S25_HVCB_WG_PC37.010_REV00 - Minutes of Meeting Working Group C37.010 – Application Guide for AC High-Voltage Circuit Breakers > 1000 VAC Rated on a Symmetrical Basis

Location:Wyndham Grand Orlando Resort Bonnet Creek (Orlando, Florida)Date:Tuesday April 8, 2025 (4:15PM - 6:00PM EDT)Quorum:Membership Count: 40 (2 excused)Members Present: 26

<u>Agenda</u>

WG Chair Andy Keels called the meeting to order and presented the agenda.

Introduction of Members and Guests Introductions and attendance gathered in-person 64 Total in Attendance (26 Members, 38 Guests)

<u>Review of Attendance Logging via IEEE Attendance Tool</u> See meeting slides for details

Review of IEEE Patent and Copyright Policies

Chair showed location of patent and copyright policy material on the iMeet workspace for review. WG Chair made a call for any known essential patents. No Patent claims identified.

Quorum Check by Show of Hands: Quorum Achieved

<u>Review of Schedule and Future Meetings</u> Chair pointed out the PAR expires at the end of this year. Next meeting is June 6th 2025 (Virtual). The meeting schedule that was reviewed during the meeting is included in the attached presentation.

<u>Motion to the WG to request a 2 year PAR Extension</u>: Michael Crawford <u>2nd to the Motion</u>: Dave Mitchell <u>Vote</u>: Approved without objection/abstention

Motion to approve previous MOM (F24): Chris Jarnigan 2nd to the Motion: Mike Skidmore Vote: Approved without objection/abstention

<u>Proposed Changes to Clause 4.2 were Reviewed</u> No comments on proposed language. Proposed language presented as follows:

"The operating voltage should not exceed the rated maximum voltage of the circuit breaker. The rated maximum voltage is the voltage on which all the corresponding type tests have been based. The type tests include short circuit interruption, capacitive, inductive, load switching and other

applicable switching duties.

NOTE

If system voltage operation above rated maximum voltage is experienced, the system TRV must remain within the circuit breaker capability as demonstrated in the type test reports. These system recovery voltage values should be confirmed on a case-by-case basis performed by system study, calculation, or some other means. For such cases where system TRV exceeds the circuit breaker capability or when transient voltages exceed tested dielectric capability, it is recommended that the user consults the manufacturer to verify the dielectric withstand and recovery voltage capabilities of selected circuit breaker."

Reviewed Work on IBR Contribution to Short-Circuit Current

Approach and plan to finish work presented. No comments or questions received from the WG.

Request for Additional Changes

Chair made a request for others who have proposed changes.

Proposal:

Subclause 4.28 "Circuit breakers equipped with resistors"

Figures 20 and 21 are out of date based on recent technology. CIGRE WG A3.35 has recently published documents on this topic. Urmil Parikh volunteered to provide proposed changes to this section.

<u>Schedule</u>

06/06/2025 – 11th working group meeting VIRTUAL WebEx (Draft the Document) 10/06/2025 – 12th working group meeting Reno, NV (Request creation of Ballot Pool) 01/27/2026 – 13th working group meeting VIRTUAL WebEx (Send 1st Draft out to Ballot) 04/27/2026 – 14th working group meeting Clearwater, FL (Start Comment Resolution Process)

<u>Motion to Adjourn</u>: Marcus Young <u>2nd to Motion</u>: Craig Polchinski <u>Vote:</u> Approved without objection/abstention

Meeting adjourned at 5:05PM (EDT) on 10/8/2025

Reported by: Jeremy Hensberger, Lucas Collette & Andy Keels

C37.010 HVCB Applications Working GroupOrlando, FL

Count	Committee Name Affiliation		Timestamp	
1	C37.010 HVCB Applications WG Meeting	Bartels, Alexander	Powell Electrical Systems Inc.	4/8/2025 16:31
2	C37.010 HVCB Applications WG Meeting	Beecher, Zachary	Southern States LLC	4/8/2025 16:28
3	C37.010 HVCB Applications WG Meeting	Benedict, Dan	PPL Corporation	4/8/2025 16:18
4	C37.010 HVCB Applications WG Meeting	Bornuat, Albane	General Electric Company (GE); GRID SOLUTIONS	4/8/2025 16:27
5	C37.010 HVCB Applications WG Meeting	Brogdon, Jeffrey	Georgia Transmission Corporation	4/8/2025 16:27
6	C37.010 HVCB Applications WG Meeting	Bronsveld, Arjan	Hitachi Energy Sweden AB	4/8/2025 16:28
7	C37.010 HVCB Applications WG Meeting	Bufi, Arben	Meiden America Switchgear	4/8/2025 16:32
8	C37.010 HVCB Applications WG Meeting	byreddy, sudarshan reddy	Burns & McDonnell	4/8/2025 16:29
9	C37.010 HVCB Applications WG Meeting	Cantu, Jared	OMICRON electronics Corp. USA	4/8/2025 16:27
10	C37.010 HVCB Applications WG Meeting	Chovanec, Andrew	Power Grid Components	4/8/2025 16:26
11	C37.010 HVCB Applications WG Meeting	Collette, Lucas	Duquesne Light Co.	4/8/2025 16:03
12	C37.010 HVCB Applications WG Meeting	Crawford, Michael	Mitsubishi Electric Power Products, Inc. (MEPPI)	4/8/2025 16:02
13	C37.010 HVCB Applications WG Meeting	Cunningham, Jason	Southern States LLC	4/8/2025 16:27
14	C37.010 HVCB Applications WG Meeting	Cuppett, Matthew	Hitachi Energy	4/8/2025 16:27
15	C37.010 HVCB Applications WG Meeting	Door, Jeffrey	The H-J Family of Companies	4/8/2025 16:29
16	C37.010 HVCB Applications WG Meeting	Eastman, Maxwell	Black and Veatch	4/8/2025 16:26
17	C37.010 HVCB Applications WG Meeting	Flores, Sergio	Schneider Electric USA Inc.	4/8/2025 16:27
18	C37.010 HVCB Applications WG Meeting	HASNAOUI, nadia	GE Vernova; Non-voting	4/8/2025 16:30
19	C37.010 HVCB Applications WG Meeting	Hermosillo, Victor	GE Grid Solutions	4/8/2025 16:15
20	C37.010 HVCB Applications WG Meeting	Hunter, Jennifer	MEPPI-Warrendale Pa	4/8/2025 16:28
21	C37.010 HVCB Applications WG Meeting	Jarnigan, Christopher	southern company/ southern nuclear	4/8/2025 16:19
22	C37.010 HVCB Applications WG Meeting	Keels, Thomas	kEElectric Engineering, PLLC	4/8/2025 16:09
23	C37.010 HVCB Applications WG Meeting	Kurinko, Carl	Hitachi Energy	4/8/2025 16:28
24	C37.010 HVCB Applications WG Meeting	Livshitz, Albert	Schneider Electric	4/8/2025 16:28
25	C37.010 HVCB Applications WG Meeting	Lyu, Soung Hwan	Federal Pacific	4/8/2025 16:40
26	C37.010 HVCB Applications WG Meeting	Ma, Chunming	Burns & McDonnell	4/8/2025 16:27
27	C37.010 HVCB Applications WG Meeting	Marshall, Vincent	southern company/ southern nuclear	4/8/2025 16:27
28	C37.010 HVCB Applications WG Meeting	MARZEC, PETER	S and C Electric Co	4/8/2025 16:28
29	C37.010 HVCB Applications WG Meeting	Mc Cord, Neil	KEC Precision LLC	4/8/2025 16:27
30	C37.010 HVCB Applications WG Meeting	McGlown, Kevin	JST Power Equipment	4/8/2025 16:26
31	C37.010 HVCB Applications WG Meeting	Mitchell, David	Southern States LLC	4/8/2025 16:26
32	C37.010 HVCB Applications WG Meeting	Natale, Anthony	HICO America	4/8/2025 16:27
33	C37.010 HVCB Applications WG Meeting	Palazzo, Mirko	Hitachi Energy	4/8/2025 16:26
34	C37.010 HVCB Applications WG Meeting	PARIKH, URMIL	ABB AB; Hitachi Energy Sweden AB	4/8/2025 16:28
35	C37.010 HVCB Applications WG Meeting	Pecile, Conrad	Myers Power Products, Inc,	4/8/2025 16:30
36	C37.010 HVCB Applications WG Meeting	Peterson, Mark	Xcel Energy	4/8/2025 16:28
37	C37.010 HVCB Applications WG Meeting	Polchinski, Craig	Mitsubishi Electric Corporation	4/8/2025 16:27
38 39	C37.010 HVCB Applications WG Meeting	Pounders, Isaac	Meiden America Switchgear GE Vernova; General Electric Company (GE)	4/8/2025 16:14 4/8/2025 16:20
	C37.010 HVCB Applications WG Meeting	Rebovich, Justin		
40	C37.010 HVCB Applications WG Meeting	Rexroad, Aaron	Meiden America Switchgear inc.	4/8/2025 16:14
41 42	C37.010 HVCB Applications WG Meeting C37.010 HVCB Applications WG Meeting	Ricciuti, Anthony	Eaton Corporation Southern States LLC	4/8/2025 16:09
42 43	C37.010 HVCB Applications WG Meeting C37.010 HVCB Applications WG Meeting	Roberts, Brian Santos, Leonel	Schneider Electric	4/8/2025 16:27 4/8/2025 16:29
43 44	C37.010 HVCB Applications WG Meeting C37.010 HVCB Applications WG Meeting	Scott, Jeffrey	Ameren Services	4/8/2025 16:29
45 46	C37.010 HVCB Applications WG Meeting C37.010 HVCB Applications WG Meeting	Sell, Jason Sharma, Devki	Switchgear Power Systems Retired	4/8/2025 16:29 4/8/2025 16:51
46 47	C37.010 HVCB Applications WG Meeting C37.010 HVCB Applications WG Meeting	Shetty, Sanket	Oncor Electric	4/8/2025 16:51
47	C37.010 HVCB Applications WG Meeting	Sizemore, Josh	WIKA	4/8/2025 16:22
48 49	C37.010 HVCB Applications WG Meeting	Skidmore, Michael	American Electric Power (AEP)	4/8/2025 16:28
				1, 0, 2020 10.20

50	C37.010 HVCB Applications WG Meeting	Tarleton, John	Southern States LLC	4/8/2025 16:28
51	C37.010 HVCB Applications WG Meeting	Tuthill, Bryan	Volta LLC	4/8/2025 16:28
52	C37.010 HVCB Applications WG Meeting	Usner, Joseph	AEP	4/8/2025 16:27
53	C37.010 HVCB Applications WG Meeting	Vittoz, Marc	GE Vernova; General Electric	4/8/2025 16:28
54	C37.010 HVCB Applications WG Meeting	Webb, John	ABB Ltd.	4/8/2025 16:17
55	C37.010 HVCB Applications WG Meeting	Weisker, Jan	Siemens Energy	4/8/2025 16:14
56	C37.010 HVCB Applications WG Meeting	Wenzel, James	Eaton Corporation	4/8/2025 16:28
57	C37.010 HVCB Applications WG Meeting	Woodyard, Terry	Siemens Industry, Inc.	4/8/2025 16:27
58	C37.010 HVCB Applications WG Meeting	Young, Marcus	Mitsubishi Electric Power Products, Inc.	4/8/2025 16:29
59	C37.010 HVCB Applications WG Meeting	Zaharko, Samuel	Mitsubishi Electric Corporation	4/8/2025 16:26
60	C37.010 HVCB Applications WG Meeting	Zhong, Jim	American Transmission Co., LLC	4/8/2025 16:38
61	C37.010 HVCB Applications WG Meeting	Ordein, Fernando	Dominion Energy	4/9/2025 16:38
62	Excused	Hensberger, Jeremy	Mitsubishi Power Products Inc.	
63	Excused	Shutez, Carl	ATC	

Total Attendance: 61 Member Attendance: 23 of 40

Additional members in attendance not signed in electronically - Vernon Toups - Dan Schiffbauer

- Todd Irwin

Member Attendance: 26 of 40

C37.010 Working Group

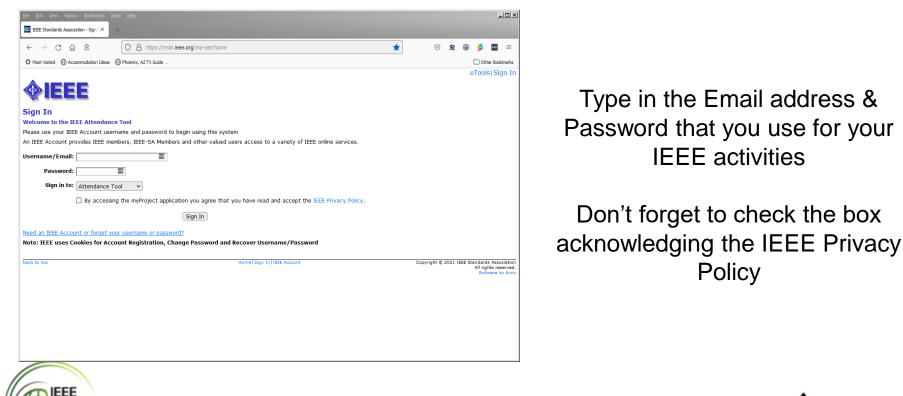
Application Guide for AC High-Voltage Circuit Breakers >1000Vac Rated on a Symmetrical Basis

Tuesday, April 8th, 2025 16:15 – 18:00 EDT

Chair: T. Andy Keels w/ kEElectric Engineering, PLLC Secretary: Jeremy Hensberger w/ MEPPI Vice-Chair: Lucas Collette w/ Duquesne Light Co.

Starting Document: IEEE Std C37.010-2016 (Revision of C37.010-1999)

Agenda


- 1. Chairman's call to order
- 2. Introduction of attendees: Please announce your *Name*, *Affiliation*, *Location*
- 3. Attendance Logging Instructions
- 4. Workgroup Required Reading
- 5. Anticipated Schedule (Best laid plans)
- 6. iMeet Central Workspace
- 7. Minutes Approval
- 8. Call for PAR Extension (2-year)
- 9. Presentation of HVCB operation at 105% Rated Max Voltage
- 10. Presentation of Effects of IBR on HVCB study group findings
- 11. Next meeting announcements
- 12. Adjournment

There are three way to get there:

- 1. Go To: IEEE SA eTools, Then click on IEEE Attendance Tool
- 2. Google: IEEE Attendance Tool
- 3. Go directly to: https://imat.ieee.org/my-site/home

Attendance Reports Events Setup Export

Home - Thomas Keels, SA PIN: 88780

Welcome to the IEEE Attendance Tracking system. This system provides on-site home tracking integrated with the IEEE myProject[™] system. You can view your prior attendance on the Attendance History Report.

Active Meetings

Please select the meeting you are currently attending

IEEE PES Switchgear Spring 2024 Meeting	Ft. Lauderdale	02-Apr-2024
IEEE P802.3dj COM Implementation and Execution Ad Hoc meeting		02-Apr-2024
802 April/May/June Telecons		01-Apr-2024
IEEE 802.3 test meeting		29-Mar-2024
IEEE 802.18 teleconference call (24/03/24 to 09/05/24)		21-Mar-2024
802.11 Telecons (March 19-May 10)		19-Mar-2024
802.1 Telecons (Mar-May)		18-Mar-2024

Then select the Working Group

If it is a 'virtual meeting' the WG Chair should have the link listed here

Attendance | Reports | Events | Setup | Export

Home >> Attendance

IEEE PES Switchgear Spring 2024 Meeting (edit)

Ft. Lauderdale, FL IEEE PES Switchgear Spring 2024 Committee Meetings Westin Beach Resort Ft. Lauderdale, FL

Select Working Group

PE/SWG/HVCB-WG_C37.010 Attendance

If the meeting is currently in progress then there should be a yellow box here.

Click the Yellow Box, The box will turn GREEN if your attendance is logged You then just click Sign Out in the upper right corner

Attendance | Reports | Events | Setup | Export

Home >> Attendance >> HVCB-WG_C37.010

PE/SWG/HVCB-WG_C37.010 Attendance Log

Attendee: Thomas Keels, SA-Pin: 88780 Affiliations: PE/SWG/HVCB-WG_C37.010 kEElectric Engineering, PLLC

TUE WED 2-Apr-2024 3-Apr-2024							Hundge Att	
Schedule	7:00 8:00	9:00 10:00	11:00 12:00 13:0	00 14:00 15:00	16:00 17:00 18:0	0 19:00 20:00	21:00 22:00 23	:00
C37.010 HVCB Applications WG Meeting								
Please record your attendance for an activ	ve breakou	t (denoted	by vellow bar) by clicking (on the			

Please record your attendance for an active breakout (denoted by yellow bar) by clicking on the yellow bar. Once your attendance has been recorded, the yellow bar changes to a green bar.

Submittal: As the person submitting this form, I certify that:

- 1. I am submitting this attendance record for myself and not someone else. DO NOT SUBMIT FOR OTHERS!
- 2. At the time of the submittal, I am currently in the Event above.

Manage Attendee

Workgroup Required Reading

Dashboard 🔲 Workspaces 👻			
37.010 HVCB App Home Wil	i Files & Discussions Project Management - Calendar	People Help	Settings -
Files by Folder -	C37.010 HVCB A / E Required Reading f	or WG Memb	pership
 All Items Attachments 	Upload New		Sort by La
 C37.010 HVCB Applications Workg 	IEEE Patent Slides.pdf Andy Keels	Apr 24 202	2
 Attendance Documents (4) Communications 	IEEE SA Copyright Policy 2019.pdf Andy Keels	Apr 24 202	2
Contributions	IEEE Policies 2022.pdf Andy Keels	Apr 21 202	2
Draft Documents (2)	IEEE_Code_of_Conduct.pdf Andy Keels	Apr 21 202	2
Meeting Agendas (3)	Show	ing 1-4 of 4	
 Meeting Minutes (1) 	Show	ing 1-4 01 4	
Approved Minutes (1)			
Unapproved Minutes (2)			
Member Roster (1)			
PAR (1)			
Reference Documents (16)			
Required Reading for WG			
Standard Development (1)			

Power & Energy Society

C37.010 Working Group Member List For Quorum Check

Effective: March 8, 2025

Need 21 Members for Quorum

Power & Energy Society

- 1 Aaron Rexroad
- 2 Albert Livishitz
- 3 Andrew Chovanec
- 4 Anthony Ricciuti
- 5 Arben Bufi
- 6 Carl Kurinko
- 7 Carl Schuetz excused
- 8 Casey Weeks
- 9 Chris Jarnigan
- 10 Craig Bryant *
- 11 Craig Polchinski
- 12 Dan Benedict
- 13 Dan Shiffbauer
- 14 David Mitchell
- 15 Devki Sharma
- 16 Don Steigerwalt *
- 17 Mikos Orosz
- 18 George Becker
- 19 Jake Walgenbach
- 20 Jan Weisker

- 21 Jeff Scott
- 22 Jeff Ward
- 23 Jennifer Hunter
- 24 Jeremy Hensberger excused
- 25 Lucas Colette
- 26 Marcus Young
- 27 Matt Westerdale
- 28 Michael Christian
- 29 Michael Crawford
- 30 Michael Skidmore
- 31 Miklos Palazzo
- 32 R. Kirk Smith
- 33 Robert Hanna
- 34 Samuel Zaharko
- 35 Thomas 'Andy' Keels
- 36 Todd Irwin
- 37 Vernon Toups
- 38 Victor Hermosillo
- 39 Vincent Marshall
- 40 Wei Zhang

Meeting Schedule

- 04/11/2022 1st working group meeting
- 10/17/2022 2nd working group meeting Burlington, VT
- 02/03/2023 3rd-working group meeting -VIRTUAL Google Meeting
- 04/26/2023 4th-working group meeting -Virtual WebEx
- 07/19/2023 5th working group meeting -VIRTUAL WebEx
- 10/10/2023 6th-working group meeting San Diego, CA
- 04/02/2024 7th working group meeting Ft. Lauderdale, FL
- 10/14/2024 8th working group meeting Oklahoma City, OK
- 02/07/2025 9th working group meeting VIRTUAL WebEx
- 04/07/2025 10thworking group meeting Orlando, FL (Request PAR Extension)
- 06/06/2025 11th working group meeting VIRTUAL WebEx (Draft the Document)
 - 12th working group meeting Reno, NV (Request creation of Ballot Pool)
 - 13th working group meeting VIRTUAL WebEx (Send 1st Draft out to Ballot)
 - 14th working group meeting Clearwater, FL (Start Comment Resolution Process)

10/06/2025

01/##/2026

04/27/2026

IEEE SA STANDARDS ASSOCIATION

PC37.010

Type of Project: Revision to IEEE Standard C37.010-2016 Project Request Type: Initiation / Revision PAR Request Date: 28 Sep 2021 PAR Approval Date: 08 Dec 2021 PAR Expiration Date: 31 Dec 2025 PAR Status: Active Root Project: C37.010-2016

1.1 Project Number: PC37.010 1.2 Type of Document: Guide 1.3 Life Cycle: Full Use

The working group chair now respectfully proposes that the working group request a 2-year extension of the PAR.

Would one of the working group member please make a motion to request a 2-year PAR extension?

Sub-Group Update CB Operation at 105% of Rated Maximum Voltage

C37.010 meeting Orlando, FL-2025

Arben Bufi Andrew Chovanec Luke Collette Craig Polchinski Carl Schuetz Markus Young

Goal of the Sub-Group

To provide more detailed guidance in the application guide for users when the power system is operated up to 5% above nameplate voltage value

(10% above system nominal voltage as defined in C84.1)

 No proposition is made to change the rating structure or its values

Update on clause 4.2 revision

- In the F24 WG meeting the WG suggested refinements to the clause 4.2 wording and these have been incorporated as shown on slide five
- The WG was asked to review the T&I report concerning system voltages up to 200% on open switching devices, section 3.2.11, and air-break disconnect switch operation with respect to the capability of a circuit breaker
 - The T&I report has not been published yet
 - Air-break disconnect switch operation at voltages greater than nameplate voltage would impart stresses that have the same concern as when system voltage is within nameplate voltage. Expected voltage values applied to the circuit breaker (phase to ground and longitudinal) would be greater. The revised text includes the air-break switching concern.
- Both concerns are believed to be covered by additional wording "or when transient voltages exceed tested dielectric capability" that appear on the next slide

Update on clause 4.2 revision

- The dielectric test capability defines the stresses that must be withstood by the CB
 - These stresses are determined by magnitude, rise time and duration
 - The dielectric test requirements form envelopes that the user must recognize when evaluating the overvoltage severity imparted by the system onto the CB and that is why the wording "dielectric test" is used

Clause 4.2 revision content

"The operating voltage should not exceed the rated maximum voltage of the circuit breaker. The rated maximum voltage is the voltage on which all the corresponding type tests have been based. The type tests include short circuit interruption, capacitive, inductive, load switching and other applicable switching duties. including the short circuit interrupting capability tests. Some values used in the short circuit interrupting type tests include margins in order to accommodate aging and statistical behavior.

Informative NOTE

If system voltage operation above rated maximum voltage is experienced, the system TRV must remain within the circuit breaker capability as demonstrated in the type test reports. These system recovery voltage values should be confirmed on a case-by-case basis performed by system study, calculation, or some other means. For such cases where system TRV exceeds the circuit breaker capability or when transient voltages exceed tested dielectric capability, it is recommended that the user consults the manufacturer to verify the dielectric withstand and recovery voltages capabilities of selected circuit breaker."

Impacts of IBR Plants on Fault Currents Update on Example Case

C37.010 Study Group

Carl Schuetz Luke Collette Marcus Young Craig Polchinski

4/8/2025

Introduction

- The Study Group is developing an example to demonstrate the impact of IBR Plants on system fault currents and to develop a recommended methodology for symmetrical fault current adjustment considering:
 - Asymmetrical current from synchronous machines
 - Symmetrical current from IBRs (sub-cycle and contact parting time).
- The overall objective is to revise the fault current calculation content in clause 5.
- This presentation is an update on the development of the example case provided along with a schedule for progress.

Scope of Work

- Recreate the example case from C37.010-2016 (one-line diagram on next slide) and benchmark 3LG and 1LG faults at location STA A between the 2016 and 2025 cases.
- Add IBR Plants to the 2025 case.
- Apply faults at location STA A and observe the fault current magnitudes and X/R ratios in the 2025 case with and without IBR plants.
- The developed cases will assist the Study Group determining the recommended methodology for symmetrical fault current adjustment.

Example Case from C37.010-2016

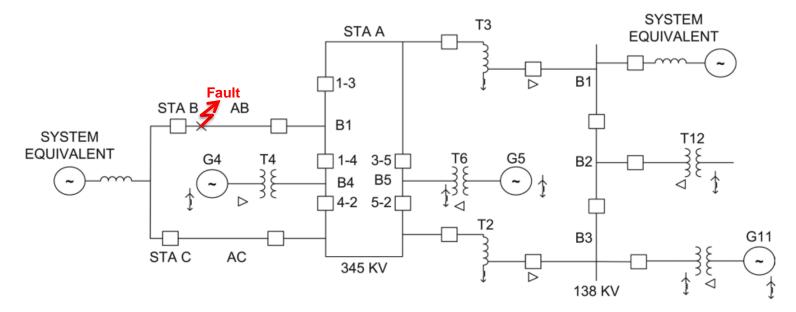


Figure 25—Single line diagram of example power system

Case Development

- Upon review it was observed key parameters from the C37.010-2016 (refer to Figure 25 of the standard) example were missing.
- Missing parameters were supplemented with data based on assumptions.
 - Assumed parameters were based on practical applications.
- Supplemented data will likely prohibit exact replication of the 2016 example case, but the 2025 case will be configured to achieve an approximation.
- Two (2) IBR plants will be added to observe impacts of IBRs on fault current estimations (see next slide for locations).

Missing Data from 2016

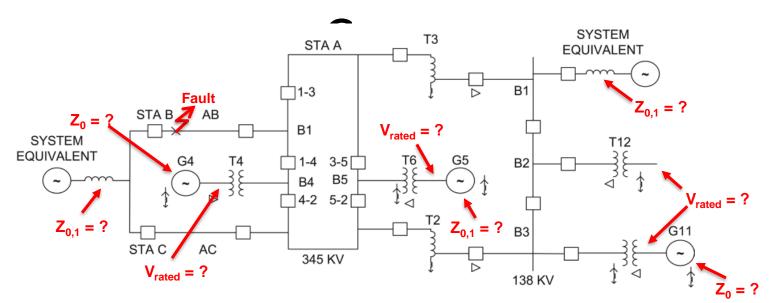


Figure 25—Single line diagram of example power system

- System equivalent impedances, transformer secondary voltages, and generator zero sequence impedances are unknown.
- Missing data was supplemented using assumed values based on practical application.
- Equivalences were adjusted iteratively to achieve faults currents at Line AB that approximate values from the 2016 example.

Assumed Parameters for System

Impedance On the pyson base on 100 SIVA

(Assumed values in red text)

Component	Positive Sequence Reactance X ₁	Positive Sequence Resistance R ₁	Zero Sequence Reactance X ₀	Zero Sequeunce Resistance R ₀	Rated Voltage kV
		Resistance A 1			ĸv
G4 ¹	0.0538	0.0010	0.0538	0.0010	18
G5 ¹	0.0457	0.0004	0.0457	0.0004	18
G11 ¹	0.2120	0.0015	0.2120	0.0015	18
T2 ²	0.0233	0.0004	0.0190	0.0005	345/138/ <mark>13.8</mark>
T3 ²	0.0388	0.0006	0.0200	0.0003	345/138/ <mark>13.8</mark>
T4	0.0334	0.0006	0.0334	0.0006	345/ <mark>18</mark>
Т6	0.0172	0.0003	0.0172	0.0003	345/ <mark>18</mark>
T11	0.1117	0.0036	0.1117	0.0036	345/ <mark>22</mark>
T12	0.1117	0.0036	0.1117	0.0036	138/ <mark>13.8</mark>
Line AB	0.0202	0.0020	0.0404	0.0080	345
Line AC	0.0203	0.0014	0.0406	0.0056	345
Sys Equiv STA BC	0.0620	0.0062	0.0400	0.0040	345
Sys Equiv B	0.0265	0.0027	0.0900	0.0090	138

(1) Represents generator subtransient impedances.

(2) Primary to secondary impedances for autotransformers presented. Refer to second table complete data.

Assumed Parameters for

Autotransformers

Positive Sequence Impedance values of a autotransformers based on 100 MVA

(Assumed values in red text)

Component	Primary - S	Secondary	Primary - Tertiary		Secondary	Rated Voltage	
Component	Positive Sequence Reactance X ₁	Positive Sequence Resistance R ₁	Positive Sequence Reactance X ₁	Positive Sequence Resistance R ₁	Positive Sequence Reactance X ₁	Positive Sequence Resistance R ₁	kV
T2	0.0233	0.0004	0.0900	0.0020	0.0540	0.0020	345/138/ <mark>13.8</mark>
Т3	0.0388	0.0006	0.1900	0.0060	0.1600	0.0060	345/138/ <mark>13.8</mark>

Negative Sequence Impedance values of a autotransformers based on 100 MVA

(Assumed values in red text)

	Primary - Secondary		Primary	- Tertiary	Secondary	Rated Voltage	
Component	Negative Sequence Negative Sequence Nega		Negative Sequence Reactance X ₀	Negative Sequence Resistance R ₀	Negative Sequence Reactance X ₀	Negative Sequence Resistance <i>R</i> ₀	kV
T2	0.0190	0.0005	0.0900	0.0020	0.0540	0.0020	345/138/ <mark>13.8</mark>
Т3	0.0200	0.0003	0.1800	0.0030	0.1400	0.0030	345/138/ <mark>13.8</mark>

Benchmarking 2025 to 2016

Fault Currents at STA A

Case	Fault Type	Phase Curre	Phase Current Magnitude (amperes)			Phase Current Angle (degrees)		
		Α	В	С	Α	В	С	
2016		10990	10990	10990	-87	153	33	
2025	3LG	10992	10992	10992	-86	154	34	
Difference		2	2	2	1	1	1	
2016		13023	0	0	-87	—	—	
2025	1LG	13035	0	0	-84	_	_	
Difference		12	0	0	3	_	_	

Example Case with Proposed Locations of IBRs

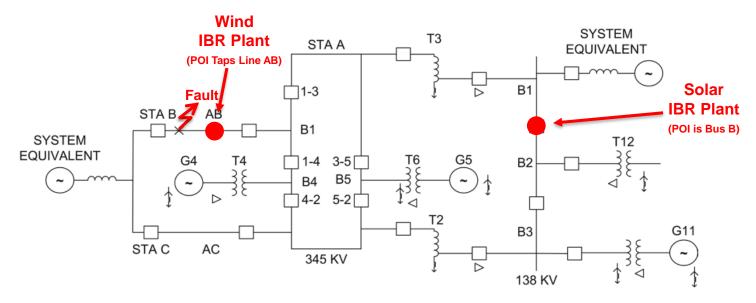
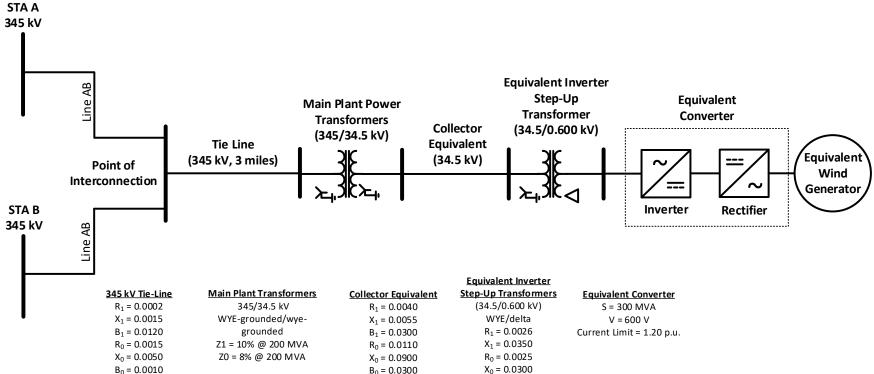
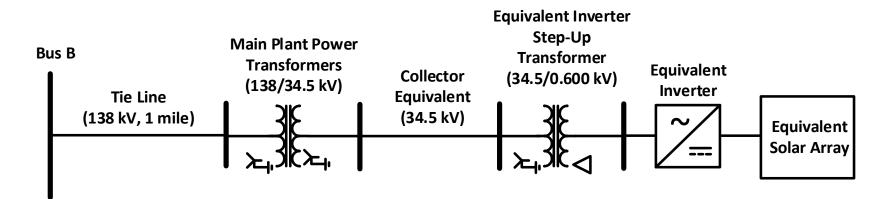



Figure 25—Single line diagram of example power system


IBR Plant Parameters (345 kV Wind Plant – Type 4)

IBR Plant Parameters (138 kV Solar Plant)

			Equivalent Inverter	
<u>138 kV Tie-Line</u>	<u>Main Plant Transformers</u>	<u>Collector Equivalent</u>	Step-Up Transformers	<u>Equivalent Inverter</u>
$R_1 = 0.0001$	138/34.5 kV	$R_1 = 0.0030$	(34.5/0.60 kV)	S = 180 MVA
$X_1 = 0.0005$	WYE-grounded/wye-	$X_1 = 0.0040$	WYE/delta	V = 600 V
$B_1 = 0.0040$	grounded	$B_1 = 0.0200$	$R_1 = 0.0080$	Current Limit = 1.15 p.u.
$R_0 = 0.0005$	Z1 = 10% @ 100 MVA	$R_0 = 0.0080$	$X_1 = 0.1000$	
$X_0 = 0.0002$	Z0 = 8% @ 100 MVA	$X_0 = 0.0700$	$R_0 = 0.0080$	
$B_0 = 0.0004$		$B_0 = 0.0200$	$X_0 = 0.080$	

Next Steps

- Add both IBR plants to the 2025 base case.
- Obtain fault current and fault current contributions
- Develop a recommended methodology of symmetrical fault current adjustment.
 - Asymmetrical current from synchronous machines
 - Asymmetrical current from IBRs (sub-cycle and contact parting time).

Schedule

Activity	April	May	/	June	July	August	September
Complete example development							
Run fault study and collect all sceario currents							
Assess impact of IBR facilities on CB							
interrupting							
current considering rated interrupting time of							
2,3, 5 cycles							
Contact software companies to see if all IBR							
facilities can be turned off at once							
(makes it easy for the user to separate IBR							
contribution from synch machine contribution							
Develop agreeable fault current methodology							
within SG							
Present methodology to WG							
Determine agreeable methodolgy for fault							
current determination implementation							
Incorporate approved content into the							
documents							
Fault current calculation portions of clause 5							
complete							
						,	
		. ↓		•	, 	online V	VG meeting
		online SG	meeting	onlir	ne SG meeting		
			online S	G meeting	online W	/G meeting	

Open Call for Additional Suggestions for Revisions

webex by cisco

Next On-Line Meeting will be via IEEE WebEx

Friday, June 6, 2025 01:00pm EDT (10am MST)

Our next in-person meeting is scheduled to be at:

Peppermill Resort; Reno, NV October 5 - 9, 2025

Would someone like to make a motion to adjourn?

