#### **Minutes of Meeting**

#### Working Group C37.010 – Application Guide for AC High-Voltage Circuit Breakers > 1000 VAC Rated on a Symmetrical Basis

Location:Westin Beach (Fort Lauderdale, FL)Date:Tuesday April 2, 2024 (4:15PM - 6:00PM PST)Quorum:Membership Count: 40Members Present: 31

#### <u>Agenda</u>

Andy Keels w/ kEElectric Engineering, LLC called the meeting to order and presented the agenda.

Introduction of Members and Guests Introductions and attendance gathered in -person 68 Total in Attendance (31 Members, 37Guests) – Quorum Achieved

<u>Review of Attendance Logging via IEEE Attendance Tool</u> See meeting slides for details

Review of IEEE Patent and Copyright Policies No Essential Patent Claims noted

**Review of Schedule and Future Meetings** 

Quorum Check: 31 Members – Quorum Achieved

<u>Review of Reference Documents loaded into IMeetCental</u> <u>Motion:</u> Approve October 9, 2023 In-Person Meeting Minutes: Carl Schuetz <u>2<sup>nd</sup> to the Motion</u>: David Mitchell <u>Vote:</u> Approved without objection/abstention

<u>Motion:</u> Approve January 17, 2024 Virtual Meeting Minutes: Carl Schuetz <u>2<sup>nd</sup> to the Motion</u>: David Mitchell <u>Vote:</u> Approved without objection/abstention

<u>Review of References to existing Standards</u> All standards are in "Reference Documents" section of IMeet Central

Table 6 & Table 7 Presentation/Discussion

- See minutes slides
- Comments related to recommendation to add a cautionary note to Table 6:
  - What additional design components may need to be considered when exceeding temperature limits. For example, glue joints may fail suddenly vs. components that will fail due to aging.
  - Should the aging behavior of epoxy and composite materials (not part of the current path) be considered.

- Comments related to the significance of overload capability/duration general guidance within the current guide that the utility uses to calculate overload condition.
  - Additional cautionary comments and notes being considered for inclusion in the document should either be removed or clarified. They reduce effectiveness of existing equations within the guide.
- Comment noted existing thermal time constants are based on oil circuit breakers. This is addressed in Section 4.5.4.2 of the existing document.
- Actions:
  - Task force consisting of Dan Schiffbauer, Carl Schuetz and Dan Benedict will review cautionary notes in more detail and provide recommendation to the working group at a future meeting.
  - Chair will delete the second sentence of proposed additional cautionary note and add to the draft document. Next review of the draft document during virtual meeting in August 2024 will follow-up on this topic.

Sub-Group presentation of Update on User-Specified 105% of Rated Maximum Voltage.

- See slides in Meeting Minutes
- General Comment:
  - Most utilities do not exceed 100% of the rated maximum voltage because that would be a NERC violation.
- Comments to Clause 4.2 Revision Recommendation:
  - In addition to short circuit functions, it is recommended to add the following: capacitive, inductive, load switching, and other applicable switching duties.
  - $\circ~$  Reference should be made to the maximum operating voltage in C37.04 vs C84.1.
  - Add a reference back to C37.06 bibliography for referring back to circuit breakers qualified prior to 2018.
- Member presented a proposed paragraph that suggests the use of TRV multiplying factors to cover circuit breaker operation over the maximum rated value
  - Actions:
    - Victor Hermisillo to post the proposal in IMeetCentral for the working group to review.

### Sub-Group presentation of Update on Inverter Based Resources and the Impact on Fault Currents

- See slides in Meeting Minutes
- General Comments/Questions:
  - What is the fault output capability of the IBR based on the algorithms internal to the equipment.
  - Utility representative commented that their company has lots of data that could be used to support the sub-groups evaluation (fault current and voltage oscillographs).

#### Presentation of Topic related to HV CB Generator Synchronization Scope Proposal

- See Slides in Meeting Minutes
- The following members formed a sub-group to evaluate this proposal:
  - Jan Weisker, Dave Mitchell, Andy Chovanic, Victor Hermisillo
- Action:
  - Chair to add proposal discussion to next meeting agenda

<u>Schedule</u> Next Virtual Meeting: August 23, 2023 @ 11:00AM EST Next in-person meeting: October 13th – 17th, 2024 at the Oklahoma City, OK

Meeting adjourned by the chair at 6:00PM (EST) on 4/2/2024 Reported by: Jeremy Hensberger, Lucas Collette & Andy Keels

|    | Name                       | Affiliation                                      | Member |
|----|----------------------------|--------------------------------------------------|--------|
| 1  | Aristizabal, Mauricio      | Hitachi Energy USA                               |        |
| 2  | BECKEL, ANDREW             | Xcel Energy                                      |        |
| 3  | Becker, George             | POWER Engineers, Inc.                            | Х      |
| 4  | Beecher, Zachary           | Southern States LLC                              |        |
| 5  | Benedict, Dan              | PPL Corporation                                  | Х      |
| 6  | Benge, Jonathan            | Oklahoma Gas and Electric                        |        |
| 7  | Bolar, Sanket              | Oncor Electric                                   |        |
| 8  | Bornuat, Albane            | General Electric Company (GE); GRID SOLUTIONS    |        |
| 9  | Brogdon, Jeffrey           | Georgia Transmission Corporation                 |        |
| 10 | Bryant, Craig              | Duke Energy                                      | Х      |
| 11 | Bufi, Arben                | Meiden America Switchgear                        | Х      |
| 12 | byreddy, sudarshan reddy   | Burns & McDonnell                                |        |
| 13 | Chovanec, Andrew           | Power Grid Components                            | Х      |
| 14 | Collette, Lucas            | Duquesne Light Co.                               | Х      |
| 15 | Crawford, Michael          | Mitsubishi Electric Power Products, Inc. (MEPPI) | Х      |
| 16 | Cunningham, Jason          | Southern States LLC                              |        |
| 17 | Cuppett, Matthew           | Hitachi Energy                                   |        |
| 18 | Eastman, Maxwell           | Black and Veatch                                 |        |
| 19 | Flores, Sergio             | Schneider Electric USA Inc.                      |        |
| 20 | Hanna, Robert              | JST Power Equipment Inc                          | Х      |
| 21 | Hensberger, Jeremy         | Mitsubishi Electric Power Products Inc           | Х      |
| 22 | Hermosillo, Victor         | GE Grid Solutions                                | Х      |
| 23 | Irwin, Todd                | GE Grid Solutions                                | Х      |
| 24 | Jaggernauth, Sudesh        | Florida Power & Light                            |        |
| 25 | Jarnigan, Christopher      | southern company/ southern nuclear               | Х      |
| 26 | Keels, Thomas              | kEElectric Engineering, PLLC                     | Х      |
| 27 | Krause, Dwight             | Black and Veatch                                 |        |
| 28 | Kurinko, Carl              | Hitachi Energy                                   | Х      |
| 29 | Lee, Yongwoo               | Korea Electrotechnology Research Institute(KERI) |        |
| 30 | Livshitz, Albert           | Schneider Electric                               | Х      |
| 31 | Lopez, Leo                 | WIKA                                             |        |
| 32 | Ma, Chunming               | Burns & McDonnell                                |        |
| 33 | Marshall, Vincent          | southern company/ southern nuclear               | Х      |
| 34 | MARZEC, PETER              | S and C Electric Co                              |        |
| 35 | May, Steven                | Southern Company Services                        | Х      |
| 36 | McGlown, Kevin             | JST Power Equipment                              |        |
| 37 | Meekins, Gary              | Southern States LLC                              |        |
| 38 | Mitchell, David            | Southern States LLC                              | Х      |
| 39 | Natale, Anthony            | HICO America                                     |        |
| 40 | Ordein, Fernando           | Dominion Energy                                  | Х      |
| 41 | Orosz, Miklos              | CBT&S Consulting LLC                             |        |
| 42 | Pecile, Conrad             | Myers Power Products, Inc,                       |        |
| 43 | Pedreros Ratmiroff, Javier | GE Grid Solutions                                |        |
| 44 | Peterson, Mark             | Xcel Energy                                      |        |
| 45 | Polchinski, Craig          | Mitsubishi Electric Corporation                  | Х      |
| 46 | Pounders, Isaac            | Meiden America Switchgear                        |        |

| 47 | Rebovich, Justin GE Vernova; General Electric Company (GE) |                                          |    |  |  |
|----|------------------------------------------------------------|------------------------------------------|----|--|--|
| 48 | Rexroad, Aaron                                             | Meiden America Switchgear inc.           | Х  |  |  |
| 49 | Ricciuti, Anthony                                          | Eaton Corporation                        | Х  |  |  |
| 50 | Roberts, Brian                                             | Southern States LLC                      |    |  |  |
| 51 | Sax, Benjamin                                              | Nashville Electric Service               |    |  |  |
| 52 | Schiffbauer, Daniel                                        | Toshiba International Corporation        | Х  |  |  |
| 53 | Schuetz, Carl                                              | American Transmission Co., LLC           | Х  |  |  |
| 54 | Scott, Jeffrey                                             | Ameren                                   | Х  |  |  |
| 55 | Sharma, Devki                                              | Entergy Corporation                      | Х  |  |  |
| 56 | Shirode, Aniket                                            | ABB Ltd.                                 |    |  |  |
| 57 | Skidmore, Michael                                          | American Electric Power (AEP)            |    |  |  |
| 58 | Tarleton, John                                             | Southern States LLC                      |    |  |  |
| 59 | Terry, Timothy                                             | meiden                                   |    |  |  |
| 60 | Toups, Vernon                                              | Siemens Energy Inc                       | Х  |  |  |
| 61 | Usner, Joseph                                              | AEP                                      |    |  |  |
| 62 | Webb, John                                                 | ABB Ltd.                                 |    |  |  |
| 63 | Weeks, Casey                                               | Siemens Energy, Inc.                     | Х  |  |  |
| 64 | Weisker, Jan                                               | Siemens Energy                           | Х  |  |  |
| 65 | Woodyard, Terry                                            | Siemens Industry, Inc.                   |    |  |  |
| 66 | York, Richard                                              | Mitsubishi Electric Corporation          |    |  |  |
| 67 | Young, Marcus                                              | Mitsubishi Electric Power Products, Inc. | X  |  |  |
| 68 | Zaharko, Samuel                                            | Mitsubishi Electric Corporation          | Х  |  |  |
|    |                                                            | Members Present                          | 31 |  |  |
|    |                                                            | Guests Present                           | 37 |  |  |

Application Guide for AC High-Voltage Circuit Breakers >1000Vac Rated on a Symmetrical Basis

## Tuesday, April 2<sup>nd</sup>, 2024 16:15 – 18:00 EDT

Chair: T. Andy Keels w/ kEElectric Engineering, PLLC Secretary: Jeremy Hensberger w/ MEPPI Vice-Chair: Lucas Collette w/ Duquesne Light Co.

Starting Document: IEEE Std C37.010-2016 (Revision of C37.010-1999)





# Agenda

- 1. Chairman's call to order
- 2. Introduction of attendees: Please announce your *Name*, *Affiliation*, *Location*
- 3. Attendance Logging Instructions
- 4. Workgroup Required Reading
- 5. Anticipated Schedule (*Best laid plans*)
- 6. iMeet Central Workspace
- 7. Minutes Approval
- 8. Discussion of Table 6 and Table 7 (Dan Benedict w/ PPL Energy)
- 9. Report from Sub-group on "User-Specified 110% Voltage Duty" (Carl Schuetz w/ ATC)
- 10. Proposed revison on TRV multiplying factors (Victor Hermosillo w/ GE HVCB)
- 11. Call for additional revisions to Section 4 or Section 5, or Annex A or B
- 12. Next meetings





There are three way to get there:

- 1. Go To: IEEE SA eTools, Then click on IEEE Attendance Tool
- 2. Google: IEEE Attendance Tool
- 3. Go directly to: https://imat.ieee.org/my-site/home

| Elle Edit View Higtory Bookmarks Iools Elelo EEEE Standards Association - Sign I × +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ IX                                                                                     |                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction of vector of the services of | © \$                                                                                     | Type in the Email address &<br>Password that you use for your<br>IEEE activities<br>Don't forget to check the box<br>acknowledging the IEEE Privacy |
| back to top Home   Sign In   IEEE Account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Copyright © 2021 IEEE Standards Association<br>All rights reserved.<br>Software by bivio | Policy                                                                                                                                              |





Attendance Reports Events Setup Export



#### Home - Thomas Keels, SA PIN: 88780

Welcome to the IEEE Attendance Tracking system. This system provides on-site home tracking integrated with the IEEE myProject<sup>™</sup> system. You can view your prior attendance on the Attendance History Report.

#### **Active Meetings**

Please select the meeting you are currently attending

| IEEE PES Switchgear Spring 2024 Meeting                       | Ft. Lauderdale | 02-Apr-2024 |
|---------------------------------------------------------------|----------------|-------------|
| IEEE P802.3dj COM Implementation and Execution Ad Hoc meeting |                | 02-Apr-2024 |
| 802 April/May/June Telecons                                   |                | 01-Apr-2024 |
| IEEE 802.3 test meeting                                       |                | 29-Mar-2024 |
| IEEE 802.18 teleconference call (24/03/24 to 09/05/24)        |                | 21-Mar-2024 |
| 802.11 Telecons (March 19-May 10)                             |                | 19-Mar-2024 |
| 802.1 Telecons (Mar-May)                                      |                | 18-Mar-2024 |





### Then select the Working Group

### If it is a 'virtual meeting' the WG Chair should have the link listed here

### Attendance | Reports | Events | Setup | Export



### Home >> Attendance



### IEEE PES Switchgear Spring 2024 Meeting (edit)

Ft. Lauderdale, FL IEEE PES Switchgear Spring 2024 Committee Meetings Westin Beach Resort Ft. Lauderdale, FL

### **Select Working Group**

PE/SWG/HVCB-WG\_C37.010 Attendance





If the meeting is currently in progress then there should be a yellow box here.

Click the Yellow Box, The box will turn GREEN if your attendance is logged You then just click Sign Out in the upper right corner

Attendance | Reports | Events | Setup | Export



#### Home >> Attendance >> HVCB-WG\_C37.010

#### PE/SWG/HVCB-WG\_C37.010 Attendance Log

Attendee: Thomas Keels, SA-Pin: 88780 Affiliations: PE/SWG/HVCB-WG\_C37.010 kEElectric Engineering, PLLC

| TUE                                  |      |      |          |       |         |         |       |          |      |        |          |       |        |        | , and a | ,     | contace |
|--------------------------------------|------|------|----------|-------|---------|---------|-------|----------|------|--------|----------|-------|--------|--------|---------|-------|---------|
| 2-Apr-2024 3-Apr-2024                |      |      |          |       |         |         |       |          |      |        |          |       |        |        |         |       |         |
|                                      |      |      |          |       |         |         |       |          |      |        |          |       |        |        |         |       |         |
| Schedule                             | 7:00 | 8:00 | 9:00 10: | 00 11 | 1:00 12 | :00 13: | 00 14 | :00 15:0 | 0 16 | :00 17 | :00 18:0 | 0 19: | 00 20: | :00 21 | :00 22  | :00 2 | 3:00    |
| C37.010 HVCB Applications WG Meeting |      |      |          |       |         |         |       |          |      |        |          |       |        |        |         |       |         |
|                                      |      |      |          |       |         |         |       |          |      |        |          |       |        |        |         |       |         |

Please record your attendance for an active breakout (denoted by yellow bar) by clicking on the yellow bar. Once your attendance has been recorded, the yellow bar changes to a green bar.

Submittal: As the person submitting this form, I certify that:

- 1. I am submitting this attendance record for myself and not someone else. DO NOT SUBMIT FOR OTHERS!
- 2. At the time of the submittal, I am currently in the Event above.





Manage Attendee

# Workgroup Required Reading

| <b>LE SA Association Q</b> Search                  | for Workspaces and Files                            | Create 🔻       | Help/Resou |
|----------------------------------------------------|-----------------------------------------------------|----------------|------------|
| Dashboard 🔲 Workspaces 💌                           |                                                     |                |            |
| 37.010 HVCB App Home Wik                           | i Files & Discussions Project Management - Calendar | People Help    | Settings   |
| Files by Folder -                                  | C37.010 HVCB A / 🖿 Required Reading                 | g for WG Mem   | bership    |
| <ul> <li>All Items</li> <li>Attachments</li> </ul> | □ Upload ▼ New ▼                                    |                | Sort by La |
| C37.010 HVCB Applications Workg                    | IEEE Patent Slides.pdf Andy Keels                   | Apr 24 202     | 2          |
| Attendance Documents (4)                           | IEEE SA Copyright Policy 2019.pdf Andy Keels        | Apr 24 202     | 2          |
| Contributions                                      | IEEE Policies 2022.pdf Andy Keels                   | Apr 21 202     | 2          |
| Draft Documents (2)                                | IEEE_Code_of_Conduct.pdf Andy Keels                 | Apr 21 202     | 2          |
| Meeting Agendas (3)                                | SP                                                  | owing 1.4 of 4 |            |
| ▼ 🖿 Meeting Minutes (1)                            | 01                                                  |                |            |
| Approved Minutes (1)                               |                                                     |                |            |
| Unapproved Minutes (2)                             |                                                     |                |            |
| Member Roster (1)                                  |                                                     |                |            |
| PAR (1)                                            |                                                     |                |            |
| Reference Documents (16)                           |                                                     |                |            |
| Required Reading for WG                            |                                                     |                |            |
| Standard Development (1)                           |                                                     |                |            |

Power & Energy Society

Ε

# **Meeting Schedule**

- 04/11/2022 1<sup>st</sup> working group meeting
- 10/17/2022 2<sup>nd</sup> working group meeting Burlington, VT
- 02/03/2023 3<sup>rd</sup> working group meeting VIRTUAL Google Meeting
- 04/26/2023 4<sup>th</sup>-working group meeting Virtual WebEx
- 07/19/2023 5<sup>th</sup> working group meeting VIRTUAL WebEx
- 10/10/2023 6<sup>th</sup> working group meeting San Diego, CA
- 04/02/2024 7<sup>th</sup> working group meeting Ft. Lauderdale, FL
- 08/23/2024 8<sup>th</sup> working group meeting VIRTUAL WebEx
- 10/14/2024 9<sup>th</sup> working group meeting Oklahoma City, OK
- 01/02/2025 10<sup>th</sup> working group meeting VIRTUAL WebEx
- 04/07/2025 11<sup>th</sup>working group meeting Orlando, FL





- Review of WG Membership Master List
  - Quorum Check
  - Review of iMeet Central Workspace
  - Approval of Minutes of last meeting





### Current Member List For Quorum Check

- 1 Aaron Rexroad
- 2 Albert Livishitz
- 3 Andrew Chovanec
- 4 Anthony Ricciuti
- 5 Arben Bufi
- 6 Carl Kurinko
- 7 Carl Schuetz
- 8 Casey Weeks
- 9 Chris Jarnigan
- 10 Craig Bryant
- 11 Craig Polchinski
- 12 Dan Benedict
- 13 Dan Shiffbauer
- 14 David Caverly\*
- 15 David Mitchell
- 16 Devki Sharma
- 17 Don Steigerwalt
- 18 Mikos Orosz
- 19 George Becker
- 20 Jake Walgenbach

- 21 Jan Weisker
- 22 Jeff Scott
- 23 Jeff Ward
- 24 Jennifer Hunter
- 25 Jeremy Hensberger
- 26 Lucas Colette
- 27 Marcus Young
- 28 Matt Westerdale
- 29 Michael Christian
- 30 Michael Crawford
- 31 Miklos Palazzo
- 32 R. Kirk Smith
- 33 Robert Hanna
- 34 Samuel Zaharko
- 35 Steven May
- 36 Thomas 'Andy' Keels
- 37 Todd Irwin
- 38 Vernon Toups
- 39 Victor Hermosillo
- 40 Vincent Marshall
- 41 Wei Zhang





| EEE SA STANDARDS<br>ASSOCIATION Q Search           | h for Workspaces and Files                           | Create ▼ He    | lp/Resources ▼ 💮 A        | Andy Keels 🔻 🕜 |
|----------------------------------------------------|------------------------------------------------------|----------------|---------------------------|----------------|
| Dashboard Workspaces                               |                                                      |                |                           |                |
| C37.010 HVCB App Home Wik                          | ki Files & Discussions Project Management 💌 Calendar | People Help S  | Settings 👻 More 👻         | + Add Tab      |
| Files by Folder -                                  | C37.010 HVCB A / Meeting Minutes /                   | Unapproved Min | nutes 👻                   | Options 🔻      |
| <ul> <li>All Items</li> <li>Attachments</li> </ul> | Upload   Vew                                         | S              | Sort by Last Modified 🔺   |                |
| C37.010 HVCB Applications Workg                    | Minutes C37.010 2022-10-17 Rev.1.pdf Andy Keels      | Nov 02 2022    | <b>1</b> Pending Approval | •              |
| Attendance Documents (4)                           | S22 C37.010 Minutes Rev0.docx Andy Keels             | Nov 02 2022    | 1 Draft                   | -              |
| Communications     Contributions                   | Sho                                                  | owing 1-2 of 2 |                           |                |
| Draft Documents (2)                                |                                                      |                |                           |                |
| Meeting Agendas (3)                                |                                                      |                |                           |                |
| ▼ ■ Meeting Minutes (1)                            |                                                      |                |                           |                |
| Approved Minutes (1)                               |                                                      |                |                           |                |
| Unapproved Minutes (2                              |                                                      |                |                           |                |





|        |                     | Reference Standards for IEEE PES C37.010 Working Group                                                                                                           |
|--------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Got It | Std Number Year     | Title                                                                                                                                                            |
|        | C37.010-2016 & 1999 | Application Guide for AC High-Voltage Circuit Breakers > 1000 Vac Rated on a Symmetrical Current Basis                                                           |
|        | C37.04-2018         | Standard Rating Structure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis                                                              |
|        | C37.04a -2003       | Standard Rating Structure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis: Amendment 1 Capacitance Current Switching                   |
|        | C37.06-2009 & 2018  | Standard for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis–Preferred Ratings and Related Required Capabilities for Voltages Above 1000 V |
|        | C37.09-2018         | Standard Test Procedure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis                                                                |
|        | C37.09a-2005        | Standard Test Procedure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis- Amendment 1: Capacitance Current Switching                    |
|        | C37.09b-2010        | Standard Test Procedure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis Amendment 2                                                    |
|        | C37.011-2019        | Guide for the Application of Transient Recovery Voltage for AC High-Voltage Circuit Breakers with Rated Maximum Voltage above 1000 V                             |
|        | C37.012-2014        | Guide for the Application of Capacitance Current Switching for AC High-Voltage Circuit Breakers Above 1000 V                                                     |
|        | C37.017-2020        | Standard for Bushings for High-Voltage [over 1000 V (ac)] Circuit Breakers and Gas-Insulated Switchgear                                                          |
|        | C37.015-2017        | Guide for the Application of Shunt Reactor Switching                                                                                                             |
|        | C37.20.2-2015       | Standard for Metal-Clad Switchgear                                                                                                                               |
|        | C37.24-2017         | Guide for Evaluating the Effect of Solar Radiation on Outdoor Metal-Enclosed Switchgear                                                                          |
|        | C37.81-2017         | Guide for Seismic Qualification of Class 1E Metal-Enclosed Power Switchgear Assemblies                                                                           |
|        | C37.100-1992 ??     | Standard Definitions for Power Switchgear                                                                                                                        |
|        | C37.100.1-2018 ?    | Standard for Common Requirements for High-Voltage Power Switchgear Rated Above 1000 V                                                                            |
|        | C57.106-2015        | Guide for Acceptance and Maintenance of Insulating Mineral Oil in Electrical Equipment                                                                           |
|        | ANSI C37.7-1960 ??  | INTERRUPTING RATING FACTORS FOR RECLOSING SERVICE FOR AC HIGH-VOLTAGE CIRCUIT BREAKERS RATED ON A TOTAL CURRENT BASIS                                            |
|        | IEC 62271-100-2021  | High-voltage switchgear and controlgear - Part 100: Alternating-current circuit-breakers                                                                         |





| EEESA STANDARDS<br>ASSOCIATION Q Search | n for Workspaces and Files                           | Create 🕶 Help |
|-----------------------------------------|------------------------------------------------------|---------------|
| Dashboard      Workspaces               |                                                      |               |
| C37.010 HVCB App Home Wi                | ti Files & Discussions Project Management 👻 Calendar | People Help   |
| Files by Folder -                       | C37.010 HVCB A / EReference Docume                   | nts 🔹         |
| All Items                               | Upload V New V                                       | So            |
| Attachments                             |                                                      | Nov 15 0000   |
| C37.010 HVCB Applications Workg         | C31.15 D2.1 Pre-publication 2022Nov14.pdf Andy Keels | 1100 15 2022  |
| Attendance Documents (4)                | C57.106-2015.pdf Jennifer Santulli                   | Oct 28 2022   |
| Communications     Contributions        | C37.81-2017.pdf Jennifer Santulli                    | Oct 28 2022   |
| Draft Documents (2)                     | C37.24-2017 (1).pdf Jennifer Santulli                | Oct 28 2022   |
| Meeting Agendas (3)                     | C37.20.2-2015.pdf Jennifer Santulli                  | Oct 28 2022   |
| <ul> <li>Meeting Minutes (1)</li> </ul> |                                                      |               |
| Approved Minutes (1)                    | C37.100.1-2018.pdf Jennifer Santulli                 | Oct 28 2022   |
| Unapproved Minutes (2)                  | C37.100-1992.pdf Jennifer Santulli                   | Oct 28 2022   |
| Member Roster (1)                       | C37.017-2020.pdf Jennifer Santulli                   | Oct 28 2022   |
| Reference Documents (16)                |                                                      |               |
| Required Reading for WG Me              | C37.012-2014.pdf Jennifer Santulli                   | Oct 28 2022   |
| Standard Development (1)                | C37.09-2018 (1).pdf Jennifer Santulli                | Oct 26 2022   |
| Trash                                   | C37.04a-2003.pdf Jennifer Santulli                   | Oct 26 2022   |
|                                         | C37.04-2018 (1).pdf Jennifer Santulli                | Oct 26 2022   |
|                                         | C37.015-2017.pdf Jennifer Santulli                   | Oct 26 2022   |
|                                         | C37.09b-2010.pdf Jennifer Santulli                   | Oct 26 2022   |
|                                         | C37.09a-2005.pdf Jennifer Santulli                   | Oct 26 2022   |



EE

C37.010 working group meeting

April 2, 2024

Dan Benedict Andy Chovanec Dan Schiffbauer

Goal of sub-workgroup Clarify Table 6 and Table 7 related to emergency load current-carrying capability





### **Proposed Changes**

- Added Section 3 definitions, acronyms, and abbreviations; updated subclause references throughout
- Updated values within Tables 3-11 to correct minor errors and round consistently
- Added  $\theta_{max}$  of 95 °C column to relevant tables
- Caution statement if exceeding rated temperature limits of circuit breaker:

Extreme care must be exercised by the equipment operator when exceeding the total temperature limits for the circuit breaker. There could be auxiliary components not identified in IEEE Std. C37.04 or IEEE Std. C57.13 that suddenly fail at temperatures greater than the standard total temperature limits. The manufacturer should be consulted prior to the total temperature limits being exceeded to determine if any components would not tolerate a higher temperature.





Proposed Changes (cont'd)

 Separated continuous current equation based on ambient temperature

$$I_{a} = I_{r} \left[ \frac{\theta_{\max} - \theta_{a}}{\Delta \theta_{r}} \right]^{\frac{1}{1.8}} \qquad \qquad I_{a} = \frac{I_{r} \left[ \frac{\theta'_{max} - \theta_{a}}{\Delta \theta'_{r}} \right]^{\frac{1}{1.8}}}{I_{r} \left[ \frac{\theta''_{max} - \theta_{a}}{\Delta \theta''_{r}} \right]^{\frac{1}{1.8}}} \qquad \qquad \text{for } \theta_{a} \le 40 \text{ °C}$$

 Clarified 4 h and 8 h emergency load current-carrying capabilities

$$I_{e} = \frac{I_{r} \left[\frac{\theta'_{max} + 15 \,^{\circ}\text{C} - \theta_{a}}{\Delta \theta'_{r}}\right]^{\frac{1}{1.8}}}{I_{r} \left[\frac{\theta'_{max} - 25 \,^{\circ}\text{C}}{\Delta \theta'_{r}}\right]^{\frac{1}{1.8}}} = I_{r} \left[\frac{\theta'_{max} - 25 \,^{\circ}\text{C}}{\Delta \theta'_{r}}\right]^{\frac{1}{1.8}}}{I_{r} \left[\frac{\theta'_{max} + 10 \,^{\circ}\text{C} - \theta_{a}}{\Delta \theta'_{r}}\right]^{\frac{1}{1.8}}} = I_{r} \left[\frac{\theta'_{max} - 30 \,^{\circ}\text{C}}{\Delta \theta'_{r}}\right]^{\frac{1}{1.8}}}$$

for a 4-h emergency period

for an 8–h emergency period





### Proposed Changes (cont'd)

• Updates to Tables 6 and 7  $\rightarrow$  creation of new Tables







Proposed Changes (cont'd)

• Update to Table 4

### Table 4—Typical thermal time constants

| Circuit breaker category                                                                                | Typical <u>thermal</u> time<br>constant τ<br>_(h) |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Circuit breakers in <del>metal-<u>metal-</u>clad</del><br>switchgear                                    | 0.5 <u>IEEE Std. C37.20.2</u>                     |
| Circuit breaker in <del>gas insulated switchgear</del><br>(GIS) <u>MEGIS</u>                            | 0.5                                               |
| Circuit breakers not in metal- <del>enclosed<u>clad</u><br/>switchgear and not <u>in GISMEGIS</u></del> | 0.5                                               |

• Added Annex C for derivations and example calculations









# Sub-Group Update HVCB Operation at 105% of Rated Maximum Voltage

C37.010 meeting Ft. Lauderdale-April 2023

> Arben Bufi Andrew Chovanec Luke Collette Craig Polchinski Carl Schuetz Markus Young





# Goal of the Sub-Group

To provide more detailed guidance in the application guide for users when the power system is operated up to 5% above nameplate voltage value

(10% above system nominal voltage as defined in C84.1)

 No proposition is made to change the rating structure or its values





# Update on clause 4.2 revision

### 4.2 Maximum voltage for application

The operating voltage should not exceed the rated maximum voltage of the circuit breaker. The rated maximum voltage is the voltage on which all the corresponding type tests have been based. The type tests values include some margins in order to accommodate aging as well as statistical behavior.

- Two online meetings were held to discuss the revisions and draft recommended content
- The recommended content is thought to provide greater clarity for the understanding of what aspects rated maximum voltage (RMV) have on circuit breaker performance
- Guidance is also provided to have the user perform some means of determining what the recovery voltages are (for varying conditions) and discuss these (and other voltage capability aspects) with the manufacturer





|                  |                        |          |              |                        |                  |                             | -                       |                             |                        |                   |  |
|------------------|------------------------|----------|--------------|------------------------|------------------|-----------------------------|-------------------------|-----------------------------|------------------------|-------------------|--|
| VOLTAGE<br>CLASS | Nominal System Voltage |          |              | Nominal<br>Utilization |                  | Voltage Range A<br>(Note b) |                         | Voltage Range B<br>(Note b) |                        |                   |  |
|                  |                        | (Note    | a)           | Voltage<br>(Note h)    | Maximum          | Minimum                     |                         | Maximum                     | Minim                  | um                |  |
|                  | 2-wire                 | 3-wire   | 4-wire       | 2-wire                 | Utilization and  | Service                     | Utilization             | Utilization and             | Service                | Utilization       |  |
|                  |                        |          |              | 3-wire                 | Service Voltage  | Voltage                     | Voltage                 | Service Voltage             | Voltage                | Voltage           |  |
|                  |                        |          |              | 4-wire                 | (Note c)         |                             |                         |                             |                        |                   |  |
| Low Voltage      |                        |          |              |                        |                  | Single-Phase Systems        | 1                       |                             |                        |                   |  |
| (Note 1)         | 120                    |          |              | 115                    | 126              | 114                         | 110                     | 127                         | 110                    | 106               |  |
|                  |                        | 120/240  |              | 115/230                | 126/252          | 114/228                     | 110/220                 | 127/254                     | 110/220                | 106/212           |  |
|                  |                        |          |              |                        |                  | Three-Phase Systems         |                         |                             |                        |                   |  |
|                  |                        |          | 208Y/120     | 200                    | 218Y/126         | 197Y/114                    | 191Y/110                | 220Y/127                    | 191Y/110               | 184Y/106          |  |
|                  |                        |          | (Note d)     |                        |                  |                             |                         |                             | (Note 2)               | (Note 2)          |  |
|                  |                        | 240      | 240/120      | 230/115                | 252/126          | 228/114                     | 220/110                 | 254/127                     | 220/110                | 212/106           |  |
|                  |                        | 240      | 4803/1077    | 230                    | 252              | 228                         | 220                     | 204                         | 220                    | 212               |  |
|                  |                        | 480      | 4801/277     | 4601/266               | 5041/291         | 4561/263                    | 440 1/254               | 5084/293                    | 440Y/254               | 4241/245          |  |
|                  |                        | 600      |              | 400                    | 630              | 450                         | 440                     | 635                         | 550                    | 530               |  |
|                  |                        | (Note e) |              | 575                    | (Note e)         | 5/0                         | 550                     | (Note e)                    | 550                    | 550               |  |
| Medium           |                        | 2400     |              |                        | 2520             | 2340                        | 2160                    | 2540                        | 2280                   | 2080              |  |
| Voltage          |                        | 2400     | 4160Y/2400   |                        | 4370/2520        | 40507/2340                  | 37402/2160              | 44002/2540                  | 39507/2280             | 36007/2080        |  |
| . chago          |                        | 4160     | 4100112400   |                        | 4370             | 4050                        | 3740                    | 4400                        | 3950                   | 3600              |  |
|                  |                        | 4800     |              |                        | 5040             | 4680                        | 4320                    | 5080                        | 4560                   | 4160              |  |
|                  |                        | 6900     |              |                        | 7240             | 6730                        | 6210                    | 7260                        | 6560                   | 5940              |  |
|                  |                        |          | 8320Y/4800   |                        | 8730Y/5040       | 8110Y/4680                  |                         | 8800Y/5080                  | 7900Y/4560             |                   |  |
|                  |                        |          | 12000Y/6930  |                        | 12600Y/7270      | 11700Y/6760                 |                         | 12700Y/7330                 | 11400Y/6580            | (Note f)          |  |
|                  |                        |          | 12470Y/7200  |                        | 13090Y/7560      | 12160Y/7020                 | (Note f)                | 13200Y/7620                 | 11850Y/6840            |                   |  |
|                  |                        |          | 13200Y/7620  |                        | 13860Y/8000      | 12870Y/7430                 |                         | 13970Y/8070                 | 12504Y/7240            |                   |  |
|                  |                        |          | 13800Y/7970  |                        | 14490Y/8370      | 13460Y/7770                 |                         | 14520Y/8380                 | 13110Y/7570            |                   |  |
|                  |                        | 13800    |              |                        | 14490            | 13460                       | 12420                   | 14520                       | 13110                  | 11880             |  |
|                  |                        |          | 20780Y/12000 |                        | 21820Y/12600     | 20260Y/11700                |                         | 22000Y/12700                | 19740Y/11400           | 01-1-0            |  |
|                  |                        | 00000    | 22860Y/13200 |                        | 24000Y/13860     | 22290Y/12870                | (2)=1= 0                | 24200Y/13970                | 21720Y/12540           | (Note f)          |  |
|                  |                        | 23000    | 249407/14400 |                        | 24150            | 22430                       | (Note f)                | 24340                       | 21000                  |                   |  |
|                  |                        |          | 34500V/19920 |                        | 201901/15120     | 243201/14040                |                         | 264001/15240                | 230501/13000           |                   |  |
|                  |                        | 34500    | 343001713320 |                        | 36230            | 33640                       |                         | 36510                       | 32780                  |                   |  |
|                  |                        |          |              |                        | 00200            | 00040                       |                         | 00010                       | 02700                  |                   |  |
|                  |                        |          |              | )                      | Maximum          |                             |                         |                             |                        |                   |  |
|                  |                        |          |              |                        | Voltage (Note g) | NOTE 1-Minimum u            | tilization voltages for | NOTE 2-Many 2               | 20-volt motors were    | applied on the    |  |
|                  |                        | 46000    |              |                        | 48300            | 120-600 volt circuits i     | not supplying lighting  | assumption that the         | he utilization voltage | would be less     |  |
|                  |                        |          |              |                        |                  | loads are as follows:       |                         | than 187 volts.             | Caution should b       | e exercised in    |  |
|                  |                        | 69000    |              |                        | 72000            | Nominal System              | Range Range             | applying the Range          | e B minimum voltage    | es of table 1 and |  |
| High Voltage     |                        | 115000   |              |                        | 121000           | Voltage                     | A B                     | note (1) to existin         | g 208-volt systems     | supplying such    |  |
|                  |                        | 138000   |              |                        | 145000           | 120                         | 108 104                 | motors.                     |                        |                   |  |
|                  |                        | 161000   |              |                        | 169000           | 120/240                     | 100/216 104/208         |                             |                        |                   |  |
|                  |                        | 230000   |              |                        | 242000           | 2001/120                    | 216/108 208/104         |                             |                        |                   |  |
| Extra-High       |                        | 345000   |              |                        | 362000           | 240                         | 216 208                 |                             |                        |                   |  |
| voitage          |                        | 400000   |              |                        | 420000           | 480Y/277 4                  | 32Y/249 416Y/240        |                             |                        |                   |  |
|                  |                        | 500000   |              |                        | 550000           | 480                         | 432 416                 |                             |                        |                   |  |
| Lilles Mish      |                        | 765000   |              |                        | 800000           | 600                         | 540 520                 |                             |                        |                   |  |
| Voltage          |                        | 1100000  |              |                        | 1200000          | * - (Note 2)                |                         |                             |                        |                   |  |

### ANSI C84.1 - Table 1: Standard nominal voltages and voltage





### **IEEE Standards References on RMV Ratings**

#### **IEEE C37.04-2018**

#### 5.2 Rated maximum voltage (V) or (U<sub>r</sub>)

The rated maximum voltage of a circuit breaker is the highest rms phase-to-phase voltage for which the circuit breaker is designed, and is the upper limit for operation. Rated maximum voltage has the same meaning as maximum system voltage rating referred to in ANSI C84.1 [B3].

#### **IEEE C37.010-2016**

#### 4.2 Maximum voltage for application

The operating voltage should not exceed the rated maximum voltage of the circuit breaker. The rated maximum voltage is the voltage on which all the corresponding type tests have been based. The type tests values include some margins in order to accommodate aging as well as statistical behavior.

#### ANSI C84.1-2006

(g) For these systems, Range A and Range B limits are not shown because, where they are used as service voltages, the operating voltage level on the user's system is normally adjusted by means of voltage regulators or load tap-changers to suit their requirements.





### **IEEE Standards References on RMV Ratings**

#### IEEE C37.09-2018

### 4.2 Maximum voltage tests

There is no specific test to demonstrate this rating. However, the ability of the circuit breaker to operate successfully at rated maximum voltage is demonstrated by performing short-circuit current interruption and other current switching rating tests in accordance with Table 1, and specified values of circuit transient recovery voltage (TRV), as given in IEEE C37.04.





### **IEEE Standards References on RMV Ratings**

#### **IEEE C37.09-2018**

Table 1—Single-phase or three-phase test duties for short-circuit current tests

| Test<br>duty | Operating<br>duty                                       | Test<br>voltage<br>(kV) | Making <i>I</i><br>[kA (pk)] | Short-circuit<br>current<br>(kA) | %<br>asymmetry @<br>contact part |
|--------------|---------------------------------------------------------|-------------------------|------------------------------|----------------------------------|----------------------------------|
| T10          | $O-t_r-CO-t_r'-CO$                                      | Ε                       |                              | 0.1 <i>I</i>                     | <20                              |
| T30          | $O-t_r-CO-t_r'-CO$                                      | Ε                       |                              | 0.3 I                            | <20                              |
| T60          | $O-t_r-CO-t_r'-CO$                                      | E                       |                              | 0.6 I                            | <20                              |
| T100s        | O- $t_r$ -CO- $t_r$ '-CO or<br>T100s(a) and<br>T100s(b) | Е                       | $F \times I$                 | Ι                                | <20                              |
| T100s(a)     | $C-t_r'-C$                                              | Ε                       | $F \times I$                 |                                  |                                  |
| T100s(b)     | $O_{t_r} - O_{t_r'} - O$                                | Ε                       |                              | Ι                                | <20                              |
| T100a        | Three Os                                                | Ε                       |                              | see 4.8.4.4                      | >20                              |
|              |                                                         | Single-phas             | e fault tests                |                                  |                                  |
| T100s 1ph    | 0                                                       |                         |                              |                                  | <20                              |
| T100a 1ph    | 0                                                       | $\frac{U_r}{\sqrt{3}}$  |                              | see 4.8.4.5                      | >20                              |
|              | Sin                                                     | gle-phase, sho          | ort-line fault tests         |                                  |                                  |
| L75          | Three Os                                                | $\frac{U_r}{\sqrt{3}}$  |                              | 0.7 <i>I</i> to 0.8 <i>I</i>     | <20                              |
| L90          | Three Os                                                | $\frac{U_r}{\sqrt{3}}$  |                              | 0.9 <i>I</i> to 0.95 <i>I</i>    | <20                              |
|              |                                                         | Short-time              | current test                 |                                  |                                  |
| STC          | Closed position                                         |                         | $F \times I$                 | I for T seconds                  |                                  |

### Testing voltage 'E'

$$E = \frac{k_{pp}}{\sqrt{3}} \times U_r$$

Ur is Rated maximum voltage  $k_{pp}$  is First-pole-to-clear factor:

1.3 for grounded neutral systems1.5 for isolated neutral systems.

### Rated TRV '*u*<sub>c</sub>'

$$u_c = 1.49 ext{ x} ext{ Ur, for } k_{pp} = 1.3$$
  
 $u_c = 1.72 ext{ x} ext{ Ur, for } k_{pp} = 1.5$ 





## **Clause 4.2 Revision Recommendation**

The operating voltage should not exceed the rated maximum voltage of the circuit breaker. The rated maximum voltage is the voltage on which all the corresponding type tests have been based, including the short circuit interrupting capability tests. Some values used in the short circuit interrupting type tests include margins in order to accommodate aging and statistical behavior.

### Informative NOTE:

If system voltage operation above values ascribed in ANSI C84.1 voltage Range A are experienced, the system TRV and switching recovery voltages must remain within the circuit breaker capability as demonstrated in the type test reports. These system recovery voltage values should be confirmed on a case-by-case basis performed by system study, calculation, or some other means. For such cases, it is recommended that the user consults the manufacturer to verify the dielectric withstand and recovery voltages capabilities of selected circuit breaker.





### Impact of inverters on fault current calculation methods

- Luke Collette
- Craig Polchinski
- Carl Schuetz
- Marcus Young





# Learnings to date

- The IEEE Power Systems Relay Committee (PSRC) has authored a technical report that describes how available fault current calculation software programs determine phasor domain fault current from an Inverter Based resource (IBR)
  - PES-TR78 "Modification of Commercial Fault Calculation Programs for Wind Turbine Generators"
  - The IBR fault current consists of transient and controlled response periods
    - Since the software solutions are prepared in the phasor domain a different approach is needed to determine peak currents in the first cycle (see Fig. 4-8 in PES-TR78)
    - Presently this different approach is to perform simulations in a time domain transient analysis program
  - The dynamic period fault currents are determined by the control algorithm and its settings





# Learnings to date (cont'd.)

- A liaison representative from PSRC was provided to help guide the sub-group request for information regarding transient currents from an IBR
- An online meeting was held to determine:
  - A) if the PSRC has intentions to investigate transient IBR currents
  - B) determine any additional fault current calculation learnings since the TR
  - C) if the fault current calculation software companies have plans to model transient currents
- The answer to these inquiries are:
  - A) the PSRC presently has no intention of determining transient currents

B) the transient period current for an IBR is best based on transient time domain simulations

• The accuracy of those simulations within the transient period is not known since the simulation performer does not typically have the manufacturers component data and algorithm

C) the software companies have not expressed an interest in determining transient currents



EPRI has a project to do so



# Learnings to date (cont'd.)

- PES TR-78 provide examples of relay oscillography that recorded the phase current for different faults
  - The oscillography shows asymmetric current present for 2 3 cycles, supplied by Type III Wind Turbine Generators (Figs. 4-8, 4-15, 4-17)
  - Only Type III WTG fault currents were provided
- A research paper within IEEE Xplore titled "Study On The Fault Current Transient Features of the PV Inverter" provides transient simulation currents for three-phase faults
  - Transient currents are present for ~ ½ cycle however, they do not exhibit a high degree of asymmetry
  - The transient period duration and current magnitude are significantly reduced when an enhanced control algorithm is used in the converter controller





# Initial conclusions and recommendation for further work

- The fault current calculation software companies can model IBR fault currents in the phasor domain but not in the time domain
- Peak transient currents may be dependent on what type of IBR generation is present
  - Type III WTG / Type IV WTG, PV-VSC converter, BES-VSC converter
- Time domain simulation methods may not adequately capture the transient period fault currents since the actual component values and control algorithms are not known

#### RECOMMENDATION

Develop a user Request for Oscillography data of IBR fault currents and send to users





# Proposed paragraph that suggests the use of TRV multiplying factors to cover circuit breaker operation over the maximum rated voltage

It is possible to apply a circuit breaker tested for ungrounded conditions at its maximum rated voltage in applications operating over this voltage with a reduction of TRV factors and limiting its use to solidly grounded networks. For terminal fault short-circuit current breaking, it is necessary that the circuit tested be tested with a combination of peak TRV with first pole to clear factor ( $k_{pp}$ ) of 1.5 and demonstration of an arcing window width for  $k_{pp}$  of 1.3. For out-of-phase breaking, if testing was performed with 2.5 factor, it can cover applications at higher operating voltage with a reduced 2.0 factor. In the case of capacitive load current switching, a circuit breaker tested to 1.4 voltage factor ( $k_v$ ) can be applied at higher operating voltage with a reduced  $k_v$  of 1.2 that still covers lines, cables and grounded shunt capacitor banks.



Contributed by: Victor Hermossillo, GE Vernova HVCB, 3/28/2024



### **Open Call for Additional Suggestions for Revisions**

Contents

| 1. | Overview                                                                                      | 14 |
|----|-----------------------------------------------------------------------------------------------|----|
|    | 1.1 Scope                                                                                     | 14 |
|    | 1.2 Ршрозе                                                                                    | 14 |
| 2. | Normative references                                                                          | 14 |
| 3. | General service conditions                                                                    | 15 |
|    | 3.1 Usual service conditions                                                                  | 15 |
|    | 3.2 Unusual service conditions                                                                | 16 |
|    | 3.3 Mechanical considerations for outdoor circuit breakers                                    | 20 |
| 4. | Application considerations                                                                    | 20 |
|    | 4.1 General                                                                                   | 20 |
|    | 4.2 Maximum voltage for application                                                           | 21 |
|    | 4.3 Voltage range factor                                                                      | 21 |
|    | 4.4 Frequency                                                                                 | 21 |
|    | 4.5 Continuous current                                                                        | 21 |
|    | 4.6 Rated dielectric withstand                                                                |    |
|    | 4.7 Standard operating duty                                                                   | 35 |
|    | 4.8 Interrupting time                                                                         | 35 |
|    | 4.9 Permissible tripping delay T (determined by short-time current test duration)             | 37 |
|    | 4.10 Reclosing time                                                                           | 38 |
|    | 4.11 Short-circuit current rating                                                             | 42 |
|    | 4.12 Transient recovery voltage (TRV)                                                         | 54 |
|    | 4.13 Load current switching capability and life (repetitive operation)                        | 54 |
|    | 4.14 Capacitance current switching                                                            | 54 |
|    | 4.15 Line closing (line-closing switching surge factor for circuit breakers 362 kV and above) | 55 |
|    | 4.16 Switching lines with series capacitors                                                   | 61 |
|    | 4.17 Conditions of use with respect to the out-of-phase switching current rating              | 61 |
|    | 4.18 Shunt reactor current switching                                                          | 62 |
|    | 4.19 Transformer current switching                                                            | 63 |
|    | 4.20 Controlled switching                                                                     | 63 |
|    | 4.21 Transformer limited fault (TLF) duties                                                   | 65 |
|    | 4.22 Mechanical endurance                                                                     | 65 |
|    | 4.23 Rated control voltage                                                                    | 66 |
|    | 4.24 Fluid operating pressure                                                                 | 66 |
|    | 4.25 Insulating oil for circuit breaker                                                       | 66 |
|    | 4.26 Closed pressure system (gas-filled)                                                      | 66 |
|    | 4.27 Circuit breakers limiting factors for associated equipment                               | 66 |
|    | 4.28 Circuit breakers equipped with resistors                                                 | 67 |
|    | 4.29 Service capability                                                                       | 70 |
| 5. | Short-circuit considerations                                                                  |    |
|    | 5.1 System short-circuit currents                                                             |    |
|    | 5.2 Methods for calculating system short-circuit currents                                     |    |
|    | 5.3 Electrical quantities used                                                                | 85 |
|    | 5.4 Selection of applicable circuit breaker ratings                                           | 90 |
|    |                                                                                               |    |



Annex A (informative) Basis for E/X method corrected for ac and dc decrements in the calculation of shortcircuit currents 92

Ε

Annex B (informative) Circuit breakers directly connected to motor

112



# webex by cisco

# Next On-Line Meeting will be via IEEE WebEx

### Friday, August 23 2024 13:00pm EDT (10am PDT)







### Our Next in-person meeting is scheduled to be at:

Omni Hotel, Oklahoma City, OK October 13 - 17, 2024





# Would someone like to make a motion to adjourn?





