

Continuous Current Conduction and Long Term Performance of Bare and Coated Contacts at High Temperatures

Lecture IEEE switchgear meeting 2016-04-28 Edgar Dullni

Edgar Dullni

- Basics of current conduction across contacts and connections
- Design rules for contacts and connections built of different materials
- Ageing mechanisms
- Temperature rise and ageing tests
- Behavior of connections with different coatings

Reference IEC/TR 60943: 2009 Technical committee 32: fuses

Guidance concerning the permissible temperature rise for parts of electrical equipment, in particular for terminals.

- The report is intended to supply:
 - general data on the structure of electric contacts and the calculation of their ohmic resistance;
 - the basic ageing mechanisms of contacts;
 - the calculation of the temperature rise of contacts;
 - the maximum "permissible" temperature and temperature rise for various components;
 - the general procedure to be followed by product committees for specifying the permissible temperature and temperature rise.

3

- 1. Fixed contacts = connections
 - Bolted connections
 - Connections not intended to be removed
- 2. Movable contacts
 - Sliding or rolling contacts
 - Contacts for disconnecting purposes
 - Contacts for switching purposes
 - Touching contacts in vacuum
 - Sliding contacts in gases

Current flow across bolted connections

- Real contact area
 - is smaller than the apparent contact area
 - Due to micro roughness
 - Due to oxide layers
- Real area is depending on
 - Clamping force
 - Hardness of material
 - Cleanliness of surface
 - Number of contact points

5

Real contact area

- The material deforms at the contact point in accordance to its yield strength σ_y until balance is achieved between plastic deformation force (A $\cdot \sigma_y$) and contact force F
- A is the real contact area

$$A = \pi a^2 = \frac{F}{\xi \sigma_v}$$

- F D=2a
- Yield strength can be determined from the hardness of the material:

Brinell Hardness HB or Vickers Hardness HV.

- HB is the diameter of the indentation of a metal ball on the surface (CuCr 75/25: HV=82, HB=78, σ_v =261 N/mm²)

Contact resistance

 The contact resistance is calculated from the specific resistivity and the contact radius

$$R_E = \frac{\rho_{el}}{2a} = 0,89\rho_{el}\sqrt{\frac{\xi\sigma_y}{F}}$$

- In additon, the film resistance of the surface layer (oxide etc) should be considered.
 - Mostly, oxide layers are thin (< 10 nm) and conduction is due to electron tunneling
- The contribution of the film resistance is negligible even for Al-oxides unless the contact forces are small (< 100N)

- ρ_{el}: spec. resistivity
- a: radius of contact point
- F: contact force
- ξ : flatness factor 0.3 0.6
- σ_y : yield strength in N/mm²
- σ_0 : Tunnel resistivity

Impact of several contact points on the resistance

• n parallel contact points give lower total resistance

$$\pi a_n^2 = \frac{1}{n} \pi a_1^2 \qquad \Longrightarrow \qquad R_E = \frac{1}{n} 0,89 \rho_{el} \sqrt{\frac{\xi \sigma_y}{F/n}}$$

8

Contact heating

• Heating of the contact points

$$\Delta T = \frac{1}{\sqrt{\pi\lambda\rho c}} \frac{P_{el}}{\pi a^2} \sqrt{t}$$

- T: contact temperature
- λρc: material parameters
- P_{el}: ohmic power loss
- t: duration of current flow

- Examples:
 - Continuous current 1000A and 2500N
 gives between 19 and 33K temperature rise after 10s
 - This formula cannot be applied for such long times since heat conduction through the leads in not considered.
 - Short time curent of 25 kA and 2500N gives between 3800 and 6500K after 1 s.
 - This only is an indication that the melting temperature will be probably exceeded and welding might occur.

9

Resistance as function of force for a vacuum interrupter

Hysteresis between resistance and force for bolted connections

Constriction forces

 Repulsion of closed contacts due to the electro-dynamic forces of current constriction

$$F_R = \frac{\mu_0}{4\pi} i^2 \ln\!\left(\frac{\pi \cdot r}{2a}\right)$$

- E.g. 5130 N for a peak
 current of 125 kA with r/a = 17
- F_R: repulsion force in N
- μ₀: induction constant
- r: apparent electrode radius
- a: radius of contact point

with n contact points

 $\Rightarrow F_R = \frac{\mu_0}{4\pi} \frac{1}{n} i^2 \ln\left(\frac{\pi \cdot r}{2a}\right)$

- Basics of current conduction across contacts and connections
- Design rules for contacts and connections built of different materials
- Ageing mechanisms
- Temperature rise and ageing tests
- Behavior of connections with different coatings

Design of movable contacts

- Multi-contact bands
 - Steel blade springs (band)
 - Single Ag-plated copper elements
 - Special groove
- Spiral contact spring
 - Endless spring, Ag plated
 - Cu-Beryllium or Cu–Circonium
 - Simple groove
- Finger contacts
 - Circumferential tension springs
 - or single blade springs
 - Massive Ag-plated Cu fingers
- Flexible copper bands
 - Multiple Cu-bands each 100 μm
 - Ag plated terminals possible
 2016-03-21

Comparison of aluminum and copper

	AI	Cu
Resistivity in $\mu\Omega$ cm	2,86	1,76
Yield strength in N/mm ²	220 – 350	450 – 950
(from hardness)	up to 800 for alloys	< 100 annealed
Oxidation	immediate oxidation in air, thick layer	Some oxidation (black, red)
Surface preparation	Critical, thorough brushing required	brushing recommended
Stress relaxation	Critical, within days to years	Not critical
Ageing	Can be quite fast	Stable
Corrosion protection	Silver with Cu undercoat	Silver plating

Design criteria

- Do not combine different materials in one connection
 (e.g. Ag with Al, or Al with Cu)
- Exert an appropriate contact force by using spring washers
 - To ensure the required low resistance and therefore low heating under continuous current
 - To avoid increase of resistance due to material relaxation and plastic deformation
- When using threaded holes in Al or Cu, either apply special inserts or cold formed threads.
- Apply coatings to improve the electrical properties and longevity of the connection.

- Undercoat by 10 μm of Cu or Ni needed for Al and Al-alloys
- 3 μm of Ag-coating is sufficient for fixed connections and indoor ambient conditions
- 20 µm of Ag-coating is necessary for sliding contacts and exposed outdoor ambient conditions
- Passivation by chromium compounds is possible in order to prevent tarnishing in air, Cr VI in Europe needs authorization!
- ASTM International: B700 08 Standard Specification for Electro-deposited Coatings of Silver for Engineering Use
- DIN EN ISO 4521:2008 Metallic and other inorganic coatings –
 Electrodeposited silver and silver alloy coatings for engineering purposes

Coatings (Ni)

- Plating with Nickel
 - Wear resistance is good because of high hardness
 - Used also for outdoor conditions because of good corrosion resistance
 - Higher contact resistance because of higher film resistivity

Fastening, general rules

- Use nuts and bolts with corrosion protection e.g. Zinc chromate (without Cr VI) in quality class 8.8
- When using stainless steel bolts because of exposed outdoor conditions be aware of the reduced tensile strength (class only 4.6 or 5.6)
- Use appropriate spring washers and plane washers to compensate for material stress relaxation (Al) or different elongation under temperature variations.
- Prescribe the correct contact forces (see table 1) using the correct fastening torques of bolts (see table 2)
- Use more bolts and a larger apparent contact area for higher currents
- Clean surface from oxides before assembly (important for Al)

Fastening forces and torques

- The minimum values of force related to the continuous rated current for static connections are:
- The tightening torques for steel bolts class 8.8 without grease are:
- With grease on bolts the tightening torques are much smaller, forces are equivalent.

Aluminum	60 N/A
Copper	40 N/A
Ag and Sn coat	40 N/A
Ni coat	50 N/A

	torque	force		
M12	86 Nm	39600 N		
M10	50 Nm	27100 N		
M8	26 Nm	17000 N		

- Basics of current conduction across contacts and connections
- Design rules for connections built of different materials
- Ageing mechanisms
- Temperature rise and ageing tests
- Behavior of connections with different coatings

Ageing mechanisms

- 1. Chemical reactions
- 2. Fretting wear
- 3. Force reduction
- 4. Interdiffusion
- 5. Electro migration

Chemical reactions /corrosion

- <u>Chemical reactions:</u>
 - Formation of highly resistive oxide layers or other compound layers dimishing the area of contact points
 - Galvanic corrosion of bi-metal connections (electrolyte)
 - Reduction of the real contact area and increase of contact resistance
 - In particular under severe climates in industrial areas, high humidity, salty atmosphere
 - Micro-movements of surface oxides accelerate ageing on electrically closed contacts, not on bolted connections due to much higher contact forces.

Chemical reactions /corrosion from IEC/TR 60943: 2009

 Contacts subjected to current cycles deteriorate more quickly than those carrying a constant current. These cycles result in differential thermal expansion at the contact area which leads to micro-movements of the faces in contact with each other.

Fretting wear / Force reduction

- Fretting wear
 - Wear of coatings due to abrasion with relative movements
 - Wear particles migrate between contacts and increase resistance
 - Depending on material combination, but in particular for tin-coated contacts
- Force reduction
 - Reduction of the connecting force due to relaxation of material stress, in particular for bolted connections
 - setting process, dynamic recovery, recrystallisation and grain coarsening
 - Depends on tensile strength of material, which can be increased by cold forming

Contact force reduction by material relaxation

Contact force reduction by material relaxation

2016-03-21

Intermetallic processes

- Interdiffusion
 - Formation of an intermetallic phase with different electrical and mechanical properties
 - High resistance of intermetallic phase
 - Depending on material combination
- <u>Electro migration</u>
 - Material transport under high current density and current gradients
 - Formation of micro voids
 - Diffusion of impurities and grain boundaries
 - In particular for direct current applications, but also for high alternating currents

Diffusion between Al and Ag

Microscopic examination of one point of contact between a silvercoated and a bare aluminum bus bar with a grooved contact surface

			Intermetallic compounds		
Property	ΑΙ	Ag	δ - Phase	μ - Phase	
			(Ag ₂ Al)	(Ag ₃ Al)	
<i>к</i> _{IMP} in MS∕m	36	62,9	2,9-3,1	1,7-1,9	
$\alpha_{\rm TIMP}$ in ·10 ⁻³ K ⁻¹	4	4,3	0,93-0,94	0,55-0,66	
<i>H</i> in HV	58	72	203	488	

1. Interdiffusion in the bi-metal Al-Ag

2. Oxygen diffusion through the Ag-layer

Ageing of fixed connections in air depends on

- Initial contact resistance
 - Ageing is faster, if the resistance is higher for the same assembly
- Contact material
 - No oxidation for Ag or Sn coated contacts, little oxidation for bare Cu and Ni, but high oxidation for bare Al
- Contact force
 - Reduction is faster with smaller force especially for Al due to stress relaxation
- Surface treatment
 - Grease only retards ageing, is necessary for sliding contacts
- Current flow
 - High contact temperatures accelerate ageing
- Ambient conditions
 - Fast ageing can occur in humid and SO₂ containing air

Impact of temperature on ageing from IEC/TR 60943: 2009

- Chemical reactions, oxidation, force relaxation, growing of intermetallic phases and diffusion are determined by temperature
- The Arrhenius law describes this dependence.
- When the temperature rise of a contact increases from a value ΔT_{i1} to a value ΔT_{i2}, life is multiplied by an ageing factor K_i which is expressed as function of the doubling constant Δ_i

- Basics of current conduction across contacts and connections
- Design rules for connections built of different materials
- Ageing mechanisms
- Temperature rise and ageing tests
- Behavior of connections with different coatings

2016-03-21

Temperature rise type tests

- Test is done at rated continuous current
- The temperature of all relevant and accessible points is measured by thermo couples
- The measured temperatures must not exceed the limit temperatures permitted by ANSI IEEE standards (IEC 60943)
- The ambient temperature is maximum 40°C (for higher temperatures rated current may be reduced)
- The test is stopped when the temperature rise is < 1K in 1 h
- For the recalculation of temperature and currents within a small range, one can use (determined for Cu-bars):

$$T_{total} = T_{amb} + \Delta T \qquad \qquad \frac{I}{I_{meas}} = 1.67 \sqrt{\frac{\Delta T}{\Delta T_{meas}}}$$

Temperature rise test in a switchgear assembly

Limit temperatures in Table 6 from IEC/TR 60943: 2009

- <u>Column A:</u> components susceptible to ageing, but whose rapid destruction temperature is high.
- <u>Column B</u>: components whose temperature must not exceed a certain value, otherwise very rapid destruction will occur.

Description of component		Column A Maximum temperature rise K ^u	Column B Maximum temperature °C	Remarks
		(<i>O</i> _{an} = 20 °C)	(<i>O</i> _{an} = 40 °C)	
Spring contacts	Copper and copper alloys uncoated - In OG ^t	35 ^p 75 ^q	Non-oxic	lizing gases
	- In bill Tinned In OG, NOG ^t , oli ^{b e} Silver- ^{b, s} or nickel-plated ^b	40 50	75k	(for silver
	– In OG ^t or NOG ^t – In oll For contactors, In oll	75 ^q 30	105	Deterioration of the oil
Boited connections	Copper, aluminium, and their alloys, uncoated – In OG ^t – In NOG ^t Tinned ^b In OG or NOG ^t	609 759	105	Creep point of tin
	- In oll For contactors, In oll	75 ^q	100 105	Deterioration of the oil Deterioration of the oil
Terminais ^{d, f,r}	To be connected to exterior conductors by screws or bolts Uncoated Tinned ^b Silver- or nickel-plated ^b	60 ^q 75 ^q	105	Creep point of tin

35

Temperatures permitted in continuous current tests

Joints with differently				
coated contact partners	5			
or one part is of bare				
material:				

IEC: Higher temperature limit of coated material is permitted

ANSI IEEE: Only lower temperature limit of uncoated material is permitted

Internat.	Temperature limit for connections in air (bolted or equivalent)				
standard					
	Contact partner	lemperature limit			
IEC 62271- 1:2007/A1:	Bare copper, copper alloy or 90 °C aluminum alloy				
2011	Sn-coated	105 °C			
	Ag- or Ni-coated	115 °C			
ANSI IEEE C37.100.1:	Bare copper, copper alloy or aluminum alloy	90 °C			
2007	Sn-coated	105 °C			
	Ag- or Ni-coated	115 °C			

- Fuhrmann, T. et al. "Comparison between nickel and silver as coating materials of conductors made of copper or aluminum used electric power engineering, 27th ICEC, 2014
- Fuhrmann, T.; Schlegel, S. et al. "Investigations on stationary electrical joints with a bare and a silver or nickel coated contact partner regarding the permissible temperature limit according to ANSI IEEE and IEC, 60th IEEE Holm Conference on Electrical Contacts, 2014
- Schlegel, S. "Langzeitverhalten von Schraubenverbindungen mit Stromschienen aus Reinkupfer in der Elektroenergietechnik unter besonderer Berücksichtigung der Temperatur", PhD thesis, TU Dresden, 2011
- S. Schlegel, S. Großmann, H. Löbl, M. Hoidis, U. Kaltenborn, T. Magier - Joint resistance of bolted copper - copper busbar joints depending on joint force at temperatures beyond 105 °C 56th IEEE Holm Conference on Electrical Contacts, 2010

Evaluation of long-term behavior

Quality of a joint is evaluated by the performance factor $k_{\rm u}$

Edgar Dullni

A Folie 38

Procedure for long-term tests

Long-term test arrangements at high temperatures

Arrangement with continuous current (CC)

• Both arrangements are equivalent !

• Difference is that with continuous current a runaway effect occurs at the end, since the temperature of the joint increases due to resistance AND power dissipation increase.

Constant temperature in oven (OV)

- Basics of current conduction across contacts and connections
- Design rules for connections built of different materials
- Ageing mechanisms
- Temperature rise and ageing tests
- Behavior of connections with different coatings

Specification of coating materials for long-term tests at UNI Dresden

Bulk material	Nickel* coating		Silver coating		
of bus bars	types		intermediate layer		
	Ni-1 Ni-2		without	Cu	Ni-2
Cu-ETP R300**			×		
Cu-ETP R250	×	×			
AI99,5	×	×		×	×
AIMgSi0,5	×	×		×	×

* Difference between nickel coatings is the galvanic coating process

Silver-coated and Nickelcoated copper (115 °C)

DRESDEN

Silver-coated and Nickelcoated copper (115 °C)

Connections with silver or nickel-coated copper are long-term stable

- > no tendency of degradation over the observed duration
- For Ag-coating, tests prove that connections are stable even at 140°C over more than 30000 h
- Good performance with both sides or one side coating
- For this combination, the higher temperature of silver or nickel coated copper is appropriate !
- Abrasive treating and cleaning of the bare copper surface is recommended, however not crucial.

Silver-coated aluminum (115 °C)

Silver-coated aluminum (115 °C)

Connections with silver-coated aluminum on one side only and bare aluminum are not long-term stable !

- IEC and ANSI IEEE allow this combination
- However, in a short time this combination would fail at 115°C
- For this combination, even the lower temperature of bare aluminum might be too high.
- Brushing and greasing of the bare Aluminum surface needs to be applied, however is not crucial.

Explanation for failure of one side Ag-coated Al

Formation of intermetallic compounds at the small contact-spots between silver-coated and bare aluminum (AI-Ag)

Therefore a Cu undercoat needs to be applied always

Formation of an oxide layer between Al-substrate and silver coating

Further investigations are needed to explain resistance increase

Nickel-coated aluminum (115 °C)

DRESDEN

Nickel-coated aluminum (115 °C)

Advantage of connections with nickelcoating compared to silver-coating of aluminum:

- Good performance irrespective of both sides or one side nickel coating
- However, performance depends on type of nickel coating !
- > Also, Nickel-coating has a high film resistance

Summary of experience of TU Dresden

Connections with only one side coated material

(IMC means Inter-Metallic Compound)

	Bimetal	Long-	term behavior at 115 °C	Long-term behavior at 140 °C		
	system	Eval.	Comments	Eval.	Comments	
	1 Ag 2 Ni-1 3 Ni-2 Cu	~	No IMC in these bimetal systems	✓	No IMC in these bimetal systems	
	Cu Sn Cu	✓	Thin IMC-layer → not critical		Slightly increased R_J (IMC) \rightarrow not critical so far	
	AI 1 Ni-1 2 Ni-2 AI	\checkmark	<i>R</i> _J has remained constantly low		Slightly increased R _J	
	AI 1 Cu / Ag 2 Ni-2 / Ag AI	×	Unstable (presumable O ₂ – Diffusion)	×	Unstable (presumable O ₂ – Diffusion)	
2016-03-21 Edgar Dullni					DRESDEN	

Proposal for IEC and IEEE standards

- The application of one side silver-coated aluminum should not be allowed.
- The application of one side nickel-coated aluminum can be allowed up to the higher limit temperature of the coating.
- The application of one side silver- or nickelcoated copper should be allowed up to the higher limit temperature of the coating.

»Wissen schafft Brücken.«

