

TAMERS OF POWER

IEEE **Switchgear** Committee Meeting **Condition Monitoring Panel** Pittsburgh, PA November 11th, 1999

Condition Monitoring and POW Control of Power Delivery Apparatus

Partners in:

Cost Reduction

Life Extension Power Quality

OVERVIEW

Installed Base and Segmentatic
ROI Methodologies
Case Studies
Financial Improvements
New Designs and Standards

Condition Monitoring Installed Base

Circuit Breaker Condition Monitoring Installed Base

Circuit Breaker POW Control Installed Base

Condition Monitoring Segmentation

Circuit Breaker POW Control Segmentation

Predicted Savings

Budgeted Investments

Predicted Savings = Maintenance + Repair + Replacement (w/o CM) - Maintenance + Repair + Replacement (with CM)

MRR (w/o CM) =

[Budgeted Maintenance + Historical (R+R)] x Years

B = CMS cost + Engineering + Site costs + Response costs

Predicted Payback =

Budgeted Investment (\$)

Predicted Savings (\$ / year)

Years

CM Efficacy Requirement =

Budgeted nvestment (\$)

Predicted MRR (w/o CM)

Breaker Retrofit

BENEFITS	ABPB	COSTS	Per breaker	Per substation	Per group
Reduction routine inspections costs		Monitoring system hardware and software	1		
Reduction overhaul costs (postponed and optimized)		Breaker specific engineering			
Reduction in failure costs		Components + cabling installation	-8-78-		
Benefit Index =		Remote communication link installation	- 1/ an		
Effectiveness Index =		Sensor + controller sub-system commissioning	31-1=		
PAFS -		Sensor + controller sub-system maintenance	The second		
Reduction in data analysis costs	6	Substation staff training		THE	
Reduction in spare parts cost		Substation spare parts			
Increase of revenues		Central controller hardware and software			
Reduction in capital and/or expense costs of equipment		Central controller installation			
Reduction in training costs		Central controller software configuration and commissioning			
Reduction in insurance premiums	-11	Breaker group generic engineering			
Reduction in environmental protection and clean-up costs	1/7	Breaker group expert system software			
Reduction in designed redundancy costs	7/	Training			
	6/	Spare parts			
TOTAL BENEFITS		COST SUBTOTALS			

¬ Annualized Benefit Per Breaker

- Projected Annual equipment Failure expenditure Saving

22/09/2013

- C_u = Unscheduled renewal
- C_s = Scheduled renewal
- X = Cu / Cs
- T = Period of optimal renewal
- $C_d = Diagnostics$
- R(t)= Reliability of equipment
- R_d = Reliability of detection

© Andtek. Inc

© Andtek, Inc

POW Control

- Case by case
- New vs retrofit
- POW vs Conventional
- Measurable + Qualitative

Conventional designs

Purchase + installation +

commissionning

Routine testing

Preventive maintenance

• Failure triggered replacement costs

ROI Methodologies POW Control System

COSTS – EPIC – Characteristics – Other devices BENEFITS
- Savings
- Security
- Power Quality
- Life extension

Monitoring Case Study#1

Missing locking pin at pole No. 3 allowed operating arm between breaker heads 3 and 4 to drop out

Catastrophic

Load current — No damage

Fault current

Savings ______ \$ 400,000

SNEMO

Monitoring Case Study#2

Ristan O-ring scals

Opening electro-valve and piston found jammed in a semi-open position

Monitoring Case Study#3

Pressure drop signature	Stuck moving contact
Fault current	Catastrophic
Savings	\$175,000

POW Case Study#1

- CEZ
- GSU transformers
- End of life condition
- Historical severe inrush conditions
- Controlled opening to condition remanent flux
- Controlled closing to limit inrush below 30% of rated current
- Deferred purchase > 5 mio \$

POW Case Study#2

 25 kV distribution daily Cap bank switching

O/V trips subway DC supply
Some passenger cars in tunnels
Public opinion of Transit Authority and Utility suffers

TRENDS

Installed Cost Reductions

Cabling

2.4GHz Comms

Inter-operability

Diagnostic Expert System

DATA INFORMATION KNOWLEDGE ACTION

Diagnostics Expert System

- Customized software shell to ensure optimal performance and flexibility
- Device specific rules
- Combinatorial algorithms
- User "tool box"
- Simulation and field tested
- Import / Exportability with other platforms

Diagnostics Expert System

Moniteq User Interface	
Diagnostic Configuration <u>H</u> elp	
E	
	BOLIVIA ~
Alarm List Property Sheet	
Alarm Id Equipment Id F 500501 PK0302 F 500502 PK0302 F 500503 PK0302 F 500504 PK0302 F 500505 PK0802 F 500506 PK0802 F 500507 PK0802 F 500508 PK0352 F 500509 PK0302 F 500510 PK0302 F 500511 PK0302 F 500512 TR0805 F 500513 PK0302 F 500514 PK0302 F 500515 PK0302 F	Explain Cause Action Script Comment / pressure 12t Event ID
	OK Cancel Apply
NEUQUEN	LA PANPA
😹 Start 📧 Microsoft 📝 untitled 🛄 My Cor	np 😑 (C:) 🔄 Moniteq4 🔜 Moniteq 🚺 Monite 🕅 🍏 🗩 🖬 🐜 🌾 📽 📂 10:55

IEC Interference Immunity

- Electrostatic discharge (ESD)
- Electromagnetic compatibility
- Damped oscillating magnetic fields IEC1000-4-10
- High power, damped oscillations IEC1000-4-12
- Rapid transients (EFT) IEC1000-4-4
- High frequency current, modulated amplitude IEC1000-4-6
- Line conducted transients IEC1000-4-16
- Magnetic fields with energy frequencies IEC1000-4-8, IEC SC 77A

IEC1000-4

IEC1000-4-3

IEC Emitted Interference

Main ac current :
 Harmonic oscillation currents and voltage oscillations IEC1000-3-2, IEC1000-3-3

IEC Climatic Requirements

Cold temperature IEC 68-2-1
Dry heat IEC 68-2-2
Damp heat IEC 68-2-3
Temperature cycling IEC 68-2-14

IEC **Mechanical requirements** • IEC 68-2-6 • IEC 68-2-27 • IEC 68-2-29 • IEC 68-2-59 • IEC 536 • IEC 529 IP 54 • IEC 707 **DC Supply Voltages IEC 694**

IEC 77/215 EMC Immunity for power stations and substation environments

IEC 61850-1 Communication Networks and Systems in Substations

CIGRE

• WG 13.07 : Controlled Switching -Tutorial (1996) -Application Guide (1998) -Studies, Specifications and Tests (1999) WG 13.09 : Condition Monitoring -Application Guide (2000) • WG 13.10 : Asset Management

THANKS YOU FOR YOUR ATTENTION

3605 Isabelle Brossard, QC Canada, J4Y 2R2 Tel: 1.450.444.3001 Fax: 1.450.444.3009 Email : Marketing@snemo.com Web : www.snemo.com

