"A Method of Selecting On-line Condition Monitoring for Substation Power Equipment."

> W.J (Bill) Bergman Power System Solutions

IEEE Switchgear Condition Monitoring, November 11, 1999 Pittsburgh

Basis of Presentation

 Canadian Electricity Association (CEA) CEA Project No. 485T1049 "On-line Condition Monitoring of Substation Power Equipment - Utility Needs" January 1997.
 Draft IEEE C37.10.1 "Guide to Selecting Monitoring for Power Circuit Breakers"

Broader View of Monitoring

- View in context of substation automation
 - On-line condition monitoring
 - SCADA
 - Intelligent electronic devices (IED)
 - Automated meter reading (AMR) (customer & system)
 - Environmental data
 - Combine above to leverage greater value from individual monitoring investments and goals

Substation/Transmission Automation

 Means of combining data to improve available information

- Means of extracting data to gain relevant information and avoid duplication of monitoring
- Means of directing information to most appropriate location/user (i.e. operations, maintenance, business, etc.)

Purposes of Monitoring

- Reduce or avoid forced outages,
- Improve safety to personnel and the environment,
- Improve equipment or power system utilization,
- Improve equipment or power system availability, (and reliability), and
 Optimize maintenance costs

Basis of Selecting Monitoring

Principles of Reliability Centered Maintenance (RCM) including: – Failure Modes and Effects (Criticality) Analysis FMEA or FME(C)A Value-based Asset Management Review of failure statistics Combine existing available & new signals Commercially products available ?

Reliability Centered Maintenance

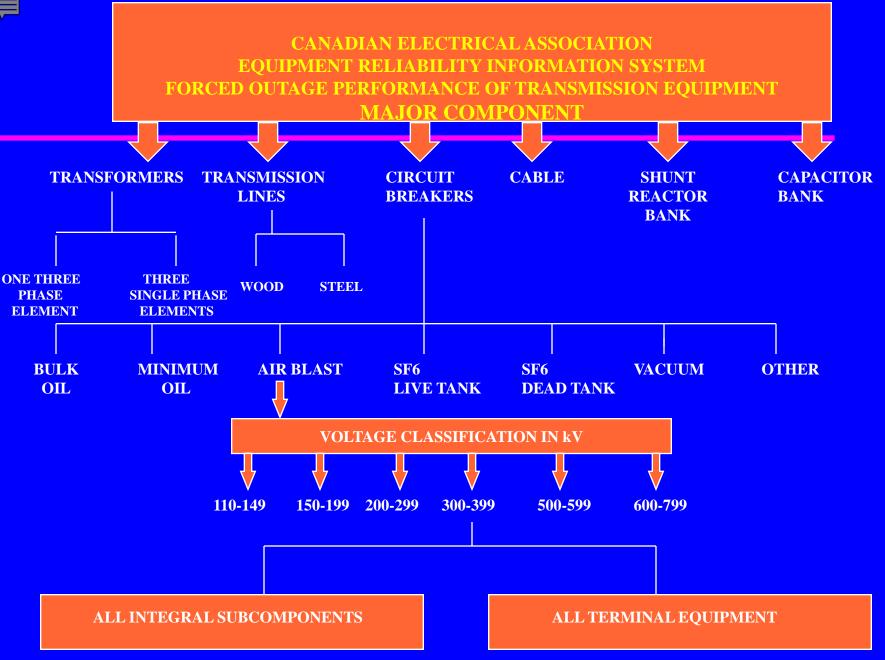
- Directed at preservation of function
- Intended as a logic structure for value based maintenance selection
- Technique can be used to identify design improvements and select monitoring

Reliability Centered Maintenance

- Select RCM system boundaries and interfaces
- Define functions
- Failure Modes, Effects, Criticality Analysis
- Match appropriate maintenance and inspection tasks to failure causes (RCM)
- Match on-line condition monitoring to failure characteristic (Monitor Selection)

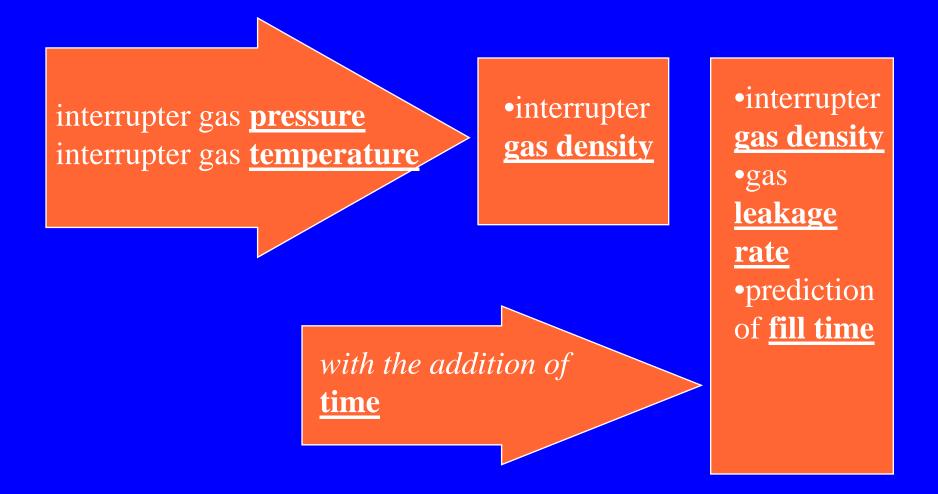
Failure Modes and Effects (Criticality) Analysis - FME(C)A

 Identify functions Identify failure modes ♦ Identify failure causes Identify effects of failure modes Identify criticality or risk Select on-line monitoring to match characteristic of developing failure cause(s)


Risk Matrix

<u>Risk Matrix</u> (Risk = probability * consequences)					
	Probability				
Consequence	Ι	II	III	IV	V
	Frequent	Probable	Occasional	Remote	Improbable
1					
Catastrophic					
2	A	A			С
Critical					Ŭ
3	A			С	C
Moderate					Ŭ
4		С	С	С	С
Negligible					

IEEE Switchgear Condition Monitoring, November 11, 1999 Pittsburgh


Failure Statistics Sources

- CEA Forced Outage Performance of Transmission Equipment for 5 yr periods
 CIGRE Circuit Breaker and Transformer Surveys
- IEEE 463-1990 "Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems"

IEEE Switchgear Condition Monitoring, November 11, 1999 Pittsburgh

Combining of Signals (example)

IEEE Switchgear Condition Monitoring, November 11, 1999 Pittsburgh

Value Based (Cost/Benefit) Analysis

Areas of Value (Cost & Benefit)

- Inspection
- Maintenance
- Consequences of Failure

 Important to include ALL costs since this forms the "pool of costs" that can be reduced by monitoring

Inspection Costs Considerations

 Actual inspection labor Travel time and costs Contractor services Training time and costs Reporting & analyzing results, technical and management support of inspection activity

Support personnel

Maintenance Costs Considerations

Power system outage costs e.G. Increased losses, loss of revenue Actual maintenance labor Travel time and costs Contractor services Training time and costs

Maintenance Costs Consideration (cont'd)

- spare parts management, procurement, warehousing, delivery, interest
- preparation of power system switching schedules and orders, issuing of safe work permits Power system switching effort, installation and removal of workers protective grounding
- power system outage costs e.g. increased losses, loss of revenue

Failure Resolution Considerations

Actual failure analysis, rebuild/repair labor Travel time and costs Contractor services Power system outage costs, e.g. increased losses, loss of revenue "In" and "Out" costs of failed equipment and replacement equipment, transportation

Conclusions

 Significant benefits to appropriately applied monitoring Need timely information - not more data Make better use of existing signals & data Condition monitoring is a joint effort between manufacturers (OEM and 3rd parties, utilities (equipment, P&C, communications) and software developers

Conclusions

 RCM & FMEA (and later RCFA) provide logic structure for application of monitoring
 Significant benefit to standards particularly "transducers", communications protocol & data management

Individual on-line monitoring efforts need to integrate with the larger and longer term issues of substation and transmission automation.

 Utilities need to define long term desired outcomes for on-line monitoring

- Apply condition monitoring in context of RCM and FME(C)A
 - Use Reliability Centered Maintenance (RCM), a concept *directed at preserving function*
 - Use Failure Mode & Effects Criticality Analysis (FMECA) directed at identifying specific failure causes of functional failure modes, suggested as a strategy for identifying and selecting condition monitoring opportunities

IEEE Switchgear Condition Monitoring, November 11, 1999 Pittsburgh

Develop standards for hardware, software and communications protocols
 Incorporate future on-line condition monitoring into integrated substation automation – SCADA, metering, data collection, and protection & controls

 Continue to extract or develop information from available data within the substation

 Make better use of existing data supplement ed with additional "easily obtained" data/information

Expert systems need to be developed for on-line monitoring to translate data rapidly into recommended action.

IEEE Switchgear Condition Monitoring, November 11, 1999 Pittsburgh

 Optimize costs with ability to use a stepped or modular approach to on-line condition monitoring implementation.

Develop improved monitoring sensors

Standardize and expand on failure / diagnostics reporting
Further research on failure mechanisms and failure patterns (associated time to failure and "degree of warning" knowledge)

 CEA Project No. 485T1049 On-line Condition Monitoring of Substation Power Equipment - Utility Needs" January 1997
 CEA Forced Outage Performance of Transmission Equipment for Periods January 1, 1988 to December 31, 1992

- IEEE C37.10.1 draft "Guide for selecting monitoring for Power Circuit Breakers"
 - Aimed at guiding users in the selection and application of monitoring to circuit breakers.
 - Based on <u>FMEA</u>, <u>Risk</u> management and <u>Economic</u> analysis
 - Draft stage

 CSA CAN/CSA-Q634-M91"Risk Analysis Requirements and Guidelines"
 IEC 812 "Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA)"
 IEC 1025 "Fault tree analysis (FTA)"

 "The First International enquiry on Circuit Breaker Failures & Defects in Service" *ELECTRA* No. 79, Dec 1985, pp 21 - 91.
 {20,000 circuit breakers of all types >63 kV for the years 1974 through 1977; (77,892 circuit-breaker-years)}

 "Final Report of the Second International Enquiry on High Voltage Circuit Breaker Failures", CIGRE Working Group 13.06 Report, June 1994. {18,000 single pressure SF6 circuit breakers >63 kV for the years 1988 to 1991; (70,708 circuit-breakeryears)}

 "An International Survey on Failures in Large Power Transformers in Service" -Final report of Working Group 05 of CIGRE Study Committee 12 (Transformers), published in *Electra* No. 88, January 1983.

IEEE 463-1990 "Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems"

 IEEE C37.10-1996 "Guide for circuit breaker diagnostics and failure investigation"
 IEEE 1325-1996 "Recommended practice for reporting failure data for power circuit breakers"

◆ ANSI/IEEE C57.117-1986 (Reaff 1992), "Guide for Reporting Failure Data for **Power Transformers and Shunt Reactors on Electric Power Systems**" ◆ ANSI/IEEE C57.125-1991, "Guide for Failure Investigation, Documentation, and **Analysis for Power Transformer and Shunt**

Reactor"

 "Assessment of Reliability Worth in Electric Power Systems in Canada" (NSERC Strategic Grant STR0045005
 Prepared by the Power System Research Group, University of Saskatchewan, June 1993)