Seismic Considerations

Willie Freeman ABB Mount Pleasant, PA

IEEE 693 Tutorial – May 7, 2009

IEEE 693 Tutorial

© 2009 Willie Freeman

IEEE P693/D6, 2008

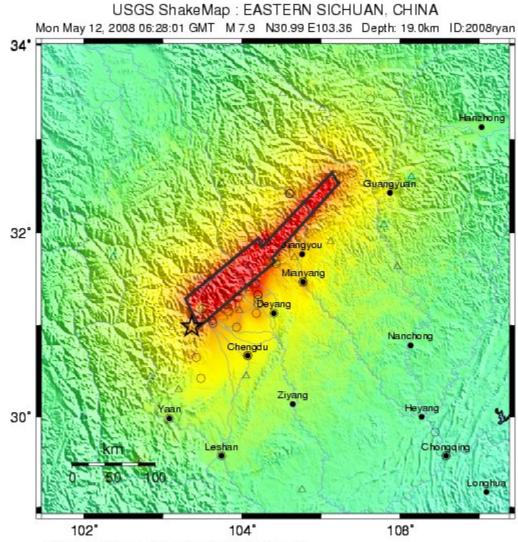
"Recommended Practice for Seismic Design of Substations"

a more descriptive title would be: "Seismic Qualification of High Voltage Power Equipment"

IEEE 693 Tutorial

© 2009 Willie Freeman

Electrical Equipment: Annex C-P


- Circuit Breakers
- Transformer, Liquid Reactor, Bushings
- Disconnect Switch
- Instrument Transformer
- Air Core Reactor
- Circuit Switcher
- Suspended Equipment
- Batteries and Racks
- Surge Arresters
- Electronic Devices
- Metalclad Switchgear
- Potheads
- Capacitors
- GIS Switchgear

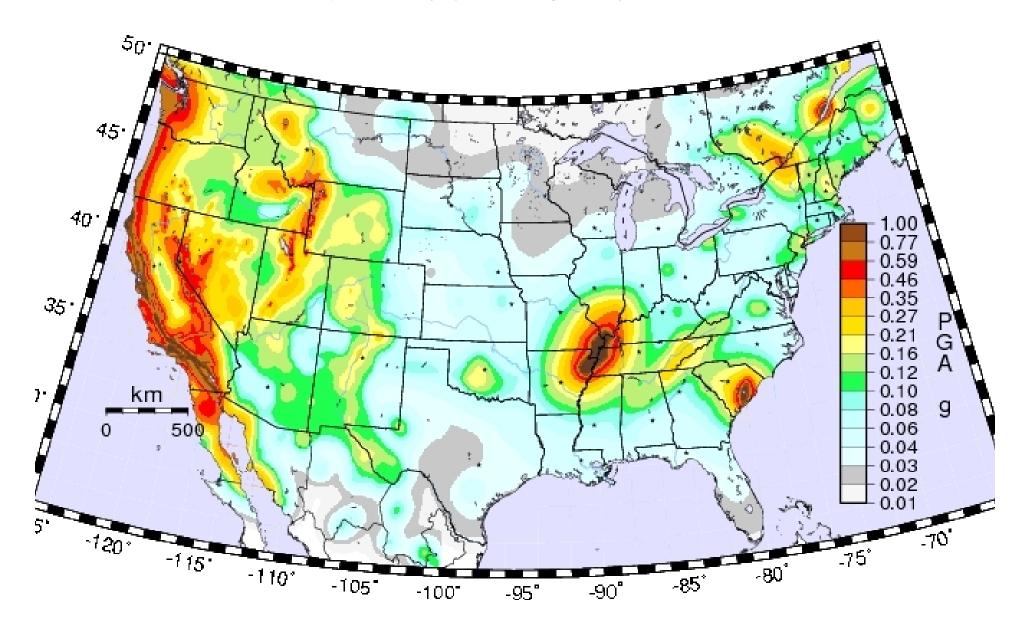
Earthquake Magnitudes

Richter	TNT	Example
4.0	1,000 tons	Small Nuclear Weapon
4.5	5,100 tons	Average Tornado (total energy)
5.0	32,000 tons	
5.5	80,000 tons	Little Skull Mtn., NV Quake, 1992
6.0	1 million tons	Double Spring Flat, NV Quake, 1994
6.5	5 million tons	Northridge, CA Quake, 1994
7.0	32 million tons	Kobe, Japan Quake, 1995; Largest Thermonuclear Weapon
7.5	160 million tons	Landers, CA Quake, 1992
8.0	1 billion tons	San Francisco, CA Quake, 1906
8.5	5 billion tons	Anchorage, AK Quake, 1964
9.0	32 billion tons	Chilean Quake, 1960

© 2009 Willie Freeman

IEEE 693 Tutorial

Man	Version 10 Processed	Mon D	ec 8	2008 01	31.22	PM MST

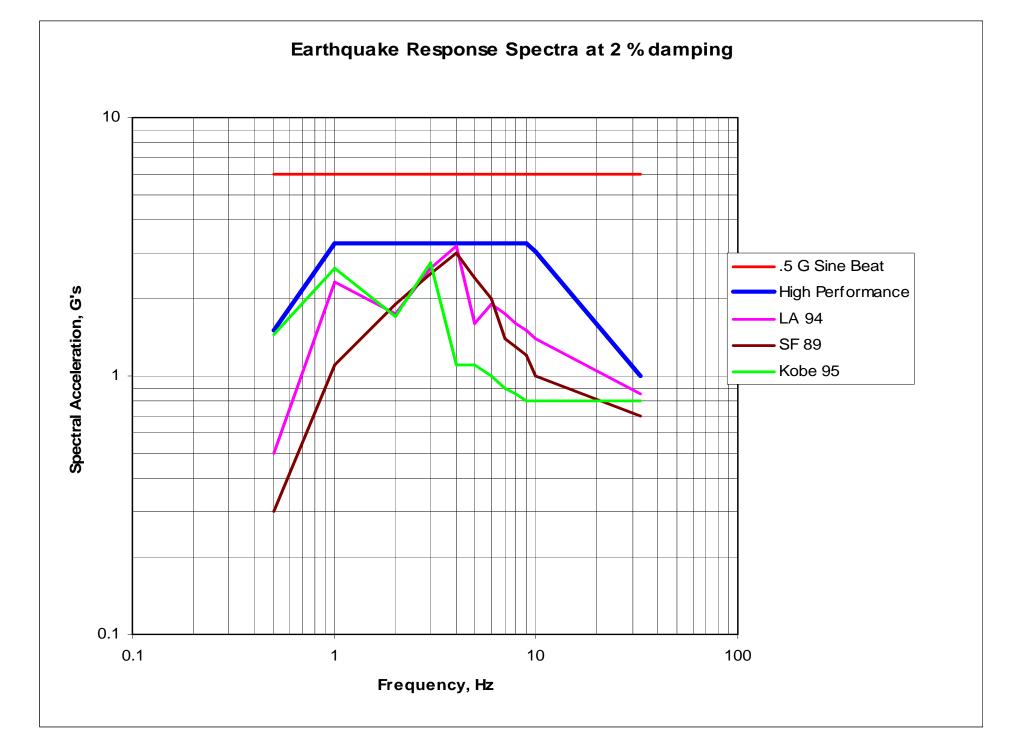

PERCEIVED SHAKING	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	IX	X+

IEEE 693 Tutorial

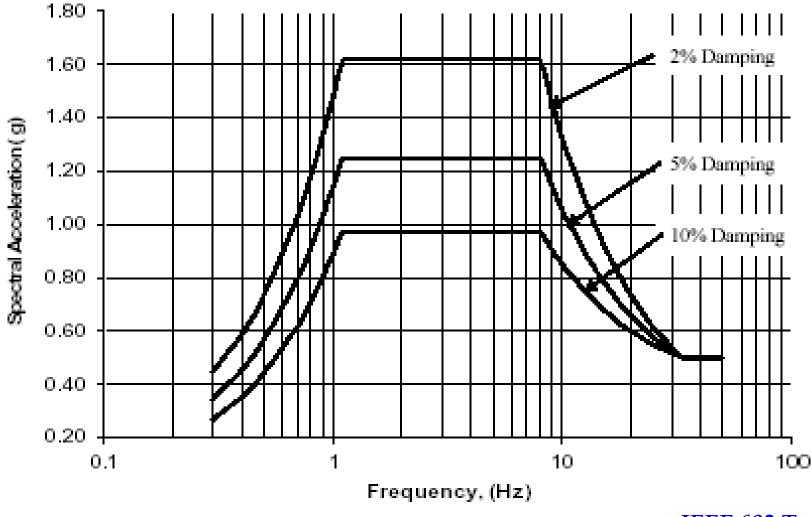
© 2009 Willie Freeman

2008 USGS Seismic Hazard Map

2% probability of exceeding in 50 years



Seismic Qualification Levels


IEEE 693 Qualification Level	Ground Acceleration gs	Response Acceleration gs
Low	0.1	0.2
Moderate	0.25	0.8
High	0.5	1.6
Performance	1.0	3.2

Response Spectrum (analytical tool)

- Plot of response acceleration to an earthquake ground acceleration (input)
- Theoretical response of SDOF oscillators to input
- Applied to dynamic (modal) analysis
- Calculated theoretical response (not actual response)
 - to shake table input acceleration
 - to determine if test input is sufficient

Required Response Spectrum (High RRS, moderate is 50%)

© 2009 Willie Freeman

IEEE 693 Tutorial

Low Qualification Level for Breakers

- No required response spectrum or report
- Anchorage design
 - -0.2 x weight in horz. direction
 - -0.16 x weight in vert. direction
 - plus dead weight and operating loads
- Defined load path
- Adequate slack in terminal connections

Static Coefficient Analysis for Breakers 38 kV to 123 kV

- Include control cabinets, CTs, stored energy sources
- 1.5 x RRS peak x weight of each component in two principal horizontal direction
- 80% in the vertical direction
- Combine 3 principal directions by SRSS
- Add dead weight and operating loads

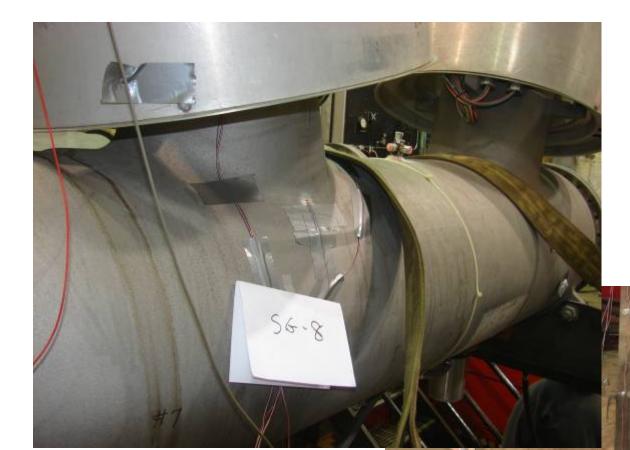
Dynamic Analysis for Breakers 123-145 kV

- Finite element model
- Modal spectrum analysis up to 33 Hz
- Account for at least 90 % of mass
- Sum (<10%) or SRSS plus operating loads
- Verify the low frequencies and damping

Test for Breakers 170 kV and above

- Cantilever test of insulators
- Resonant frequency search
- 0.5 g time history test in closed position
- 0.5 g time history test with O-CO operation
- 0.5 g Sine beat test or 1 g time history (new)
- Repeat resonant frequency search
- Repeat cantilever test of composite insulators

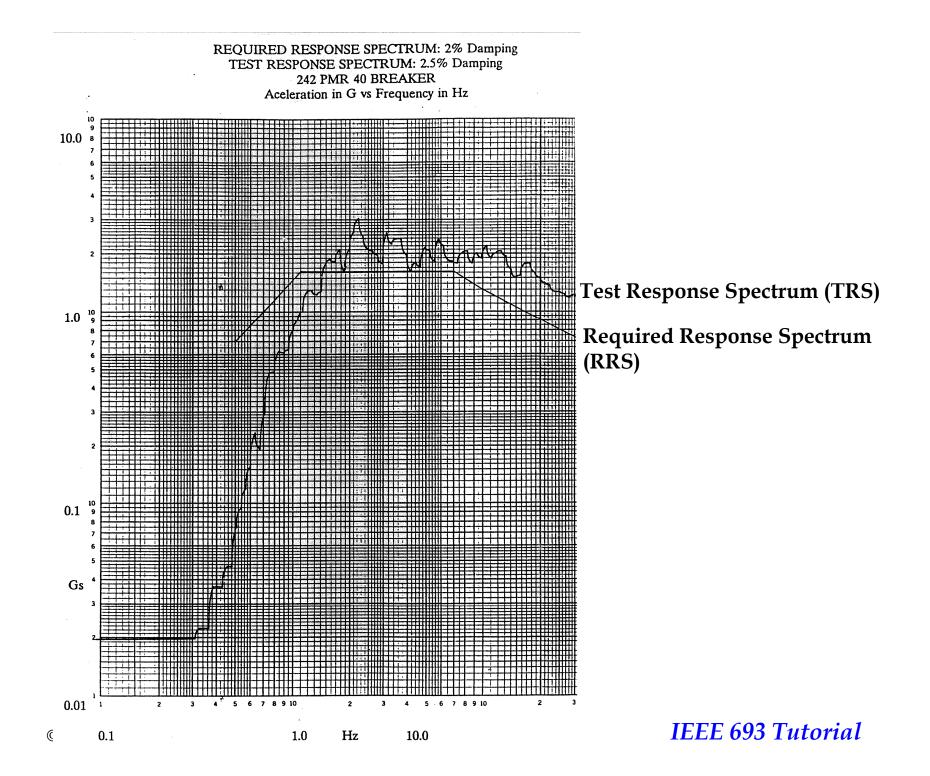
Seismic Qualification of Transformers


- Tank, core, coils for 69 kV and above
 - by static analysis (0.5 g in two horiz. dir.+ 0.4 g vert)
- Appendages:
 - radiators, conservators, 3 x 0.5 g static anal.
 - control cabinets, 1.5 x 0.5 g static analysis.
- Apparatus Bushings
 - Greater than 138 kV by time history test to four times the RRS (maybe reduced in next few years by special test program)
 - 35 to 138 kV by static pull test to 2 x weight

Test Setup

- Biaxial or triaxial shake table
- Complete breaker or independent pole unit with controls
- Pressurized and controls energized, fully operational
- Monitor relay and main contacts bounce
- Accelerometers on major components
- Strain gauges at critical location along load path
- Load bolts to anchor breaker
- Determine: max. stresses, displacements, foundation loads, damping and resonances

242 kV breaker on shake table


Strain gauges at critical locations on bushings, tank and frame

561

© 2009 Willie Freeman

Comparison of Highest Strain Readings

Strain Reading	0.5 G Sine Beat	1.0 G Time History	Ratio
Frame Leg	212	358	1.69
Frame Leg	89	207	2.33
Bushing Cantilever	28	86	3.07
Tank Nozzle/Shell	265	796	3.00

Functional Tests

- Pressure reading and leak check before and after each run
- Check for damage and operational state after each run
- Main contact resistance at beginning and end
- Production timing test at beginning and end
- Repeat production high voltage withstand test at factory

Acceptance Criteria

- No visible damage to equipment or supports
- Porcelain insulator stress < 50% ultimate
- Composite insulator stress < 50% SML
- Structural design per AISC or Alum. Assoc. manuals
- Materials not covered by other codes:
 - Brittle Materials < 50% of ultimate strength
 - Ductile Materials < 50% of yield strength
- Function must be maintained
- Sine beat stresses 1.8 x RRS allowable
- Performance level (1 g test) slight bending but no failure

Documentation

- Test Plan
- Certified Report
- Seismic Outline Drawing
- Nameplate stating seismic qualification level

Good Seismic Design Features:

- Avoid stress concentrations in the load path.
- Reduce weights and moments of equipment.
- Use composite bushing insulators instead of porcelain.
- Use high strength insulation supports in the interrupter.
- Avoid bending loads in connections to critical components such as the tanks or housings.
- Keep higher stresses in ductile components along the load path and reduce stress in brittle elements to increase damping and improve seismic toughness.

Good Seismic Design Features

- Light weight alum. Tank
 low CG
 - low foundation mom.
- Pinned connection
 - reduced tank stress
 - stronger load path
- Bolted steel structure
 - improved damping
 - Improved toughness

© 2009 Willie Freeman

IEEE 693 Tutorial

Good Seismic Design resists shipping stresses

IEEE 693 Tutorial

© 2009 Willie Freeman