Direct Stroke Termination
 - Directly to the unshielded line
 - To ground or an object near the line
- Grounding of the Stroke Current
 - Into Normal Soil
 - Across surface of High-Resistivity Soil
- Equalization of Potentials
 - Electromagnetic coupling
 - Surge arresters

Stroke Incidence – Side View

Stroke Incidence – Side View

Stroke Incidence – Side View

Effectiveness of OHGW

W.A. Chisholm and J.G. Anderson, "Guide for Transmission Line Grounding: A Roadmap for Design, Testing, and Remediation", EPRI, Palo Alto, CA: 2004. 1002021. Available: mydocs.epri.com/docs/public

2010 IEEE T&D Expo Panel Session on Lightning Performance of Overhead Lines

Calculating Low Frequency Resistance *R_f* using the "Chiz-Whiz" Method

KINECTRICS

Experts Teaching from Practical Experience

- Grounding of the Stroke Current
 - Into Normal Soil of Resistivity ρ (Ω m)
 - Split into "Geometric" and "Contact" Resistance
 - Solid Disc, Ring have:
 - SAME Geometric Resistance
 - DIFFERENT Contact Resistance (Disc $R_{contact} \approx 0$)

$$R_{Geometric} + R_{Contact} = \frac{\rho}{2\pi} \left(\frac{1}{g} \ln\left(\frac{11.8g^2}{A}\right) + \frac{1}{L} \ln\left(\frac{A}{F \cdot A_{Wire}}\right) \right)$$

• Invited paper for Industry Applications, 2015

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS

3

Evaluation of Simple Models for the Resistance of Solid and Wire-Frame Electrodes

William A. Chisholm, Fellow, IEEE

4 Abstract—A single, simplified, and general model for the re-5 sistance of solid or wire-frame electrodes offers insight into the 6 performance improvements that can be expected when additional 7 electrode components are added in parallel. This model sepa-8 rates the geometric and contact resistance terms $R_{\text{Geometric}}$ 9 and R_{Contact} . For solid and wire-frame electrodes, $R_{\text{Geometric}}$ 10 depends on the geometric radius and the overall surface area. 11 For solid electrodes, $R_{\text{Contact}} = \text{zero}$; however, for wire-frame 12 approximations, it depends on the ratio of overall to wire surface 13 area. The simple model incorporates the effects of depth of burial 14 and wire radius to give remarkably good estimates of resistance, 15 as compared to reference calculations, and can be used to identify 16 weakness in many traditional expressions when used outside their 17 conditions of derivation.

18 Index Terms—Electrode, grounding, soil resistivity, wire frame.

ning surge conditions, increasing the current above a critical 38 level causes the expansion of a zone of ionization, which is 39 initially cylindrical around a vertical rod but then expands to 40 a cylindrically symmetric half-ellipse, then a hemisphere.

The general expression for geometric resistance [6] proved 42 to be useful in approximate calculation of the resistance of 43 transmission tower ground electrodes consisting of four large 44 piers in close proximity. IEEE Standard 1243/1997 [7] applied 45 a box approximation to the overall electrode, giving a geometric 46 resistance of 47

$$R_{\text{Geometric}} = \frac{\rho}{2\pi s} \ln\left(\frac{2\pi e s^2}{A}\right) \tag{1}$$

Worked

 example
 shows
 problem with
 n rods in a
 row formula

Fig. 4. Validation of the IEC/Sunde model [14] and the general resistance model (2) and (7) against the numerical reference method for rods in a row with connecting bare horizontal wire.

2015 IEEE PES Annual Meeting Lightning Working Group

Changes in Resistivity: Region to Region, Tower to Tower

KINECTRICS

Experts Teaching from Practical Experience

Rise Time Maps Ground Resistivity

FCC M3 Conductivity Map

 $2 \text{ mS/m} = 500 \Omega \text{m}$ $4 \text{ mS/m} = 250 \Omega \text{m}$ $8 \text{ mS/m} = 125 \Omega \text{m}$ $15 \text{ mS/m} = 67 \Omega \text{m}$

Soil Suitability for Ground Penetrating Radar

Footing Resistance Statistics

- TVA carried out 10,600 measurements of tower footing resistance in early 1990s.
 - 500-kV towers had insulated overhead groundwires.
 - For the most part, untreated with expectation that $R_f < 40 \Omega$.
 - Analyzed with Pearson Classification.

Pearson Classification, TVA Lines, R_f

Pearson Classification, TVA Lines, In R_f

Recent Work in Portugal

- Campaign to test grounding of 150-kV, 220kV and 400-kV Footing Resistance
 - Made use of ABB 26-kHz meter
 - Summarized by Susana de Almeida de Graaff

Portugal: REN Lines, ITU Conductivity (mS/m)

Recent Comparison Work

- Measurements corrected for overhead groundwire connection to adjacent structures
- TVA and REN data evaluated in similar ways

Voltage	Lines	Towers	Footing Resistance $R_f(\Omega)$			
			Median	Std.	Skew	Kurtosis
				Dev		
150 kV	53	4840	12.3	74.2	10.2	229
220 kV	60	5941	20.0	39.7	4.0	25.6
400 kV	23	3052	11.0	37.5	3.3	12.5

Voltage	Lines	Towers	In (Footing Resistance R_f, Ω)				
			Median	Std.	Skew	Kurtosis	
				Dev			
150 kV	53	4840	12.3	1.22	0.50	0.06	
220 kV	60	5941	20.0	0.96	0.04	0.11	
400 kV	23	3052	11.0	1.18	0.02	0.61	

Recent Comparison Work

- REN reported median 18.2 Ω and $\sigma_{\ln Rf} = 1.05$ on a system-wide basis.
- TVA and REN data have similar (log-normal) distributions of footing resistance with values of standard deviation σ of ln(R_f) of 0.92 (TVA) and 0.73 (REN), compared the same way on a line-by-line basis.
- 2015 SIPDA XIII Invited Lecture has details (28 September to 2 October 2015).

2015 IEEE PES Annual Meeting Lightning WG Meeting

Conclusions

KINECTRICS

Experts Teaching from Practical Experience

Conclusions

- Footing resistance has an important effect on the performance of overhead groundwire protection.
- Simple formulas exist for relating the resistance of structures to the local soil resistivity.
- Several different ways exist to infer the soil resistivity in regions, but not on a tower-by-tower basis.
- Tower-by-tower variation of soil resistivity and footing resistance is very large.

Conclusions

- Regions of similar size (TN, USA and Portugal), Similar numbers transmission of towers, Footing resistance data measured with earth resistance tester (TVA) or ABB 26-kHz meter (REN).
- On line-by-line basis, high skew and kurtosis, so data were not normally distributed.
- Transformation ln (Rf) got rid skew and kurtosis.
- Footing resistance is log-normally distributed with wider value of standard deviation than peak current.

2015 IEEE PES Annual Meeting Lightning WG Meeting

Questions

KINECTRICS

Experts Teaching from Practical Experience

Dr. William A. (Bill) Chisholm is a well-known expert in electric power reliability problems involving adverse weather including lightning, winter pollution and low wind conditions.

IEEE Fellow in 2007.

Led/leading IEEE Standards 1243 and 1410 for improving lightning protection of transmission and distribution lines.

Associate at Kinectrics (former Ontario Hydro Research Division) in Transmission and Distribution group.

Principal author of EPRI Transmission Line Reference (Red Book), 200 kV and Above, Chapter 6 (lightning protection) and main technical contributor to the upcoming Grey Book (lightning and grounding).

Spent 2007-2008 at the University of Quebec at Chicoutimi, co-writing a book for and teaching lightning protection.

Columnist (Transient Thoughts) for INMR Magazine.

