Meeting Minutes Task Force to Study Shunt Reactor Switching Endurance for HVCB October 17, 2018, Kansas City, MO

Revision: 1 (11/9/2018)

Chair – Sushil Shinde Secretary – Roy Alexander

Introduction of members and guests

40 attendees present14 members26 guests

Discussion

- 1. Victor Hermosillo Chopping number is based on the arcing window of the breaker and will be specified in range rather one single number. Which chopping number (corresponding to minimum arcing or maximum arcing time) is being requested in the survey?
- 2. Sushil Shinde We would typically look for worst case so corresponding to the minimum arcing time would be ideal but we can even request the range for detail analysis of the chopping number relation to other parameters.
- 3. Arben Bufi requested to add snubber circuit as a mitigation method.
- 4. Sushil Shinde Yes, it will be added as a separate entry in the mitigation tab.
- 5. Carl Schuetz Can we request users to include synchronous controller settings of their application?
- 6. Rich York The controller setting is based on a particular breaker type and controller and this data would not be helpful in this survey. The settings are manufacturer design specific and are changed often based on the additional type testing and field feedback.
- Sushil Shinde Agree with both Carl & Rich. The controller setting field will be included in the survey. It won't hurt to collect this data, if users can provide such data and utility of this data will be decided after the survey analysis.
- 8. John Hall Can we include type of operating mechanisms being used on a switching device in the application for this survey?
- 9. Sushil Shinde the operating mechanisms do not contribute to the electrical endurance of the switching device as we are talking of failures primarily originating due to current chopping, reignitions or over voltages. There is no value of including additional field requesting this data in the survey.
- 10. Dave Caverly Tertiary reactor details are missing from the survey.
- 11. Sushil Shinde Will share the template with Dave for his inputs.
- 12. The introduction for the survey was shared for additional inputs from WG members.
- 13. The next steps were discussed.
- 14. Lucas Collette volunteered to help with a chapter on system study guidelines.
- 15. Xi Zhu will help with the survey data analysis

Attendance:

Sr. N	First Name 🖃	Last Nam	Company 🗾	Role 🔄	10/17/20
1	Mauricio	Aristizabal	ABB Inc.	Guest	х
2	Harm	Bannink	KEMA Netherlands	Guest	х
3	Michael	Boulus	PSE&G	Guest	х
4	Arben	Bufi	HITACHI HVB, INC.	Member	х
5	Mohit	Chhabra	S&C Electric Company	Guest	х
6	Andrew	Chovanec	GE	Member	х
7	Chih	Chow	PEPCO	Member	х
8	Lucas	Collette	Duquesne Light	Guest	Х
9	Mike	Crawford	MEPPI	Guest	Х
10	Patrick	DiLillo	Consolidated Edison, NY	Guest	Х
11	Kirk	Dlalan	HITACHI HVB, INC.	Guest	Х
12	Bernie	Dwyer		Guest	Х
13	Karl	Fender	Southern States LLC	Guest	Х
14	Raymond	Frazier	Ameren	Guest	Х
15	John	Hall	TVA	Member	Х
16	Jeremy	Hensberger	MEPPI	Guest	Х
17	Victor	Hermosillo	Alstom Grid	Member	Х
18	Jennifer	Hunter	MEPPI	Guest	Х
19	Todd	Irvin	GE Grid Solutions	Guest	Х
20	Bharat	Jagadeesan	Southern States LLC	Guest	Х
21	Cory	Johnson	ВРА	Guest	Х
22	David	Lemmerman	PECO/Exelon	Member	Х
23	Vincent	Marshall	Southern Company	Guest	Х
24	Stephanie	Montoya	SCE	Guest	Х
25	Tom	Pellento	DTE Energy	Guest	Х
26	Brian	Roberts	Southern States LLC	Member	Х
27	Dan	Schiffbauer	Toshiba	Guest	Х
28	Carl	Schuetz	АТС	Member	х
29	Sushil	Shinde	ABB Inc.	Chair	х
30	Erin	Spiewak	IEEE	Guest	Х
31	Dragan	Tabakovic	Hubbel Power Systems	Guest	Х
32	Vernon	Toups	Siemens	Guest	х
33	Richard	York	MEPPI	Member	х
34	Marcus	Young	MEPPI	Guest	Х
35	Will	Zhang	HITACHI HVB, INC.	Member	Х
36	Xi	Zhu	GE	Guest	Х
37	David	Caverly	Trench Limited	Member	Х
38	John	Hall	TVA	Guest	Х
39	Michael	Skidmore	AEP	Member	х
40	Vernon	Toups	Siemens Page 3 of 3	Guest	х

		Surve	y Templa	ate	
		Input i	teins	Example	
		Rated	Voltage [kV]		
			Capacity [MVA]		
			Current [A]		
			Power Frequency [Hz]		
		Winding constraction	3-leg or 4-leg		
		Core type	Oil-immersed, Dry type or Air-core		
		Reactor location	Tertiary or direct connected		
		Type of grounding	Solidly ground/ Neutral reactor /Non- grounded		
51	hunt Reactor	Type of neutral reactor if used	Oil filled or Air core		
			Lm [H]		
		Equivalent lumped constants (Refer below sketch)	Rm [ohm]		
			Ln [H] (only 4-leg)		
			Rn [ohm] (only 4-leg)		
			Cm [pF]		
			Cn [pF] (only 4-leg)		
			Natural frequency [kHz]		
		Line parameters	OHL or Cable		
Lin	ne/bus between		Length [m]		
CI	B and reactor		Line capacitance [pF]		
			Reactor stray capacitance [pF]		
Su	arge protetion	MOSA	Varistor voltage (X kV at Y kA)		
×	Maintenance	Mitigation added to the reactor if any	Parallel capacitance/ Snubber/ Bushing arrestor/ None		
PES					

Su	urvey Tei	mplate	
	Type of switching device	MV/DTB/LTB/Circuit Switcher	7
	Interrupting medium	Gas, vacuum, oil	1
	Rated voltage	kV	
	Operating voltage	kV	
	Short circuit current	kA	
	No of breaking units	1/2/3/3	
Switching Device	Interrupter type	Self-blast/Arc assist/ Puffer	
	Circuit breaker testing per relevant IEC Std 62271-110; IEC 61233	Y/N	
	Width of the re-ignition free arcing window	ms	
	Rate of rise of the dielectric strength		
	Current chopping number	A F ^{0.5}	
	Location of CB relative to reactor	Before HV terminal or After neutral terminal	
	Controlled switching used?	Y/N	
Mitigation	Type of controlled switching	OPEN / CLOSE / Both	
Mingaton	Open/Close resistors used?	Y/N	
	MOSA across interrupter used?	Y / N	
	Number of operations until interrupter maintenance is required		
	Number of operations until interrupter replacement was required		
	Average no of operations per year		
	Number of Ops currently on device		
Maintenance	CB Failed	Y / N	
	If failed, did it fail during opening/closing	Opening / Closing	
	Major components failed	Nozzle/ main contacts/ arcing contacts/ interrupter tube/ grading capacitor / mechanism	
AT LEEL	Insulation component condition after failure	puncture/ internal surface ablation	*

Introduction to Survey

Shunt reactor switching has been recognized as a particularly challenging switching duty for HV circuit breakers. Over voltages generated by shunt reactor de-energization may cause harm to the shunt reactor and in many cases the circuit-breaker itself. The over voltages are mainly generated by re-ignitions and current chopping phenomenon. These two phenomena can in fact take place successively during the same operation. Currently, IEC Std 62271-110 is being used for type testing. The purpose of the testing is not so much to demonstrate interrupting capability but rather to establish that the circuit-breaker meets certain performance criteria and to derive its chopping current and chopping number characteristics. As per the testing protocol outlined in IEC standard 40 to 80 test shots are performed. There are some concerns in existing standards where testing practices for shunt reactor switching may be lacking. A motion was passed during a HVCB subcommittee Spring 2017 meeting to create a task force to study electrical endurance of shunt reactor switching. A further research is needed to understand into erosion severity (of the arcing contacts and nozzle) as a function of cumulative operation. The reactor switching stress is a dielectric stress for the circuit breaker and is therefore related to a certain statistical behavior. The idea of a type test is to provide a test procedure, which gives high confidence with a low/reasonable number of tests. For example this has been done when creating the cap switching test duties. In order to judge about the possible test procedures for reactor switching it would therefore be interesting to know the overall number of operations the breaker will be subjected to during its life time. This task force is conducting a survey of all shunt reactor switching applications to collect all application related data to analyze this in more detail.

PES

