Planning, Specification & Testing of Controlled Switching Systems

Mark Waldron CIGRE A3.07

Summary

Planning.

Aim, suitability of controlled switching, benefits
 & risks, pre-existing constraints.

Specification.

 Performance, operating environment, component vs system performance, integration, life management.

Testing.

 Circuit-breaker capabilities, controllers, sensors & auxilliaries, total functionality.

Planning - Overview

- Maintain/achieve adequate performance
- Optimised lifetime cost of installation
- Define the "problem" transient control
- Suitability of controlled switching ideal
- Availability of alternatives pros & cons
- Pre-existing constraints
- Risk assessment real systems including P(failure) & consequences

Planning - Alternatives to CS

- Avoidance can the scheme be avoided?
- Power system modification/re-enforcement
- Dynamic resistance/inductance
- Fixed inductance
- Surge arresters
- Re-enforcement of secondary systems

Planning - Risk Assessment

- Non-ideal systems have P(failure)
- Nature & consequence of failure depend on application
- Safety risks followed by commercial risks
- Levels of redundancy to achieved acceptable levels of risk
- Structured design approach e.g. IEC 61508

Planning - Decision tree

Specification - Overview

- Controlled switching installations must be considered as a whole - breaker + controller + auxiliaries
- Interaction between functionalities
- Operating environment electrical, climatic, regime
- Performance \Rightarrow System \Rightarrow Components
- Support & lifetime management not fit & forget

Specification - Power System

Nature of the power system:

- Frequency
- Earthing
- Connection arrangements
- Reference signals
- Normal & abnormal system conditions

 Actual duty on switching device - nonidealised case

Specification - Accuracy & Consistency

- Ideal making target + acceptable tolerance
- ◆ Temperature range ⇒ Compensation?
- ◆ Drive & insulation operating range ⇒
 Compensation?
- Auxiliary voltage
- Electrical environment
- Maximum/minimum idle time
- Reference signals accuracy & availability
- Adaption routines

Specification - Reliability & Failure Performance

- Failure mode, P() & effects considered
- Failure to operate on command
- Incorrect operation no warning
- Operate without command
- Inability to operate (within tolerance)
- Loss of reference &/or supply
- Rigorous assessment IEC 61508?

Specification - Installation Philosophy & Interfaces

- Permissive or definite operation
- Redundancy protection philosophy?
- HMI local and/or remote
- Integration with basic protection & control
- Self diagnostics & self verification
- Complexity
- Communication, protocols etc

Specification - Lifetime Issues

- Commissioning
- Maintenance for continued accuracy
- Adaptability self adjustment on basis of operation
- Software/hardware support
- Component interactions throughout lifetime

Specification - Non-standard duties

 Application of controlled switching can "create" additional duties

 Non-simultaneous poles affect asymmetric making and breaking

Extreme case but should be considered

	Pole spread on closing (ms)										
	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
τ = 45ms	2.55	2.62	2.69	2.76	2.82	2.87	2.92	2.95	2.98	3	3.01
τ = 60ms	2.61	2.69	2.77	2.83	2.9	2.95	2.99	3.03	3.06	3.09	3.09
τ = 90ms	2.68	2.76	2.84	2.91	2.98	3.03	3.08	3.11	3.14	3.16	3.17
τ = 120ms	2.72	2.8	2.88	2.95	3.02	3.07	3.12	3.16	3.19	3.2	3.21
τ = infi- nite	2.83	2.92	3.01	3.08	3.15	3.21	3.26	3.3	3.32	3.34	3.35

Testing - Overview

- Circuit-breaker characteristics
- Controller characteristics
- Sensor characteristics
- Auxiliary performance
- ◆ Taken together ⇒ System Performance

Testing - Controller

- Functional performance scatter, compensation, adaption, alarms & signalling, self diagnostics, communication
- Hardware conformance EMC, mechanical & environmental - existing standards.
- Software reliability especially for Safety Critical Systems

Testing - Circuit-breaker

Key parameters:

- RDDS
- Mechanical scatter, variations & idle time
- RRDS (can be derived from C & L switching)
- Permit definition of optimum target point for any duty - closing or opening
- Direct measurement of optimum target point for particular case
- Controlled switching test

Testing - Basic derivation of RDDS

Testing - RDDS test sequence

- 4 making tests per setting
- 15 degree steps
- Pre-strike voltage & pre-strike time measured
- Polarities considered separately
- Influence of contact burn-off to be verified

Testing - Typical RDDS test result

Testing - Close target vs making voltage

Testing - Close target vs making instant

Testing - Mechanical variations

- Basic mechanical testing (IEC 62271-100)
- Tests over expected range of:
 - Ambient temperature
 - Drive condition
 - Control voltage
 - Idle time
 - Phase spacing (mechanical linkage only)

Determines need for compensation

Testing - Idle time test

- C 1min O 1min C 1min O (C/O interchangeable)
- Idles of:
 - 1 hour
 - 8 hours
 - 16 hours
 - 64 hours
 - 104 hours
 - 232 hours
 - 720 hours

Testing - Typical relationships

Testing - Controlled closing test

- Test on full circuit-breaker
- Verify actual performance for voltage peak & voltage zero switching
- Realistic power frequency condition, earthing factors etc
- Extremes of variable parameters considered either directly or indirectly
- 4 test series 6 operations per test series at each voltage zero and each voltage peak.
- 96 tests in total

Testing - Controlled closing test

		Operating of	conditions	
Directly considered (extreme values must be directly applied in the tests)	SF ₆ gas pressure	Lockout	Rated	
	Drive energy	Lockout	Rated	

a) Operating conditions applied in the tests

		Minimum	Maximum
Indirectly considered (extreme values considered by means of close/open target)	Control voltage	ΔT_{1-min}	ΔT_{1-max}
	Ambient temperature	$\Delta T_{2\text{-min}}$	$\Delta T_{2\text{-max}}$
	Idle time	ΔT_{3-min}	ΔT_{3-max}
Extreme variations of close, for testing	/open times	$\Delta t_{min} = \sum_{i=1}^{3} \Delta T_{i-\min}$	$\Delta t_{max} = \sum_{i=1}^{3} \Delta T_{i-\max}$

b) Operating conditions that can be represented by variations of the close/open targets (refer to Figure 4-7).

 $\Delta T_{i-min} = (minimum \ close/open \ time \ variation \ from \ the \ respective \ characteristic \ curve)$

 $\Delta T_{i\text{-max}} = (maximum close/open time variation from the respective characteristic curve) Remark: parameters compensated by the controller shall not be considered.$

Testing - Controlled closing test

Test series	Close at voltage zero	Close at voltage peak		
1	Lockout SF ₆ pressure,	Lockout SF ₆ pressure,		
	rated drive energy:	rated drive energy:		
	$t_{target_zero} = t_{target_zero_rated} + \Delta t_{min}$	$t_{target_peak} = t_{target_peak_rated} + \Delta t_{min}$		
2	Rated SF ₆ pressure,	Rated SF_6 pressure,		
	lockout drive energy:	Lockout drive energy:		
	$t_{target_zero} = t_{target_zero_rated} + \Delta t_{max}$	$t_{target_peak} = t_{target_peak_rated} + \Delta t_{max}$		
3	Lockout SF ₆ pressure,	Lockout SF ₆ pressure,		
(most critical case)	Lockout drive energy:	lockout drive energy:		
	$t_{target_zero} = t_{target_zero_rated} + \Delta t_{min}$	$t_{target_peak} = t_{target_peak_rated} + \Delta t_{min}$		
4	Rated SF ₆ pressure,	Rated SF ₆ pressure,		
	rated drive energy:	rated drive energy:		
	$t_{target_zero} = t_{target_zero_rated} + \Delta t_{max}$	$t_{target_peak} = t_{target_peak_rated} + \Delta t_{max}$		

Testing - Complete system checks

- Compatibility
- Functional performance check like controlled closing test
- System assembled & tested as early as possible
- Commissioning procedure is critical to account for system aspects
- Regular review

Concluding remarks

- Consider controlled switching <u>system</u>
- Performance reliant on component parameters & testing + compatibility
- Reliability & failure performance/effect dictate levels of redundancy
- Lifetime management of the system component & system changes