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Very Fast Transient Overvoltages (VFTO) 
Switching of Small Capacitive Currents with 
Gas-insulated Metal-Enclosed Disconnector Switches
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Very Fast Transient Overvoltages (VFTO) 
Rise Time
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Time duration tb of spark ignition in gas such as SF6 is 
given by TOEPLER equation:
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VFTO - Amplitude 
Principle – Case A
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VFTO - Amplitude
Principle – Case B
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VFTO - Amplitude
Principle – Damping Effect
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VFTO - Amplitude 
Principle – Real Trapped Charge

5 m
U

R = 10 Ω

UTC = -0.45 pu

5 m

U

10 m

20 m

© ABB Group 
September 28, 2012 | Slide 8

Case A Case B
Content
Introduction
VFTO
Simulation
Insulation            
Co-ordination
Damping
Summary
Conclusion



Uwe Riechert 10/04/2012

IEEE PES Switchgear Committee, 2012 
Fall Meeting 5

VFTO - Amplitude 
Traveling wave reflection – open end
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Open end reflection
 2D model
 Coaxial line
 Vs= +1 V, ZS= Z0

 ZL= ∞, (VL=  0 V)
 Simulation time: 100 ns

Coaxial line 2D model

Conductor

xuS=u(x2)uL=u(x1)

uL=u(t,x=x1)

uS=u(t,x=x2)

u(t,x)

Open end
ZL= ∞

Impedance
matching
ZS=Z0
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VFTO
VFTO versus Rated Voltages

Dependency of rated withstand voltages and calculated 
VFTO on rated voltage as per IEC 62271-203

Source: CIGRE TB 456, WG A3.22
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VFTO
Classification in High Voltage GIS Substation
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Origin
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IEC 62271-102 Annex F
Requirements for switching of bus-charging currents by 
disconnectors for rated voltages 72.5 kV and above

 Test Duty TD 1: Switching of a very short section of busbar duct

 Normal type test and mandatory for DS

 The circuits for DS testing were chosen in such a way, that 
maximum pu (per unit) values for VFT peak were generated and it 
was assumed that they would also be the highest possible in the 
GIS.

 The test circuit has to be arranged in such a way, that the measured 
peak voltage to ground without a trapped charge voltage at the load 
side and 1 pu at the source side is higher than 1.4 pu. The time to 
first peak should be less than 500 ns.
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VFTO Measurement 
Test Set-up TD 1
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VFTO Simulation
Calculation and Measurement of VFTO

 Conventional single spark 
approach

 EMTP- electromagnetic 
transient program

 The accuracy of the simulation 
model must be verified

 VFTO calculation and 
measurement when switching 
busbars with a GIS DS as per IEC 
62271-102

 without pre-charging

 with pre-charging

 The measured voltage 
progressions coincide very well 
with the simulation.
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VFTO Simulation
Extended Disconnector Model

ATP/EMTP
MODEL

uL

r = r(t,uS,uL,i)

DC Trapped Charge

uS

i

 Simulation of the entire 
process

 Consideration of the dielectric 
behavior of the DS

 Simulation of all pre-strikes 
and re-strikes

 Calculation

 Trapped Charge (DC)

 Pre- and Re-strike duration

 Number of strikes

 As basis for the insulation 
coordination
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VFTO – Full DS Operation 
Comparison of Calculation and Measurement (Tests)

 A comparison between simulation and measurement can verify the 
accuracy of the simulation.
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VFTO Simulation – Extended Model 
Calculation of Number of pre-strikes during one Closing
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VFTO Simulation – Extended Model
Trapped Charge Voltage TCV

 Use of real trapped charge behavior of the disconnector, if known.

 Otherwise the worst case assumption of a trapped charge voltage of 
-1 pu should be used for the simulation.
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VFTO Simulation – Extended Model
TCV Distribution

 The TCV distribution depends strongly on the contact speed.

 The TCV is specific for each design and could be analyzed during type 
testing or simulated with high accuracy.
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VFTO 3D Simulation 
Full-Maxwell Simulation Approach 

 Full-Maxwell simulation approach (vector FEM implemented in 
COMSOL)

 Full-Maxwell time-domain simulation approach offers the following 
advantages:

 Very fast transients can be visualized and its wave character can be 
better understood 

 Local field values are available over the 3D GIS geometry

 Critical places of the GIS design can be reliably detected

 Sensitivity study with small geometrical changes is possible

 Design optimization is possible

© ABB Group 
September 28, 2012 | Slide 20

Content
Introduction
VFTO
Simulation
Insulation            
Co-ordination
Damping
Summary
Conclusion



Uwe Riechert 10/04/2012

IEEE PES Switchgear Committee, 2012 
Fall Meeting 11

VFTO 3D Simulation 
Example
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VFTO 3D Simulation
Simulation Results
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VFTO 3D Simulation 
Experimental Verification of the Results
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VFTO Simulation 
Comparison of Simulation Methods

Conventional 
Model

Extended EMTP 
Model

3D Model

Description

One Strike  
„Worst case“

Entire process Detailed Calculation 
of GIS

Insulation 
coordination

Amplitude
Rise Time

Accuracy > 95%

Considaration of
Trapped Charge

Pre- and Re-striking
Times

Design

Visualization
Local Field Strength
Internal Mitigation

Studies
Optimization
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Insulation Co-ordination Approach
Overview according to IEC 60071-1

Step 1 Calculation of VFTO (peak 
value and rise time)

Step 2 Comparison of calculated 
VFTO values with LIWV 
level for the different 
equipment by using:

 Co-ordination factor Kc

 Safety factor Ks

 Test conversion factor Ktc

Step 3 Definition of measures 
according to the insulation 
co-ordination

System analysis
VFTO calculation 

(verified calculation 
method)

Selection of the insulation 
meeting the 

performance criterion

Application of factors to 
account for the 

differences between 
type test and actual 
service conditions

Maximum
calculated VFTO

Umax_VFTO

Trapped charge voltage 
(TCV) behavior

known

YES

YES: UTCV = - 0.3 … - 1.0 pu
NO: UTCV = - 1.0 pu

Co-ordination withstand 
voltage

Ucw_VFTO

Insulation characteristic

 Statistical distribution

 Inaccuracy of simulation

Co-ordination factor KC

KC = 1.05

Required withstand
voltage
Urw_VFTO

Correction factors

 Atmospheric correction 
factor Kt

 Aging in service

 Quality of installation

Safety factor KS

YES: Kt
External

insulation

Test conditions

Test conversion factor Ktc

Standard lightning 
impulse withstand voltage 
(LIWV)

Ktc ≤ 1
Comparison with LIWV

LIWV ≥ Urw_VFTO

No damping measures 
necessary

YES
Definition of required
damping measures

 Trapped charge behavior
 Resistance value for 

damping resistor
 Other mitigation methods

NO

NO

Evaluation of trapped

charge behavior

KS
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VFTO Co-ordination: Step 2
Comparison of calculated VFTO values with LIWV level 

 Calculation of the required VFTO withstand voltage UCW_VFTO for the 
different equipment by using:

 Co-ordination factor Kc (statistical distribution, inaccuracy of simulation, 
frequency of occurrence)   1.05 ( 1.0 … 1.1)

 Safety factor Ks (atmospheric correction, aging behavior in service, 
quality of installation)  1.15 (1.05 for air insulation)

 Test conversion factor Ktc (for a given equipment or insulation 
configuration, describes the different withstand behavior under VFTO stress 
compared to the stress with standard LI voltages)  1.0 (0.95 for SF6)

 Comparison of calculated required VFTO withstand voltage values 
with LIWV level
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Insulation Co-ordination Approach
Definition of Damping Measures 

 Definition of measures according to the insulation co-ordination

 No damping measure required

 Damping measure required

 DS with low TCV

 Damping resistor

Definition of required resistance value

 Other mitigation methods

Magnetic damping or resonators
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VFTO Mitigation – Damping Resistor 
Principles

 Arc commutation

 Series resistor (contact)

 Parallel resistor (contact)

 

 

(2) (1) 

 

(1) 

(2) 
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VFTO Mitigation – Damping Resistor 
Effect

 Italy: 110 Ω

 China, Japan, Korea: 500 Ω
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VFTO Mitigation – Damping Resistor 
Working Principle and Structure 
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VFTO Mitigation – Damping Resistor 
Requirements for the Resistor 

 Voltage withstanding characteristic and energy absorption 
capability of the resistor in case of re-strikes and pre-strikes 
between the moving contact and the arcing electrode of the 
resistor.

 A flashover across the resistor may lead to high VFTO and has to 
be avoided. A higher resistance value leads to a higher voltage 
stress across the switching resistor. The rate of rise of the voltage 
across the resistor could be very high and depends on the set-up 
and the capacitances on the load and source side.

 The thermal absorption capability of damping resistor is defined to 
withstand the thermal stress of one close-open operation. During 
the switching a lot of re-strikes or pre-strikes occur. The absorption 
energy of each strike must be added to get the whole absorption 
energy for one operation.
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Insulation Co-ordination Approach
New Mitigation Methods 

High frequency RF resonator

 Low quality factor designed 
to cover a wider frequency 
range

 Tuned to the dominant 
harmonic component

 20 % damping

Nano-crystalline material

 Placed around the conductor 

 Depending on number, 
material and size of the rings

 20 % damping
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Summary

Summarizing the different experiences an insulation co-ordination 
procedure with three steps is proposed, following the general insulation 
co-ordination approach.

The trapped charge voltage is specific for each design and could be 
analyzed during type testing or simulated with high accuracy and has to 
be used for the insulation coordination.

Required damping measures could be defined for the specific project.
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Conclusions

Everything should be as simple as it is
-

but not simpler. 

Albert Einstein
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CIGRÉ
UHV Working Groups
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(1) CIGRÉ WG A3.22: Technical Requirements for Substation Equipment 
Exceeding 800 kV – TB 362 & TB 456

(2) CIGRÉ WG B3.22: Technical Requirement for Substations Exceeding 800 kV –
TB 400

(3) CIGRÉ Ad Hoc TF of SC D1: VFTO in UHV GIS Systems

(4) CIGRÉ WG D1.36: Special Requirements for Dielectric Testing of Ultra High 
Voltage (UHV) Equipment

(5) CIGRÉ WG C4.306: Insulation Coordination for UHV AC Systems

(6) CIGRÉ WG A3.28: Switching phenomena and testing requirements for UHV & 
EHV equipment

(7) CIGRÉ WG B3.27: Field tests technology on UHV substation during 
construction and operation
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Summary
Outlook – EHV & UHV AC World Map
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RussiaCanada

USA

Venezuela

Brazil

South Africa

Italy China
Japan

South Korea
India

Source: CIGRÉ WG C4.306 / highest voltages

1050 kV – 1100 kV

735 kV – 800 kV

735 kV – 800 kV and 1100 kV – 1200 kV
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