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Abstract— We propose to design new algorithms for motion
planning problems based on the Domain Subdivision paradigm
but coupled with numerical primitives. Although weaker than
exact algebraic primitives, our primitives are complete inthe
limit. Our algorithms are practical, easy to implement, and
have adaptive complexity. A simple but useful example of our
approach is presented here.

. INTRODUCTION @ (b)

A central problem of robotics is motion planning [5].
In the early 80's there was strong interest in this problem
among computational geometers [3]. This period saw the in-
troduction of strong algorithmic techniques with comptexi
analysis, and the careful investigation of the algebraic dheplacementof R, ata be the sety[a] comprising those
space. We introduced the retraction method [7], [11] int@oints inR? occupied byR, in configuration. Call a afree
motion planning. In a survey of algorithmic motion planningconfiguration ifRy[a] N2 is empty. LetF'ree(Ro, (2) denote
[12], we first established the universality of the retraatio the set of free configurations. Aotion from « to 3 is a
method. This method is now commonly known as the roagiontinuous mag: : [0,1] — Free(Ro,(2) with 1(0) = «
map approach, popularized by Canny [1] who showed that if&d u(1) = 6.
algebraic complexity is in single exponential time. Typica Consider the problem of computing a motion frento 3.
of Computational Geometry, these exact motion planninghe best exact solution is based on roadmaps (i.e., regracti
algorithms assume a computational model in which exaépproach). Historically, the case= 2 was the first exact
primitives are available in constant time. Implementingséa roadmap algorithm [7]. For polygond®, the roadmap is
primitives exactly is non-trivial (certainly not constaimhe), €efficiently computed as the Voronoi diagram of line segments
involving computation with algebraic numbers. In the 90's[13]. Ford = 3, an exact solution is not practical: the exact
interest shifted back to more practical techniques, such ¥gronoi diagram of polyhedral objects is a highly non-taivi
the probabilistic roadmap method (PRM) [4]. current topic of research (e.g., [2]).

In this paper, we propose new algorithms based on In our subdivision approach, the main data structure is a
the classic subdivision paradigm, combined with numericgubdivision tree (see Figure 1). T is a subdivision tree
primitives. Probabilistic forms of our approach can serge aooted at a boxBy, then its set of leaves is a collection of
an alternative to PRM. Our solutions are practical as wefiubboxes that forms subdivision of By, i.e., the interiors
as theoretically sound. The basic paradigm is to iterativelof any two subboxes are disjoint, and their uniorBis Let
subdivide an initial configuration domaiB, C R¢ (given Split(B) denote the unique subdivision @ comprising
as a box) into subdomains. This process grows a subdivisifi congruent subboxes. Boxes are considered as closed
tree rooted a3, by expanding carefully chosen leaves. Insets of full dimensioni. Two boxesB, B’ are adjacent if
2-D Euclidean space, such trees are known as quadtrees/&8 B’ is a faceF of B or of B’. The dimension off" is
illustrated in Figure 1(b). Examples of our approach may bexactly 1 less than that of8. Given any pointa € By,

Fig. 1. (a) Subdivision of a region (yellow). (b) Its Subdign Tree

found in related recent work (e.g., [8], [10], [6], [14]). let Boxr(a) denote any leaf box off that containsc.
A box B is classified as (iffree if B C Free(Ro, ),
Il. SUBDIVISION MOTION PLANNING (i) blocked if B N Free(Ry,Q2) = 0, and (iii) mixed

In this section, we illustrate our approach with a basi@therwise. Initially, assume a “box predicat€”to perform
motion planning problem. Fix a rigid robdt, C R¢ and an this classification: for any bo®B, C'(B) returns the desired
obstacle sef C R?. Both R, and( are closed sets. Initially value in {FREE, BLOCKED, MIXED}. Given a subdivision _tree
assumeR, is a d-dimensional ball of radius, > 0. In this 7 |6t V(7) denote the set of free leaves Tn We define
case, the C-space d, is R%. If a is a configuration, let @n undirected grapléz(7) with vertices V(7) and edges

connecting pairs of adjacent free leaves. We maintain the
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We associate witty” a priority queue) = Q7 to store and radius of boxB respectively, where(B) is the distance
all the mixed leaves. LeT .getNext() remove a box in  from m(B) to any corner ofB. Also, let D,,(r) denote
of the highest “priority”. This priority is discussed below the closed ball centered at with radius». We maintain
Assume a subroutine to “expand” any bBxe @ as follows: with each boxB the setS(B) of features that intersect
the expansion fails and returns false if the size bfis D, p)(ro + 7(B)). We call B simple if either [SO] its set
smaller than a specified toleranee> 0. Otherwise, each S(B) of the maintained features is empty, or [$3]> r(B)
B’ € Split(B) is made a child of3 in 7. If B’ is free, we and some feature intersects the ball, g (ro — r(B)). We
updateV’(7) and its union-find structure; iB’ is mixed, we now define the approximate predicaﬁeij B is non-simple,
insert B into Q. Finally we return true. Now we are readythen C(B) = FAIL; if [S1] holds, thenC(B) = BLOCKED;
to present a simple but useful exact subdivision algorithmotherwise, [S0] holds and clear}y is either free or blocked.
But how do we decide? In factC(B) = FREE (resp.,
BLOCKED) iff D, (g (ro + r(B)) is exterior (resp., interior)
relative to the obstacl€). To distinguish these two cases,
we just check the wall features maintained in the parent box
p(B) of B (noting thatS(p(B)) is non-empty). To do this
check, we may assume that each walk oriented so that we
know (locally) which side ofv is insidef). We see that (1)
is extremely easy to implement and (2) it is an approximation
of C. To complete our scheme, whél{B) = FAIL (i.e., B
is non-simple), we puB to @) for future expansion.

EXACT FINDPATH:
Input: Configurationsa, 3, tolerancee > 0, box By € R,
Output: Path froma to 8 in Free(Ro,2) N Bo.
Initialize a subdivision treg with only a rootBy.

1. While (Box7(«) # FREE)

If (Expand Boz7(«) fails) Return("Noe-Path”).
2. While (Boxr(3) # FREE)

If (Expand Boz7 () fails) Return("Noe-Path”).
3. While (Find(Boxr(«a)) # Find(Boxr(53)))

If Q1 is empty, Return("Nce-Path”)

* B «— T.getNext() | ‘ ~
ExpandB Conclusion. In the full paper, we explore variants 6f.
4. Compute a pattP from Bozr(a) to Boxr (). Our general philosophy can be extended to more complicated
Return®) C-spaces such a§F(2) and SE(3) and non-holonomic

The pathP in Step 4 is easy to generate in this frameworlplanning' Co_mbined with sqitabl’é*.getNextQ heuristicsZ
(as noted, this aspect is a big win over pure algebraﬁlf'e complexity of our algorithms can be highly adaptive.

methods). The routing .getNext() in Step (*) is not fully We plan to implement and compare our method with other

specified, but critical. To ensure completeness, a sim proaches, including those with exact predicates and- prob

solution is to return any mixed leaf of minimum depth 2Pilistic approaches.

Completeness means thdt there is a free motion, our
algorithm would find a free path if is small enough.But
there are many other interesting heuristicsToget N ext():
If getNext() is random, we could view this asform of the
probabilistic roradmap methodf getNext() always returns
a mixed box that is adjacent to a free box in the connectegs]
component oBoz7 («), we get a form of Dijkstra’s shortest-
path algorithm. Another idea is to use some entropy cr'Lteria[4]
Recent work on shortest-path algorithms in GIS road systems
offers many other heuristics. We will explore all these. -
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Il. WHAT IS NEW?

Subdivision algorithms in motion planning were employed
in, e.g., [9]. So subdivision alone is not a novelty. Our[7]
use of Union-Find is quite interesting since the operationﬁs]
are extremely fast. But our true interest lies in relaxing th
assumption of an exact predicatéB). Let C'(B) be a box
predicate that returns a value §RREE, BLOCKED, FAIL}. We
say thatC' approximates C' if (1) it is safg i.e., C(B) #
FAIL implies C(B) = C(B), (2) it is convergent i.e., if
{Bi:i=1,2,...,00} converges to a configuration and
C'(v) # MIXED, thenC(B;) = C(v) for large enough.

We now design an approximate box predio@assuming
Q) is a polyhedral set, and the boundaryfefis partitioned
into a simplicial complex comprising open cells of each13]
dimension. These cells are calléshtures of Q2. Ford = 3, (4]
the features of dimensiorts 1,2 (resp.) are calledorners,
edgesand walls. Let m(B) andr(B) denote its midpoint
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