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Abstract—Part orientation is a necessary first step for many
machining and manipulation tasks. We investigate a sensorless
method for steering a sphere in its 5D state space despite model
perturbations that scale the sphere diameter by an unknown
but bounded constant. The controllers we investigate consist of
motion paths. We demonstrate solutions to this problem under
two actuators, then show how this method can be extended to
control schemes requiring no actuators.

I. INTRODUCTION

In this paper we consider the problem of steering a sphere to
a desired configuration despite model perturbations that scale
the sphere diameter by an unknown but bounded constant.
We focus on the sphere because it is a ubiquitous elementary
component in manufacturing. Additionally, sphere manipu-
lation through rolling is a canonical example of a non-flat
nonholonomic mechanism.

A. One Sphere

Consider the sphere on a plane that rolls without slipping.
Such a sphere has an x, y location and an orientation in
SO(3). We describe its configuration by g = (x, y,R) and its
configuration space G = R2×SO(3). The differential system
is

d x(t)

dt
= u,

d y(t)

dt
= v,

dR(t)

dt
= R(t)

 0 0 −u/r
0 0 v/r
u/r −v/r 0

 (1)

Here R(t) is the rotation matrix in SO(3), u, v are the control
functions and r is the sphere radius. The problem is to mini-
mize 1

2

∫ T

0

(
u2 + v2

)
dt over all possible solution curves of (1)

satisfying the boundary constraints gstart = (x(0), y(0), R(0))
and ggoal = (x(T ), y(T ), R(T )), gstart, ggoal ∈ G. This
formulation uses the velocity of the center of the ball, [u1, u2]
as control inputs. Depending on the nature of the problem,
the inputs might be subject to minimum turning radius and
the constraint g(t) ∈ Gfree to consider collision avoidance.

B. Ensemble Control of Spheres

We will solve this motion planning problem, but under a
model perturbation that scales the sphere diameter by some
unknown, bounded constant, i.e. ractual = rε, ε ∈ [1−δ, 1+δ].
However, rather than try to steer a single sphere governed by
the perturbed kinematic model, our approach is to steer an

Fig. 1. Nine spheres, with radius [0.5, . . . , 1.5] roll down identical grooves,
shown in blue. All spheres finish with a net rotation of ≈ π about their y-axis.

uncountably infinite collection of spheres parameterized by ε,
each governed by the exact kinematic model

d x(t, ε)

dt
= u,

d y(t, ε)

dt
= v,

dR(t, ε)

dt
= R(t, ε)

 0 0 −u/(rε)
0 0 v/(rε)

u/(rε) −v/(rε) 0

 (2)

Following the terminology introduced by recent work in
control theory [1], [11]–[15], we call this fictitious collection
of spheres an ensemble and call the model (2) an ensemble
control system. The idea is that if we can find open-loop inputs
u(t) and v(t) that result in g(0, ε) = gstart and ‖g(T, ε) −
ggoal‖ ≤ µ for all ε ∈ [1 − δ, 1 + δ], then we can certainly
guarantee that the actual sphere, which corresponds to one
particular value of ε, will be steered from the start to the goal.

One optimization problem then is to minimize

1

2

∫ T

0

(
u2 + v2

)
dt (3)

over all possible solution curves of (2) under the constraint
that ‖g(T, ε)−ggoal‖ ≤ µ, ∀ε ∈ [1−δ, 1+δ] for some µ > 0.

If we want the sphere rolling to be driven by gravity, it
would be convenient to constrain [u, v] ∈ R+.

A solution to (3) is not included in this note. A proof
of controllability and an algorithm for steering an ensemble
toward a goal orientation as a function of ε in SO(3),R(ε)goal
is given in section III-A of [16]. Interestingly, this algorithm
is in-place such that ∆x = ∆y = 0. Therefore, to get to a
goal [x, y,Rgoal] ∈ R2 × SO(3) requires only first rolling
about the world y-axis to the desired x position, followed
by a roll about the world x-axis to the desired y position.
These two movements generate some rotation R(ε)x,y . Since



the algorithm in III-A of [16] is in-place, we can apply it to
generate the rotation (R(ε)x,y)

−1
R(ε)goal and we have the

full solution. Note that a different solution based on Fourier
coefficients is given by Pryor in [21], [22]. Neither of these
feasible solutions is proven to be optimal.

II. RELATED WORK

A. part orientation

We are motivated by progress in sensorless part manip-
ulation, particularly the work of [8] and [4] showing that
simple actuators are often sufficient to robustly orient a wide
array of planar objects without using sensors. These works
employed a tray that could be tilted in two axis [8] and
parallel-jaw grippers [4] . These methods exploit differences
in part geometry. Robustly orienting the rounded surface of a
sphere offers special challenges due to its inherent symmetry.

B. sphere manipulation

Manipulation of spherical objects by rolling has been inves-
tigated in depth by members of the math, control, and robotic
manipulation community.

This research can be traced to Brocket and Dai who
analyzed an approximation of the problem and determined
the optimal controller for this approximation [3]. Jurdjevic
determined the optimal shortest length paths, showing that the
optimal solution curve minimizes the integral of the geodesic
curvature and that these curves are solutions to Euler’s elastica
problem [10]. Li provided a symbolic algorithm for steering
the system [17], Marigo gave a numeric algorithm [18], and
Oriolo and Vendittelli presented an iterative approach for sta-
bilizing the ball-plate system [20]. Robotic ball-plate systems
solutions have been implemented [2], [18]. Choudhury and
Lynch showed that a single degree of freedom manipulator was
sufficient for orienting the sphere, and designed a successful
experiment consisting of an elliptical bowl mounted on top
of a linear motor with the bowl primary axis oriented 45
degrees from the linear motor orientation [6]. This problem
has produced several practical stabilizing controllers [5], [7],
[19].

Svinin and Hosoe extended the problem for ball-plate
systems with limited contact area [24], [25]. This enables
manipulations of objects with spherical portions.

C. ensemble control

We are motivated by the work on ensemble control in [11]–
[15]. These works studied the controllability properties of the
Bloch equations, a unit vector in R3. The sphere, which moves
in R× SO(3) adds both position and the full rotation matrix
to the problem.
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