Transient phenomena by travelling waves

Cigré WG A3.28

Technical Requirements for Substation Equipment exceeding 800 kV Switching phenomena and testing requirements for UHV & EHV equipment

San Diego, October 4th 2012 Anton Janssen

Transient Recovery Voltage envelope

- Current and short-circuit current interruption
- TRV-calculation by current injection at location of CB
- The TRV wave-shape at each side can be seen as the system response to a ramp-function I(t) = S*t, with S= $\omega\sqrt{2*I}_{rms}$ and ω the power frequency
- Generally the system can initially be modelled as R//L//C, with R being the equivalent surge impedance (mainly the OH-lines), L the local inductance (mainly transformers) and C the local capacitance. The system may be overdamped or underdamped, depending on the number of connected OH-lines
- The initial TRV is characterized by a steepness dU/dt, determined by Z_{eq}^* dl/dt, and a delay, determined by $Z_{eq}^*C_{eq}$
- RRRV (rate of rise of recovery voltage) is the tangent to the TRV waveshape from the origin (0-B)
- Without C_{eq}, the RRRV is equal to the steepness S-S'

Transient phenomena by travelling waves

- 1. UHV/800 kV and travelling waves
- 2. Surge impedances
- 3. 1st/3rd pole equivalent surge impedance
- 4. 1st/3rd pole clearing 3/1 phase OH-line faults
- 5. Other line-side phenomena (OofPh, Cap.)
- 6. Source-side phenomena (BTF, MOSA)
- 7. ITRV
- 8. References

1. UHV/800 kV and travelling waves

- Many faults and fault clearings involve travelling waves
- Simple network configurations give less reflection and refraction
- High voltage, high surge impedance loading, high ampacity, less losses require heavy conductor bundles → low damping of travelling waves
- Back to the basics
- TLF excluded, other phenomena addressed (OoPh, Cap, ITRV)

Inflection points on TRV waveform

Point A : Breaking point of the first-pole-to-clear

- Point B : Arrival of transient propagated from B s/s to D s/s with 360 km travel at 1.29 ms after breaking
- Point C : Arrival of transient propagated from B s/s to A s/s and back to B s/s, then form B s/s to D s/s, total travels with 120 km x 2 (0.43 ms x 2) + 360 km (1.29 ms) are 600 km at 2.15 ms after breaking
- Point D : Arrival of transient propagated from D s/s to B s/s and back to D s/s, total travels with 360 km x 2 (1.29 ms x 2) are 720 km at 2.58 ms after breaking
- Point E : Arrival of transient propagated from B s/s to C s/s and back to B s/s, then from B s/s to D s/s, total travels with 240 km x 2 (0.86 ms x 2) + 360 km (1.29 ms) are 840 km at 3.01 ms after breaking , where a propagation velocity = 280 m/μs

1. UHV/800 kV and travelling waves

← China, single circuit, 1100 kV

China, double circuit, 1100 kV

Japan, double circuit, 1100 kV

1. UHV/800 kV and travelling waves

Dimensions in	Japan China		India	Canada
m				
Rated voltage,	1100	1100	1200	(800)
kV				
Nr. circuits	2	2	1	1
Nr.	8	8	8	4
subconductors				
Diameter	0.0384	0.055	0.03177	0.03505
subcond.				
Spacing	0.4	0.4	0.457	0.457
subcond.				
Sag	20	20	-	7.6
Height	73/108	42/82	37	27
lower/upper				
Nr. shielding	2	2	2	2
wires				
Diameter	0.0295	0.0175	0.01812	0.01271
shielding				
Height	120	98	55	39
shielding w.				
Sag shielding	18	18	-	11.7
wires				
Earth	100 to 500	500	100	1000
resistivity, Ωm				

¹for OPGW: 0.0229

- A surge impedance is not a physical quantity but a ratio
- Ratio between voltage and current component of a travelling wave
- Depends on geometrical configuration of conducting conductors
- Depends not on power frequency currents or faulted phases

For instance for SPAR identical to 1st pole clearing 3-phase fault:

Z = √(L'/C')

As travelling waves may occur between each pair of conductors and combinations thereof many surge impedances have to be calculated and combined: modal analysis, as used by EMTP or ATP.

some formulae

• Two infinite equidistant (D) conductors with equal radius (r):

 $Z = 60 \ln {D/r}$

as $\sqrt{(\mu_0/\epsilon_0)/2\pi} = 60$, and Z for each conductor, between conductors: 2Z

• One infinite conductor with constant height (h) above perfect earth:

 $Z = 60 \ln {2h/r}$

earth surface acting as ideal mirror plane:

no penetration of electric and magnetic fields

• Imperfect earth:

especially for magnetic fields \rightarrow depth of conductor' >> h

depth < 25 m :

- above 100 kHz (100 $\Omega m)$
- above 1 MHz (1000 Ωm)

some formulae

- Formulae of Carson and Pollaszek for earth return inductance, 1926
- Later, many refinements and practical improvements
- For instance by Taku Noda, IEEE-PD, No.1, Jan. 2005, pp. 472-479
- Simplified for $\theta = 0$: $I = 0.2 \ln\{(2h+2\beta p)/r\} \mu H/m$ with $\beta p = 1.07/\sqrt{(\omega \mu_o \sigma)}$ as (imaginary) penetration depth $Z = 60 \ln\{2h/r\}+30\ln\{1+2\beta p/2h\}$
- For $\theta \neq 0$: $I = 0.2 \ln\{D'/d\} \mu H/m$ $Z = 60 \ln\{D/d\} + 30 \ln\{D'/D\}$ with $d = \sqrt{\{(h-h_i)^2 + x_{ii}^2\}}$ $D = \sqrt{\{(h+h_i)^2 + x_{ii}^2\}}$ $D' = \sqrt{\{(h+h_i+2\beta p)^2 + x_{ii}^2\}}$

some formulae

- Self surge impedance Z_i with θ=0 Mutual surge impedance Zij with θ≠0
 - \rightarrow multi-conductor matrix equations for travelling waves [V]=[Z]*[I]
- By matrix manipulation the mutual terms can be eliminated

 → matrix with self impedances for all travelling wave modes:

 Modal Analysis
- Simple example for a single circuit OH-line:

 $Z_{1} = \{ \sum_{i=1 \text{ to 3}} Z_{ii} - \sum_{i,j=1 \text{ to 3}} Z_{ij} \} / 3 \qquad \qquad Z_{0} = \{ \sum_{i=1 \text{ to 3}} Z_{ii} + 2^{*} \sum_{i,j=1 \text{ to 3}} Z_{ij} \} / 3$

- Height h is height at the tower minus $\frac{2}{3}$ of the sag
- Radius r of a symmetrical bundle of N equidistant subconductors is Geometric Mean Radius: GMR = ${}^{N}\sqrt{\{\Pi_{k=1toN} d_k\}}$ with d_k distance between 1st and kth subconductor, whereas d₁=0.78*radius subconductor

Example:

- Fault at 1500 m, $t_L = 5 \ \mu s \rightarrow 100 \ \text{kHz}$ with 100 $\Omega m \rightarrow$ (imaginary) penetration depth = 25 m
- 8 subconductors, equidistant, d = 0.4 m, r = 0.0192 m \rightarrow GMR = 0.405 m
- Height conductor at tower: 73 m, sag: 20 m \rightarrow h = 60 m
- Other phase at same height, distance 20 m
- Fault at 150 km: depth 250 m \rightarrow 1 kHz (not negligible)

sag	h (m)	depth	βp (m)	Zself (Ω)	D' (m)	Zmutual
no	73	no	0	353	147	120
yes	60	no	0	342	121	108
no	73	yes	25	362	197	129
yes	60	yes	25	352	171	118

sag	h (m)	depth	βp (m)	Z1	Z 0	Z first	Zlast
yes	60	no	0	234	558	290	342
yes	60	yes	25	234	588	293	352
yes	60	yes	250	244	715	313	401

- Take a short-line fault (SLF)
 Current injection with I_{SLF}
- At source side the surge impedance is determined by all n infeeding lines: Z = Z/n
- At each side without capacitance RRRV= $Z_{eq}^* \omega \sqrt{2^* I_{SLF}}$
- Z_{eq} is independent from neutral treatment and (un)grounded faults
- Z_{eq} expressed in Z₁ and Z₀ through neptune scheme
- For the first and last clearing pole:

$$Z_{\text{first}} = 3Z_0Z_1/(Z_1+2Z_0)$$

$$Z_{\text{last}} = (2Z_1+Z_0)/3$$

$$Z_{\text{first}} \sim 0.9 Z_{\text{last}}$$

$$Z_{\text{neutral}} = (Z_0-Z_1)/3 = Z_{\text{mutual}}$$

$$Z_{\text{last}} = Z_{\text{self}} = Z_1 + Z_{\text{neutral}}$$

Last pole to open (Line side RSRV)

- To IEC 62271-100 $Z_{last} = 450 \ \Omega \ (\le 800 \ kV)$ $Z_{last} = 330 \ \Omega \ (UHV)$
- 450 Ω for single conductor or fully contracted bundle
- 360 Ω for not fully contracted bundle
- for $\ge 800 \text{ kV} 300 \text{ to } 330 \Omega$
- For first pole even lower.

Country	Size (mm ²)	Number of Conductor	Span (m)	Sub-conductor distance (mm)	Initial tension (kN)	Breaking current (kA)	Time to bundle collision, Cal. (sec)	Time to bundle collision, Exp. (sec)
Italy	520	8		450		50.0	0.166	
	410	6	45	400	34	40.8	0.140	0.110
Japan	410	6	45	400	34	53.2	0.106	0.080
	810	4	45	550	49	40.8	0.148	0.124
	810	4	45	550	49	53.2	0.114	0.090
Japan	810	8	50	400	53	50.0	0.202	
	810	8	45	400	60	50.0	0.149	

Rated voltage	conductors	frequency	condition	Ζ ₀ Ω	Ζ ₁ Ω	Z _{eq} first	Z _{eq} last
550	8*410 mm ²	60 Hz	normal	509	228	279	322
(Japan)		60 kHz	normal	444	226	270	299
		60 kHz	contract.	580	355	408	430
800	6*428	50 Hz	normal	561	258	315	359
(RSA)	mm²	27.5 kHz	normal	403	254	290	304
		27.5 kHz	contract.	509	359	398	409
1050	8*520	50 Hz	normal	485	211	260	302
(Italy)	mm²	26.2 kHz	normal	406	210	250	275
		26.2 kHz	contract.	532	343	389	406
1100	8*810	50 Hz	normal	504	236	287	325
(Japan)	mm²	25 kHz	normal	476	228	276	311
		25 kHz	contract.	595	339	396	424

Apart from bundle contraction, that has a huge influence, rough indications of the Z_{eq} reduction and addition factors:

Influence	Variation
Other poles conducting	- 10%
Earth wires	- 5% to - 10%
Double circuit on OH-line (conducting)	- 10%
Extra high towers	+ 5%
Very high towers	+ 15%
Very high earth resistivity	+ 5%
High earth resistance in substation	+ 15%
Higher frequency (shorter distance to fault)	- 5%

3-phase fault, first versus last pole:

- Fixed fault location on line
- Same fault current for last as for first pole assumed (depends on X_0/X_1 -ratio at busbar-side and at line side)
- First pole compared to last pole: somewhat lower $Z \rightarrow$ lower RRRV
- Line side last Pole• Excursion or d-factor: ratio line-
side (hf) peak value to initial (lf)
voltage: Eline/ $E_0 = \{|Ep|+|E_0|\}/E_0$
 - Roughly last pole d ≈ 1.6 theoretically first pole d ≈ 2.4 practically first pole d ≈ 2.0 (losses, different propagation speeds, etc.)
 - d-factor for first pole larger due to induced low frequency voltage but physically it is damped travelling wave phenomenon

Fault currents: green is first interrupted phase current

dl/dt of blue and red phase fault currents

Line-side TRV of first pole (blue) and (lf) induced voltage (red)

Line-side TRV without (If) induced voltage (green)

Note blue and green reference Ep/E_0

- Long line faults, covered by T10, T30 and OP
- Low fault current, relatively low RRRV
- Large time to peak, steadily increasing line-side TRV
- Relatively low frequency, large depth, relatively high Z, larger d-factors
- Last pole TRV-peak lower than first pole TRV-peak, due to lower current!

Equilibrium point on OH-line is not a fault location, so no reflection point.

At clearing OP: travelling waves along the whole line length, and possibly also along the source-side lines.

RRRV depends on out-of-phase current I_0 (out-of-phase angle θ) and on the equivalent surge impedance Zeq. For first clearing pole it will be less than 300 Ω (UHV, one circuit).

Two UHV examples from China: (1) single circuit 1100 kV pilot

Two UHV examples from China (2): double circuit 1100 kV-line

Switching off an unloaded OH-line (line-charging current switching)

Voltage along OH-line (Ferranti-effect):

 $V(x) = V_r cos\{\beta(L-x)\}$

with V_r voltage at open end, line length L, x the distance from CB at beginning of line, $\beta = \omega/c = 0.001$ rad/km (for 50 Hz), V_s=V(0) voltage at CB.

25

Switching off an unloaded OH-line (line-charging current switching)

Switching off an unloaded OH-line (line-charging current switching)

800 kV-simulation:

6. Source-side phenomena (BTF, MOSA)

- Reflections in source side connected OH-lines
- Travelling wave in parallel circuit , example Tepco, 210 km double circuit OH-line to substation with BTF

← parallel circuit switched off (1.4 ms)

A-1: no OH-lines at other end

A-2 and A-3: a double circuit OH-line at other end

case A-3 with parallel circuit \downarrow (0.8 ms): - - - -

6. Source-side phenomena (BTF, MOSA)

- Because of linearity and superposition: TRV-calculations by current injection RRRV = Zeq * dl/dt initial part of TRV = Zeq * I(t)
- Effect of MOSA, when diverting a current I_A is similar: a negative current injection - I_A(t) ΔTRV(t) = -Zeq * I_A(t)
- Seen from the MOSA: Zeq = Z/n with Z the surge impedance of a OH-line circuit and n the number of circuits
- For I_A(t) = 0 the voltage at the MOSA will be actual TRV value without MOSA interference, for instance Uc For I_A(t) ≠ 0 the voltage at the MOSA will be Uc Zeq * I_A(t)
- With m MOSA parallel $I_A(t)$ becomes $I_A(t)/m$
- So, by n>> and by m>> line becomes steeper: - - -

6. Source-side phenomena (BTF, MOSA)

7. ITRV

Travelling waves inside a substation

- Initial TRV: small triangular waveforms during first µs, due to travelling waves inside AIS substation.
- Busbar surge impedance depending on height, diameter and additional capacitance.
 Example from Indian design for 1200 kV AIS:
 - height connections and busbars are at several heights, e.g. 18 m, 38 m, 50 m diameter 1.17 m for octogonal bundle conductors (or 0.321 m for twin Al tubes) additional 1 pF/m for post insulators, 1.4 pF/m for CTs, etc. \rightarrow 20% reduction of Z
 - → Zself ≈ 260 Ω
- UHV GIS show a surge impedance of 90 Ω and equipment/bushings a large time delay, low enough to neglect ITRV
- HIS or MTS the effects of GIS-busbars beyond 15 m and equipment/bushing capacitances is so large that they can be treated as GIS
- Deadtank-breakers are to be treated as life tank
- UHV AIS gives severe ITRV stresses due to the large dimensions

- Fault gives a travelling wave that reflects after 120 m with -¹/₃ at busbar B and again after 80 m at next diameter (→ peak value)
- Fault gives a reflection after 60 m, unless left connection doesn't exist \rightarrow reflection after 220 m (1.5 µs) or more
- Fault + gives travelling waves at both sides of CB, to be compared with L90: SLF with 90% @ 450 Ω (standard for EHV) → RRRV ~ 405 Double side ITRV with, say, 75% @ 260 Ω → RRRV ~ 390

8. References

- Cigré SC A3 Session 2010, A3-102; A.L.J. Janssen, D. Dufournet Travelling waves at Line Fault Clearing and ither Transient Phenomena
- IEEE-PD, Vol.21, No.1, Jan. 2005, pp. 472-479; Taku Noda A Double Logarithmic Approximation of Carson's Ground-Return Impedance
- IPST 2011, Delft, Nr. 176, June 14-17, 2011, J.B. Gertrudes, M.C. Tavares, C. Portela[†] Transient Performance Analysis on OH-Line Considering Frequency dependent Soil Representation
- Cigré SC A3 Colloquium 2011, Vienna, A3-101; H. Ito, e.a. Background information and Study Results for the Specification of UHV Substation Equipment
- Cigré TC Symposium 2011, Bologna, 296; H. Ito, e.a. Considerations and Recommendations for the Specification of UHV Substation Equipment
- Cigré/IEC Second International Symposium on Standards for Ultra High Voltage Transmission 2009, New Delhi; WG A3.22

UHV Equipment Requirements: state of the art & prospects for equipment

- Cigré Technical Brochure 456, 2011:
 Background of Technical Specifications for Substation Equipment exceding 800 kV AC
- Cigré Technical Brochure 362, 2008:
 Technical Requirements for Substation Eqwuipment exceeding 800 kV
- Cigré Technical Brochure 408, 2010: Line fault phenomena and their implications for 3-phase short- and long-line fault clearing
- Cigré Technical Brochure 336, 2007: Changing Network Conditions and System Requirements, Part II, The impact of long distance transmission

