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Introduction and Motivation
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s Building electrical loads display nonlinear interactions with thermostatic setpoints, ambient
temperature and electrical bus voltages.
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*» It I1s Imperative that an adequate representation of this nonlinear behavior be incorporated
Into load models to effectively control buildings under demand side load management.
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» Building load modeling traditionally focuses on electric heating with cycling and aggregate
load variations which fail to effectively capture inherent electrical-thermal coupling.
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» Standalone software packages such as DOE-2 are primarily used for building design
purposes and are not easily integrated into electrical grid studies.
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¢ The present work discusses a model that captures the building electro-thermal and building-
grid coupling to Improve understanding of grid connected building load operation.

Problem Formulation

» Building loads are primarily controlled through thermostatic temperature setpoint variations
and are subject to operating limits determined by the HVAC equipment capacities.

¢ Load variations correspondingly cause variations In the electrical bus voltages, and hence,
form a temperature-load-voltage coupling that constrain the building — grid operation.

0

»» Operating without regard for such behavior could bring about inefficiencies and even have
potentially detrimental effects on the power system.

¢ The following discussion will present a building load model that incorporates the efforts In
[1,2,3] to capture the necessary temperature-load-voltage relationships.

Methodology

¢ The building-grid energy interaction Is described through an Energy Hub [2], E2ZMT, with
building controllable and uncontrollable load components (1).

*» The thermostatically controllable load portion, primarily the HVAC equipment load, Is
presented with a corresponding conversion efficiency (péh e )
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PSS — Building uncontrollable electric load/controllable thermal load
Péh — Building uncontrollable electric load/controllable thermal load
n - Equivalent efficiency of conversion
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P, — Nominal uncontrollable electrical load (kW)
V, — Nominal bus voltage (p.u.)
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Figure 1: Building — grid limiting operation
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Figure 2: Building steady state circuit model
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vy —Buildinginternal temperature (°F)

v —Building internal temperature setpoint (°F)

u —Building management system control setpont (°F)
v, —Ambient temperature (°F)

R"™ —Buildinginternal thermal resistance (°F/kW )

R, —Buildingenvelope thermalresistance (°F/kW)

P —Building equivalent thermal load (kW)

Drfh —Nominal controllable thermal load (kW)

—Building nominal internal temperature (°F)
—Building thermal load sensitivity
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Figure 3: Example distribution system
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Table 1: Building controllable load parameters 060 6i5 =0 ?"5 8‘0 8;5 95
Bus| Po | M| o [P R RY . Voltage Magnitude (pu)
2 | 600 | 0.8 | 300 | 700 | 0.0766 | 0.0154 | -3.2 | ,_ | ,_
4 | 406 | 0.8 | 200 | 424 |0.1393 | 0.0197 | -5.1 0.99 '
5 | 700 | 0.8 | 400 | 636 |0.0727 |0.0449 | -9.7
Table 2: Uncontrollable load parameters 0.93
Bus | Z, Lo| Py Z | N Py | IVl 0 97 5 5 ;
2 |1.21 |-161 | 141 | 435 |-7.08 | 3.72 | 0.983 i i i - i i |
4 | 040 |-041 | 101 | 443 |-7.98 | 456 | 0.975 o0 e 70> 808 90 9
5 (076 |-0.52 | 0.76 | 6.92 |-11.75 | 5.38 | 0.982 y_ O F)

% The electro-thermal load is subject to P™a and P™" |imits that
are sensitive to temperature conditions as shown in Figure 1 (a).

¢ The thermostatically uncontrollable load portion,

(building loads values have units of kW,
K 0ag=10.73,0.49,0.46])

lighting, appliance load, etc., Is

represented through a ZIP load (2), where the coefficients can be estimated from meter data

as In [3].

*» The thermal load Is described through an equivalent circuit. The steady state circuit iIs given

In Figure 2 and Is accompanied by (3).

¢ The building load equation (1) can be written as (4) for real power and (5) for reactive

power, with a constant power factor assumption.

“» The multiplier k.4 = tan(cos™ PF) is defined for each building.
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Discussion of Results

¢ The results in Figure 4 were obtained through a load flow analysis of the network in Figure
3 by including building temperature as a state and using (4) and (5) to describe the loads.

¢ The circuit model parameters in Table 1 were estimated from actual building data while the
ZIP parameters in Table 2 were obtained from [3] for large commercial and industrial

buildings.

¢ The results displayed are for a unidirectional loading of the buildings with the same

setpoint , v, While the ambient temperature, ., was held.

 As the results indicate, building internal and ambient temperature have a direct influence

on load behavior.

+ Building - grid operation should consider thermal operating points as well as electrical.
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Figure 4: Results of temperature setpoint variation
(60°F<y<95°F) with ambient temperature vy, = 90°F

Conclusions

¢ The presented model captures the temperature-load-voltage relationship that exists between
buildings and the electric grid.

“ For the example network with given parameters, the bus voltages vary within allowable
limits as shown in Figure 1 (b).

*» In heavily loaded cases, however, it is possible that the bus voltage will violate the low
voltage limit as shown in Figure 1 (c).

» Building operators should consider neighboring building operation as well as the electric
grid operation to avoid grid constraint violations.

s Coordination between utility and consumer in the presence of regulatory programs such as
Conservation Voltage Reduction can lead to increased efficiency of operation.
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