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Although one of the fundamental problems in robotics,
the motion planning problem is inherently hard from a
computational point of view. In particular, the piano movers’
problem [1], [2] is known to be PSPACE-hard, which implies
that any algorithm aimed to solve this problem (with com-
pleteness guarantees) is expected not to scale well with in-
creasing number of dimensions of the configuration space. In
fact, the computation time required by well-known complete
algorithms scale exponentially with the dimensionality of the
configuration space in the worst case [3], which makes them
impractical, e.g., in motion planning problems for robotic
arms with several joints.

The optimal motion planning problem is known to be sig-
nificantly harder computationally when compared to finding
just a feasible solution, even when the dimensionality of
the configuration space is fixed. In particular, it is known
that the optimal motion planning problem is NP-hard for a
point mass moving among polygonal obstacles in a three di-
mensional configuration space [4]. Early research on motion
planning during 1980s has involved optimal motion planning
algorithms only with limited success [5], [6], [7]. However,
especially after the emergence of a deeper understanding of
the computational complexity of the problem during the late
1980s, the community shifted towards designing algorithms
that can quickly find feasible solutions, usually with no
optimality guarantees.

Among others, sampling-based algorithms, first proposed
by Kavraki et al. [8] in the mid-1990s under the name of
Probabilistic RoadMaps (PRMs), have become one of the
first practical approaches to address problems that involve
high-dimensional configuration spaces. A few years later,
LaValle and Kuffner [9] have focused on online settings
and systems with differential constraints, and proposed the
Rapidly-exploring Random Tree (RRT) algorithm, which is
arguably one of the most widely-used motion planning algo-
rithms as of today. Both the PRM and the RRT algorithms
are shown to be probabilistically complete in the sense that,
loosely speaking, the probability that the algorithm returns
a solution, if one exists, converges to one as the number
of samples approaches infinity; In fact, the probability that
these algorithms fail to return to a feasible solution, when one
exists, converges to zero exponentially fast [9], [10]. Beyond,
their theoretical guarantees, these planners have also been
shown to perform well in practice. In particular, planners
based on the RRT have been implemented on various robotic
platforms and showcased in major robotics events [11].
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During the last decade, sampling-based algorithms have
benefited from the increasing computational power embed-
ded in commodity personal computers, allowing these al-
gorithms to find feasible solutions to challenging problem
instances within very short execution times. Encouraged
by the success of sampling-based planners, recently many
researchers have started revisiting the optimal motion plan-
ning problem, this time in the context of sampling-based
algorithms [12], [13], [14].

Non-optimality of the trajectories returned by the RRT,
however, was long known to practitioners. Indeed, LaValle
and Kuffner [9] note in their seminal paper describing the
RRT that “it is obvious that the generated trajectories are
not optimal, even within their path (homotopy) class.” This
empirical observation has been formalized very recently
by Karaman and Frazzoli [14] who have shown that the
probability that the RRT converges to an optimal solution is
in fact zero. In the same paper, Karaman and Frazzoli have
also introduced the concept of asymptotic optimality, which
amounts to almost-sure convergence to optimal solutions
with increasing number of samples. They have also proposed
a new algorithm, called the RRT∗, with the asymptotic opti-
mality property. Surprisingly, the asymptotic computational
complexity of the RRT∗ algorithm is the same as that of
the RRT algorithm. That is, the RRT∗ algorithm achieves
asymptotic optimality, which the RRT algorithm lacked, with
no substantial computational overhead when compared to the
RRT. See Figure 1 for a comparison of the two algorithms in
an illustrative example. The authors have also introduced an
efficient asymptotically-optimal variant of PRM, called the
PRM∗, and an incremental version of the PRM∗, called the
Rapidly-exploring Random Graph (RRG) algorithm. In their
paper, Karaman and Frazzoli [14] also establish concrete
links between sampling-based motion planning algorithms
and the theory of random geometric graphs.

From a practical perspective, a salient feature of
asymptotically-optimal incremental sampling-based algo-
rithms, such as the RRT∗, is their anytime flavor: the algo-
rithm provides a feasible solution quickly and improves this
solution towards an optimal one if allowed more computation
time. The RRT∗ algorithm has recently been implemented
on various robotic platforms including robotic cars [15] and
manipulation platforms [16] that feature up to fourteen-
dimensional configurations spaces. The results presented in
these references are illustrated in Figures 2 and 3. Exper-
imental results indicate that the difference in computation
time between the RRT and the RRT∗ is not very large, e.g.,
less than a factor of two, although the quality of the final
solution differs significantly [16]. Moreover, it was shown



by Bialkowski et al. [17] that this difference in computation
time can be marginalized by intelligent use of massive par-
allelization on dedicated parallel computing hardware such
as general purpose Graphics Processing Units (GPUs). More
recently, the RRT∗ algorithm was implemented for complex
dynamical systems such as race cars, and it was shown that
the trajectories generated by the RRT∗ algorithm resemble
those used by expert race car drivers [18].

Most importantly, the algorithms proposed by Karaman
and Frazzoli [14] have made it possible to attack novel
classes of problems that could not be handled using incre-
mental sampling-based algorithms, such as the RRT, before.
For instance, the RRT∗ algorithm was used to solve a class
of pursuit-evasion games with probabilistic completeness and
probabilistic soundness guarantees [19], while the RRG algo-
rithm was used to solve motion planning problems with com-
plex task specifications given in the form of deterministic µ-
calculus [20]. These new algorithms also inherit the anytime
flavor, which allows practical real-time implementations.

Looking forward, several indicators are present to predict
that the next decade will experience another significant
increase in the amount of affordable computational power,
which will likely be based on massively parallel computa-
tional architectures such as general purpose GPUs. Being
amenable to parallel implementations [21], [17], sampling-
based algorithms are likely to largely benefit from this trend.
Hence, it is likely that a significant research effort will
be devoted to asymptotically-optimal motion planning using
sampling-based algorithms as well as to addressing novel
problems in an efficient manner using such algorithms.

This poster presentation outlines fundamental results, open
problems, and conjectures regarding asymptotic optimality
of sampling-based algorithms, and presents novel problem
domains that can be handled by variants of the new algo-
rithms. Fundamental results include a through analysis of
several sampling-based algorithms from the perspective of
asymptotic optimality and computational complexity. Open
problems include convergence rates and lower bounds, which
we present partial results on. New problem domains include
differential games, planing with complex task specifications,
and also novel planning under uncertainty problems that in-
volve continuous-time continuous-space models with Brow-
nian process noise. Finally, the presentation also points out
novel connections between sampling-based motion planning
and the theory of random geometric graphs.
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Fig. 1. A comparison of the RRT and RRT∗ algorithms. The obstacles are shown in red, the tree is shown in blue, the goal region is
shown in magenta, and the minimum-cost path is highlighted with red. The top three figures show the RRT algorithm at iterations 1000,
3000, and 10000. The bottom three figures show the RRT∗ algorithm at the same stages.

(a) (b) (c)

Fig. 2. Paths traversed by the RRT and the RRT∗ algorithms in a real-time planning scenario for an autonomous car-like robot are shown
in Figures (a) and (b), respectively. The obstacles are shown in red, and the goal region is shown in green. The robot is shown in Figure
(c).

(a) (b)

Fig. 3. Path planning for the PR2 robot for both arms (12-dimensional configuration space). The plans generated by the RRT and the
RRT∗ algorithm are illustrated in Figures (a) and (b), respectively. The robot starts with both arms under the table; the goal is to reach
the pre-grasp pose in which the hands point towards the cup.


