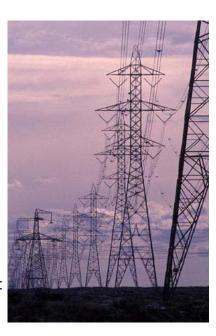


Use of Data from CIGRÉ High Voltage Equipment Reliability Survey

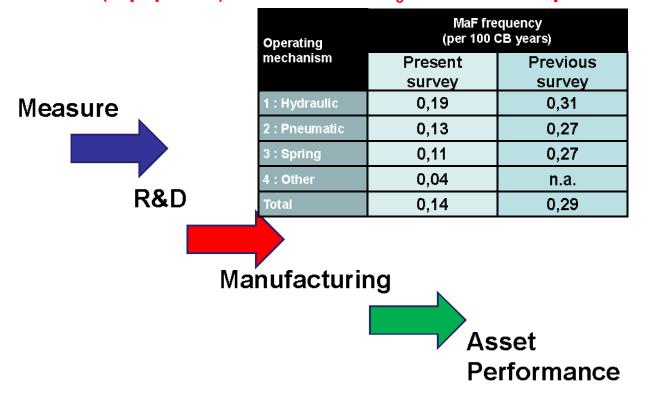
CIGRÉ WG A3-06


Presenter: John E. Skog – Maintenance and Test Engineering Co. (USA)

Download by courtesy of CIGRE. Copying and usage of parts without CIGRE permission is prohibited.

Background-The Value of Reliability Data

- Reliability data helps decision makers in three key areas
 - New Asset/Design Performance
 - Existing Asset (equipment) Life Expectations
 - Network Performance
- Many electricity networks have an increasing aged population
 - Survey will help understand impact and mitigate
 - Plan for the future
 - Maintenance
 - Replacement
- · Many electricity networks are new or expanding
 - Survey will help optimise new design
- Will help using a more statistical approach to asset management
 - Maintain
 - Renew
 - Replace


Impacting The Future

- Research and Development
 - "Designing Out" Specific Failure Causes
- Improving Standards
 - Targeting Dominant Modes of Failure
- Design Optimization
 - Matching Asset Performance to Network Asset Requirements
- Reducing Manufacturing Costs
- Predicting Life Cycle Costs

Download by courtesy of CIGRE. Copying and usage of parts without CIGRE permission is prohibited.

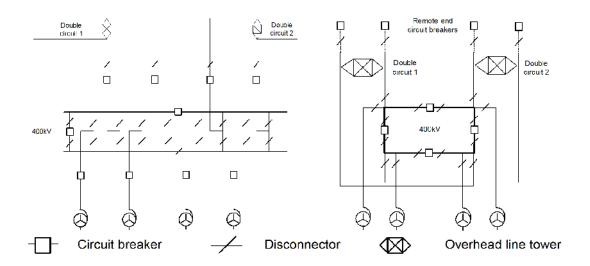
Asset (Equipment) Performance SF₆ Breaker Example

Design Optimization CB - IT - DE - Comparison

Equipment	СВ	IT (per phase)	DE (DS + ES)
Typical number of equipment in substations per 1 CB-bay (example for double busbar)	1	12	4 (3+1)
MaF frequency per 3-phase equipment [failures per 100 equipment years]	0,30	0,16	0,21
Summarized MaF frequency of equal equipment per 1 CB-bay [failures per 100 equipment years]	0,30	0,160,32	0,84
Number of MaF in period of 1 CB-MaF	1	0,51	2,5

Vienna 2011

Download by courtesy of CIGRE. Copying and usage of parts without CIGRE permission is prohibited.



- Matching maintenance tasks to asset needs.
- Harmonizing asset availability with network availability requirements
- Targeting on-line monitoring investments
- · Reducing the risk and impact of failure

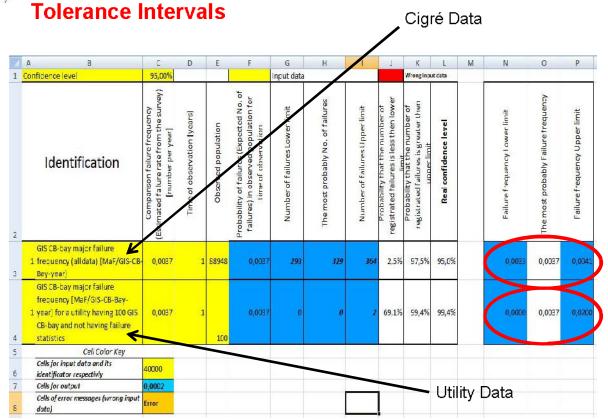
Harmonizing Availability and Reliability Needs

· Compare reliability of two different substation layouts

Download by courtesy of CIGRE. Copying and usage of parts without CIGRE permission is prohibited.

Impacting End-of-life

- Differentiating between asset functional life and asset book life
- · Making the decision to:
 - Continue to maintain
 - Renew
 - Replace


20 Years Old

 $\label{lower_loss} \mbox{Download by courtesy of CIGRE. Copying and usage of parts without CIGRE permission is prohibited.}$

Applying Survey Data to Utility

Download by courtesy of CIGRE. Copying and usage of parts without CIGRE permission is prohibited.

- Benchmarking-compare utility failure data with Cigré data
- Utility has no failure data and desires to predict failure frequency based on Cigré
- Utility has failure data and desires to predict failure frequency based on historical data

Conclusion

- The survey will have numerous uses both for equipment and networks
- · The results will be useful through the whole life cycle
 - Design
 - Manufacturing
 - Operation
 - Replacement
- · The data is important
 - For aging equipment and networks
 - Planned new expansion
- Will aid in the adoption of statistical methods of asset management

 $\label{lower_low$