

- Scope "Give recommendations for the application of monitoring and diagnostic techniques to circuitbreakers and other switching equipment".
- 19 Members (13 Europe, 1 Japan, 5 N/S America)
- Started 1996 Interim Paper presented at Australian Regional Meeting 1997
- Main task is to publish Brochure (150pages +) ready for Paris 2000





Condition Monitoring has been around as long as switchgear itself (nearly).

- As diagnostic techniques used for development.
- Monitors for equipment operation, status or safety.

More recently there has been a dramatic increase in the use of Condition Monitoring, due to:

- Sensor development
- Increased processing capability
- Cost, cost and cost drivers.

Work is for users faced with overload of information, not for manufacturers or experienced users



## Structure of WG Activity and Brochure Chapters

- 1. Definitions
- 2. Need for Monitoring
- 3. Justification for Monitoring
- 4. Sensors and Diagnostic Techniques
- 5. Design and Test Requirements
- 6. Dependability
- 7. Management of Information
- 8. Future

## **Need for Monitoring**



#### Monitoring can be applied for a number of reasons:

- Equipment Status
- Primary Voltage, Current etc.
- Predict Maintenance
- Prevent Failure
- Operation/Maintenance Support
- Active Control
- Commissioning Test
- Life Assessment

All of these aspects have to be considered

### Potential Benefits of Condition Monitoring

- Reduced commissioning time
- Reduced preventive maintenance
- Reduced failures
- Reduced breakdown maintenance
- Reduced spares usage
- Increased equipment availability
- Increased equipment life
- Increased functionality

All resulting in lower Life Cycle Costs.

Each of these can generate a "Need for Monitoring"



## How to Justify "Optional" Condition Monitoring

- Even though equipment can be very reliable and have a good service record, Condition Monitoring can be justified (financially) if:
  - Life Cycle Cost approach adopted
    (All potential benefits are considered)
  - All cost factors are taken into account
- No single approach can be applied for all cases
- Work covers some example approaches which can be adapted by users

## Sensors and Diagnostic Techniques

- Main part of the Brochure (50+ pages)
  Size of the task is considerable as have to include:
- Range of equipment (Circuit Breakers, Earth Switches, Switch Disconnectors and Disconnectors)
- Equipment Technologies (SF6, Air, Air Blast, Oil)
- Wide range of sensors and diagnostic techniques
- Chapter is a "State of the art review" with summary tables and discussion.



### **Basic Functions to be Monitored**

To structure the work on "Need for Monitoring" and "Sensors and Diagnostic Techniques" first consider the basic functions that are provided:

- Insulation
- Current Carrying
- Switching
- Mechanical Drive
- Control/Auxiliary Equipment



**Example - Switching** 

<u>Parameter</u> <u>Sensor</u>

Position Auxiliary Switch, Proximity Switch

Operating Time Auxiliary Switch, Main Contact

**Coil Current, Proximity Switches** 

Operating Speed Travel (Electronic, Optical), Position

**Switch** 

Contact Wear Wear Indicator, I<sup>2</sup>t Monitor

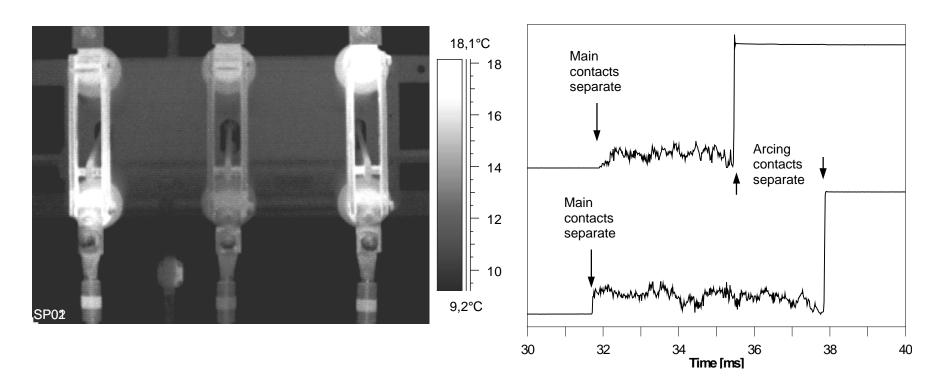
**Stored Energy** Pressure Gauge/Transducer

#### **Example of Table from Chapter 4**

Table XX. Diagnostic techniques and sensors for testing the current carrying ability of switching equipment.

| Parameter                                | Application(s)  | Method / sensor                              |      |
|------------------------------------------|-----------------|----------------------------------------------|------|
| Contact resistance                       | All             | Four point resistance measurement            | Р    |
| Temperature of contacts and breaker unit | All             | Infrared imaging                             | Р    |
|                                          |                 | Temperature profiling with optical fibre     | C, P |
|                                          |                 | Temperature at a point by:                   |      |
|                                          |                 | • thermocouple                               | C, P |
|                                          |                 | optical sensor                               | C, P |
|                                          |                 | • infrared sensor                            | C, P |
|                                          | SF <sub>6</sub> | Load and ambient temperature compensated gas | С    |
|                                          |                 | pressure                                     |      |
| Load current                             | All             | Iron core current transformer                | С    |
|                                          |                 | Rogowski coil                                | С    |
|                                          |                 | Optical current sensor                       | С    |
| Contact penetration                      | All             | Contact position transducer                  | C, P |
| Electric stability of                    | All             | Partial discharge measurement                | C, P |
| closed contact                           |                 | Content of gas decomposition products        | C, P |

#### Abbreviations:


SF<sub>6</sub>: SF<sub>6</sub> circuit-breakers

C: used for continuous monitoring

P: used for periodic diagnostic testing

## **Examples Illustrated in Chapter 4**





**Infrared Imaging** 

**Dynamic resistance** 

By using examples the aim is to make the brochure readable

# Issues on the Application of Condition Monitoring

- On-Line or Periodic Monitoring? (Chapter 3)
- Information from Data (Chapter 7)
- Need to keep systems simple and reliable (Chapter 5)
- Integration of Control, Protection and Monitoring and System architecture and communication protocols Chapter 7)



#### **Status of Work**

- Drafts completed for all sections except Chapter 8
- Final editing/compiling to be completed by end of 1999
- Issue to SC 13 by end of 1999
- Issue to Paris Central Office for publication April 2000
- Available for purchase at CIGRE 2000



#### **Conclusions**

- Tremendous level of ongoing work and interest in Condition Monitoring (Reflected in CIGRE activities)
- Many choices for "philosophy of monitoring"
- No one single approach is possible
- Task of CIGRE 13-09 is to:
  - Disseminate knowledge on current technology
  - Give guidance on what is/not an appropriate technique
  - Provide guidance/recommendations to less experienced users



## **Ongoing Work of SC 13**

- Advise users of what is possible
- Guidelines on relevance of options
- Guidelines on benefits and justification
- Guidelines on issues such as:
  - Management of data
  - Architecture of systems
  - Lifetime Management (13-08)