
Toward a Lifelong Motion Planning System that Learns from
Experience

Dmitry Berenson Pieter Abbeel Ken Goldberg

University of California, Berkeley, Berkeley, CA
{berenson, pabbeel}@eecs.berkeley.edu, goldberg@berkeley.edy

One of the long-standing goals of research in robotics
is to create a robot whose ability to do a task improves
as the robot performs similar tasks. Consider a mobile
manipulator operating in a domestic environment. A common
task for such a robot may be to bring the user an item from
the kitchen’s cupboard. The motion planning capabilities
required for such a task are non-trivial: the robot must be
able to operate in a complex and changing environment that
imposes a variety of constraints on the robot’s motion. The
robot must also be able to solve a given query within a
reasonable amount of time. The most common approaches
to solving such tasks is to plan with no prior knowledge of
the task and the environment; a planning algorithm is only
given the robot and environment models and the start and
goal configurations, and asked to generate a path. While this
approach, which we term planning-from-scratch, is general,
it can produce unacceptably long planning times for difficult
problems. Even if the robot previously generated a path for
a very similar task, planning-from-scratch affords no way to
take advantage of this previous computation.

Our current work seeks to create a system for planning
paths in high-dimensional spaces that is able to learn from
experience, with the aim of minimizing computation time.
This system is intended for use on mobile manipulators
such as the PR2 as well as in robotic surgery. We seek to
create a system which leverages the generality of planning-
from-scratch to produce solutions in situations the robot
has not encountered previously and the efficiency of re-
using previous experience in situations similar to previously-
encountered ones. Our goal is to integrate these two ap-
proaches to create a system that is both general and efficient.

I. OVERVIEW

To this end, we are currently implementing a system that
is based on a teacher-student model. In this system, we run
two modules in parallel: a state-of-the-art general planner
(the teacher), and the algorithm that re-uses previous paths
(the student). Given a new query, both modules are started
simultaneously and the first path produced by either module
is executed on the robot while the other module is stopped.

If the teacher was the first to produce a path, this means
that the student did not have a path sufficiently appropriate
for the given query. Thus, to improve the student’s perfor-
mance on similar queries, we add the path produced by the

teacher to the student’s path library. If the student produces
a path before the teacher, then the student has already
surpassed the teacher’s ability on the given query, so there is
no need to add the student’s path into the library if we are
only interested in surpassing the teacher. However, there may
be some situations where the teacher’s performance is quite
poor, and simply surpassing the teacher is not sufficient in
terms of computation time. Thus, if the student was the first
to produce a path and that path was significantly different1

from the path it chose to re-use, we add that path to the
student’s path library. In this way, the student is able to
surpass the teacher’s performance on difficult problems while
not cluttering the path library with redundant paths.

This system architecture has several advantages. First,
we do not need to arbitrarily pre-generate some number of
paths before running the system. The student can start with
an empty path library and build that library as the robot
performs its intended tasks. This is a significant advantage
because it may be difficult to envision the types of tasks
and environments the robot encounters before it actually
encounters them.

Also, if we consider sampling-based motion planning,
there can be a huge benefit in terms of computation time for
difficult problems. Consider the reaching-into-the-cluttered-
cupboard example described above. This is a typical narrow-
passage problem, and solving such problems with sampling-
based planners is usually quite time-consuming. However,
since the geometry of the kitchen cupboard does not change
between queries, previously-computed paths will be very
close to valid (we only need to avoid the changing clutter
in the cupboard, not navigate into the tight space of the
cupboard). Thus the system will be able to solve the query
much more quickly than a sampling-based planner.

Finally, a major advantage of this system is that it is
lifelong; i.e. we can continue to run the system over the
lifetime of the robot, even as the robot transitions between
tasks. We loose nothing when transitioning to a new task
because, in the worst case, we will always perform as well
as the teacher, which is a state-of-the-art planner.

In the following sections we provide a description of our
implementation of the student and teacher modules of the
system. We emphasize that this is only one embodiment of

1We use Dynamic Time Warping to evaluate path similarity.



the system and that there are many ways to implement these
modules. However, in our evaluations, these implementations
performed the best in terms of computation time.

II. TEACHER MODULE

We implement the teacher module as a BiDirectional RRT
(BiRRT). This method is known for its fast planning times
and a wide array of enhancements have been presented on
how to make the algorithm more efficient. These enhance-
ments can be used to create multiple teacher modules that all
train the student by simply generalizing the rule for adding
a new path to the library: If any teacher succeeds before the
student, all other teachers and the student are stopped and
the path is added to the student’s library. Such an approach
would of course require more computational resources, and
may benefit from off-board computation.

III. STUDENT MODULE

There are two core parts to the implementation of the
student module:

1) Selecting an appropriate path
2) Transforming this path into a feasible one
Of course, these steps are linked, and the efficiency of

the second depends highly on the first. One issue that
complicates selecting an appropriate path is that the paths
in the library will not, in the general case, start and end at
the appropriate configurations. We can amend this by simply
connecting the endpoints of the paths to the given start and
goal by straight lines. Once we do this, we need to decide
which path is most likely to yield the fastest computation in
the second step.

We employ a heuristic to inform this decision, which
assumes that the amount a given path violates the constraints
of the environment correlates with the time necessary to
transform the path into a feasible one. This heuristic is
motivated by our implementation of the second step.

If we had sufficient computational resources, we would
evaluate how much each path in the library violates the
constraints of the task and environment, i.e. how much the
path is in collision and/or violates a kinematic constraint,
and select the least-violating path. However, evaluating all
the paths in a library is quite time-consuming and thus
impractical for large libraries.

Thus we employ a second heuristic, which first selects n
paths from the library based on their distance to the start and
goal and then evaluate the violation of those n paths. The
motivation for this heuristic is that the larger the segments
we need to connect the end-points of path to the start and
goal, the more chance there is to violate constraints. We’ve
found that this heuristic produces good results in practice
and allows us to save a great deal of computation time.

After selecting an appropriate path, the student then trans-
forms this path into a feasible one. Again, there are many
methods in motion planning and even trajectory optimization
that are capable of this task. Since our aim is to minimize
computation time, we use what we believe to be the fastest
approach: repairing the path using multiple BiRRTs. This

PR2 in Kitchen Laparoscopic Heart Surgery

Fig. 1. Examples of smoothed paths generated by the teacher and student
modules for two tasks (only the path of the end-effector is shown). Red:
Path chosen from path library. Green: Path produced by the student. Light
Blue: Path produced by the teacher. The student generated its path faster
than the teacher in both of these examples.

method is also general, in that it is guaranteed to find a
solution if one exists. The implementation of this method is
as follows:

First, we check each point in the discretized path for
constraint violation. Any segments of the path that do not
violate constraints are preserved. To get from one valid
segment to another, we run BiRRT, whose start tree is rooted
at the end of one valid segment and whose goal tree is rooted
at the beginning of the next valid segment. The composit
path consisting of originally-valid path segments and path
segments produced by the BiRRT is then returned as the
path.

Finally, it is important to note that both the teacher
and student modules do not consider path quality in their
computation. To optimize the quality of the path, the path
of whichever module succeeds first is then passed to a
path optimizer before execution. Again, there are many path
optimization methods that could be used, and our current
implementation uses a short-cut smoother. Examples of
smoothed paths produced by the teacher and student modules
for two tasks are shown in Figure 1.

IV. SUMMARY

In summary, we have described our ongoing work in
creating a system for planning paths in high-dimensional
spaces that is able to learn from experience. Our goal
in this work is to produce feasible paths while incurring
minimal computation time on practical planning problems
for manipulators. Our system leverages the generality of
planning-from-scratch to produce solutions in situations the
robot has not encountered previously and the efficiency of re-
using previous experience in situations similar to previously-
encountered ones. Our approach consists of a teacher-student
framework, where the student stores examples generated by
the teacher in its path library, depending on the student’s
performance. As a task is performed more often, the student
can re-use paths from the library to achieve computation
times that are better than those of the teacher. We are cur-
rently evaluating the performance of our system on domestic
manipulation tasks using the PR2 robot and on surgical tasks
for a laparoscopic surgery robot.


