RODE – Recloser Interface Discussion Group Meeting Minutes

October 7, 2019 - San Diego, California

Chair: Mark Feltis

Meeting Minutes

1. Call to Order Mark Feltis

Order was called at 3.47 pm

2. Patent concerns reminder

Mark Feltis

Reviewed IEEE patent slides

Reminder was given that in this informal discussion group (to "see where we have been as an industry"), we discuss various manufactures' existing recloser interfaces. No "promotion" or "degradation" is intended in such discussions.

3. Introduction of Members and Guests

Mark Feltis

Introductions were made

4. Attendance Mark Feltis

Routed an attendance sheet; 19 attendees total (See Annex)

5. Review Minutes Mark Feltis

Minutes of past Discussion Group meeting (October 17, 2018) were reviewed. Motion to accept: François Soulard; Second: Brendan Kirkpatrick

New Table: Common and redundant signals/pins for triple-single reclosers

Quickly reviewed existing document of existing, known recloser interfaces in North America. Then reviewed new table "Common and redundant signals/pins for triple-single reclosers" (included in the Annex of these minutes). This comparison table is an initial attempt to answer the action items from the last meeting [October 17, 2018 (Kansas City, Missouri)]:

- What signals/pins are common across the various recloser interfaces?
- What signals/pins might seemingly be redundant within given recloser interfaces?

Only "triple-single trip/close" capable reclosers were considered in the comparison table put together by Mark Feltis. Thus, 14-pin (Eaton), 19-pin (Eaton), and 32-pin (Tavrida) were eliminated from the comparison, as they are "three-phase-only trip/close" reclosers (the 14-pin and 19-pin interfaces are the oldest of all the recloser interfaces).

Most of the newer "triple-single trip/close" capable reclosers are nominal 155 Vdc for the trip and close circuits. In discussion, the following point was made: if there was a common recloser interface with a standard trip/close voltage (e.g., 155 Vdc), then there probably would be

differences in trip/close current draw levels (due to recloser actuator circuit differences). Thus, any trip/close circuit through a common recloser interface (with a standard trip/close Vdc) would need to be designed for some maximum trip/close current draw (for a decided maximum cable length).

There were no direct corrections/updates given for the comparison table.

7. Other discussion

Discussion turned to seeing if there were other recloser interfaces used in North America that weren't part of the document of existing, known recloser interfaces in North America:

- Whipp&Bourne (likely referring to the GVR model, which is a "three-phase-only trip/close" recloser)
- NOJA Power (they have an OSM recloser model that is "triple-single trip/close" recloser)
- Other foreign vendors (e.g., from Japan or Korea), but no one had particular names

Discussion turned to self-diagnostics for things going on up in the recloser switch (e.g., leakage current indicating insulation problems, vacuum bottles losing vacuum), but such are not necessarily serviceable/realizable by routing extra signals/pins through a recloser interface. Of particular interest was continuously monitoring trip and close circuits for continuity ... could some signals/pins be brought through the recloser interface that would be useful in realizing such continuous monitoring?

8. Action item ... for everyone

Between now and the spring 2020 meeting, the action item for everyone is to provide written input for the following questions:

- Why move to a common recloser interface?
- What are we giving up by going to such a common interface?

Answer the questions from your vantage point ... utility, consultant, manufacturer, etc.

Provide feedback on these action items (and any corrections/additions to these minutes) to Mark Feltis (mark feltis@selinc.com). Meeting was adjourned at 5:25pm

9. Next Meeting

Spring 2020: Peppermill Resort, Reno, Nevada (May 3-7, 2020)

Annex

Common and redundant signals/pins for triple-single reclosers

feature	24-pin (ABB)	26-pin (Eaton)	27-pin (Joslyn)	32-pin (G&W et al)	37-pin (Eaton)	40-pin (Siemens)	42-pin (G&W et al)
4-wire	(ADD)	(Eaton)	(1021A11)	(G&W et ai)	(Eaton)	(Siemens)	(GQVV et ai)
current	X	X		X	X		X
6-wire							
current			X			X	
3 – 52a	Х	X (1)	X	Х	X	X	X
3 – 52b	X	X (1)	Λ	A	X	X	X
3 – 69a	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X (1)			X	Λ	, <u>, , , , , , , , , , , , , , , , , , </u>
3 – 69b		X (2)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X	
1 – 69a		7 (2)	X			Α	X (3)
1 – 69b	X		Λ				X (3)
1 – three	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
parallel				x	X		X (3)
69b's				^	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Λ(3)
1 – Vdc							
whetting	X	X	X	X	X		X
3 – Vdc							
whetting						X	
1 – Ground		Х		X	х		Х
2-wire							
heater Vac	X					X	
power							
2-wire LEA							
Vdc power					X		X
4-wire LEA							
(source	X			X	X		X
side)							
3-wire LEA							
(source		X					
side)							
4-wire LEA				V	v		v
(load side)				X	X		X
1 – LEA					X		
shield					^		
6-wire							
H-bridge	X			X	X	X	X
trip/close							
3-wire							
alternate					X		
trip/close							
Trip/close Vdc	53	53	155	155	155	155	155
Redundant		Trip/close	Current	LEA neutral	LEA neutral	Current	LEA neutral
signals/pins		power	returns	(6)		returns	(three each
(?)			(5);				

and	Trip/close	(6); two	(5); Vdc	side, source
retu	n (4) return (4)	Ground	whetting	and load)
		wires		

- (1): 52a and 52b contacts embedded in trip and close circuits, respectively.
- (2): 69a contacts embedded in yellow lockout handle circuitry, producing effective 69b behavior.
- (3): single 69a contact for Tavrida OSMAl_4; three parallel 69b's for other reclosers
- (4): probably needed for trip/close current ampacity
- (5): function of 6-wire current (two wires each phase)
- (6): wiring convenience for 4-wire LEA (separate source and load neutral connections at control)

Attendance						
First Name	Last Name	Representing	Oct 7, 2019			
Mark	Feltis	Schweitzer Engineering Labs	х			
Kate	Cummings	G&W Electric	Excused			
Nenad	Uzelac	G&W Electric				
David	Beseda	S&C Electric				
Pete	Meyer	S&C Electric	х			
Brendan	Kirkpatrick	Southern California Edison (SCE)	x			
Harry	Hirz	G&W Electric	х			
Chris	Ambrose	Federal Pacific	х			
lan	Rokser	Eaton	Х			
Travis	Johnson	Xcel Energy				
Anil	Dhawan	ComEd	х			
Paul	Found	BC Hydro	х			
Robert	Foster	Megger				
Francois	Soulard	Hydro-Quebec	х			
Jacob	Midkift	Dominion Energy	х			
Brad	Lewis	American Electric Power (AEP)				
Steve	Pell	Siemens	Х			
Edwin	Almeida	Southern California Edison (SCE)				
Mohit	Chhabra	S&C Electric				
Brian	Roberts	Southern States, LLC	х			
Karl	Fender	Southern States, LLC				
Roberto	Olivares	Siemens				
Karla	Trost	G&W Electric				
Bharat	Jagadeesan	Southern States, LLC				
Jason	Cunningham	Southern States, LLC				
Nadia	Elkhattabi	Hydro-Quebec	х			
Dan	Busilan	Dominion Energy	х			
Peter	Glaesman	PCore Electric	х			
Michael	Culhane	Eaton	х			
Don	Martin	G&W Electric	х			
Robert	Hanna	ABB	х			
Srikant	Venkatesh	Schweitzer Engineering Labs	х			