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Abstract— This work, initially presented in [1], considers
motion planning for nonlinear robotic systems operating in
constrained environments. Motivated by recent developments in
sampling-based motion planning and Monte Carlo optimization
we propose a general randomized path planning method based
on sampling in the space of trajectories. The idea is to construct
a probability distribution over the set of feasible paths and
to perform the search for an optimal trajectory through
importance sampling. At the core of the approach lies the
cross-entropy method for estimation of rare-event probabilities.
The algorithm recursively approximates the optimal sampling
distribution which guides the set of sampled trajectories to-
wards regions of progressively lower cost until converging to a
delta distribution at the optimum. Our main goal is to provide
a framework for consistent adaptive sampling correlating the
spatial structure of trajectories and their computed costs. We
also illustrate how the method can be useful for constructing
roadmap vertex sampling densities which are approximately
optimal with respect to the resulting trajectory cost.

I. INTRODUCTION

Consider a robotic vehicle with state x ∈ X controlled
using actuator inputs u ∈ U , where X is the state space
and U denotes the set of controls. The vehicle dynamics is
described by the function f : X × U → TX defined by

ẋ(t) = f(x(t), u(t)), (1)

which is used to evolve the vehicle state forward in time. In
addition, the vehicle is subject to constraints arising from
actuator bounds and obstacles in the environment. These
constraints are expressed through the vector of inequalities

F (x(t)) ≥ 0, (2)

for all t ∈ [0, tf ], where tf > 0 is the final time of the
trajectory. The goal is to compute the optimal controls u∗

and time t∗f driving the system from its initial state x0 ∈ X
to a given goal region Xf ⊂ X , i.e.

(u∗, t∗f ) = argmin
u,tf

∫ tf

0

C(u(t), x(t))dt,

subject to ẋ(t) = f(x(t), u(t)),

F (x(t)) ≥ 0, x(0) = x0, x(tf ) ∈ Xf

(3)

for all t ∈ [0, tf ] and where C : U ×X → R is a given cost
function.

II. PROBLEM FORMULATION

A trajectory recording the controls and states over the time
interval [0, tf ] is denoted by the function π : [0, tf ] →
U × X , i.e. π(t) = (u(t), x(t)) for all t ∈ [0, tf ]. The
space of all trajectories originating at point x0 and satisfying
the dynamics is denoted P . Consider a finite-dimensional

parametrization of trajectories in terms of vectors z ∈ Z
where Z ⊂ Rnz is the parameter space. Assume that the
parametrization is given by the function ϕ : Z → P
according to π = ϕ(z) ≡ ϕz . The (control, state) tuples
along a trajectory parametrized by z are written as π(t) =
ϕz(t). Define the cost function J : Z → R according to

J(z) =

∫ tf

0

C(ϕz(t))dt.

Problem (3) can now be equivalently restated as finding the
optimal t∗f and (x∗, u∗) = ϕ(z∗) such that

z∗ = arg min
z∈Zcon

J(z), (4)

where Zcon ⊂ Z satisfies the constraints (2) and the final
boundary conditions.

III. CROSS-ENTROPY OPTIMIZATION

A. Estimation of Rare-Event Probabilities

Our approach is based on importance sampling in the
space of trajectories Z . Assume that Z has a pdf p(·; v̄)
belonging to some parametric family {p(·; v), v ∈ V}
where v̄ is the true or nominal parameter. It is natural to
consider an importance density q from the same family.
Its optimal parameter v is found through the optimization
minvD(q∗, p(·, v)) where D is the Kullback-Leibler (KL)
or cross-entropy (CE) distance. Consider the estimation of
the probability ` that a trajectory z ∈ Zcon sampled from
p(·; v̄) has a cost J(z) smaller than a given constant γ, i.e.

` = Pv̄(J(Z) ≤ γ) = Ev̄[I{J(Z)≤γ}], (5)

where I{·} is the indicator function. It is approximated by

ˆ̀=
1

N

N∑
i=1

I{J(Zi)≤γ}
p(Zi; v̄)

p(Zi; v)
,

where Z1, ..., ZN are i.i.d. samples from p(·, v). In order to
determine the optimal v the CE approach [2] leads to

v̂∗ = argmax
v∈V

1

N

N∑
i=1

I{J(Zi)≤γ} ln p(Zi, v), (6)

where Z1, ..., ZN are i.i.d. samples from p(·, v̄). The problem
is that when {J(Z) ≤ γ} is a rare event, ˆ̀will be incorrectly
estimated as zero!

The idea behind the CE method is to employ a multilevel
approach using a sequence of parameters {vj}j≥0 and levels
{γj}j≥1. At the end the sequence converges to the optimal
v∗ which then can be used to estimate the integral ˆ̀correctly.
The procedure starts by drawing N samples Z1, ..., ZN using



an initial parameter v0, for instance v0 = v̄. Let % be a small
number, e.g. 10−2 ≤ % ≤ 10−1. The value γ1 is set to
the %–th quantile of H(Z), i.e. γ1 is the largest number
for which Pv0(H(Z) ≤ γ1) = %. The level γ1 can be
computed approximately by sorting the costs of the samples
J(Z1), ..., J(ZN ) in an increasing order, say J1 ≤ ... ≤ JN ,
and setting γ̂1 = Jd%Ne. The optimal parameter v1 for level
γ̂1 is then estimated using (6) by replacing γ with γ̂1. In
summary, each iteration of the algorithm perform two steps,
starting with v0,

1) Sampling and updating of γj : Sample Z1, ..., Zn from
p(·, v̂i−1) and compute the %-th quantile γ̂t.

2) Adaptive Updating of vj : Compute v̂j such that

v̂j = argmin
v∈V

1

|Ej |
∑
Zk∈Ej

ln p(Zk; v), (7)

where Ej is the elite set, i.e. for which J(Zk) ≤ γ̂j .

IV. MOTION PLANNING ALGORITHM

We now construct a general motion planning algorithm
based on the cross-entropy method. We choose to represent
the importance density using a Gaussian mixture model since
it is a compact way to encode a rich set of trajectories across
multiple homotopy classes.

The parameter space is V = (Rnz × R(n2
z+nz)/2)K ×

RK with elements v = (µ1,Σ1, ..., µK ,ΣK , w1, ..., wK)
corresponding to K mixture components with means µk,
covariance matrices Σk and weights wk. The number of
mixture components K is chosen adaptively (see e.g. [3]).
Even the simplest case with K = 1 is capable of solving
complex multi-extremal problems globally. The complete
algorithm is summarized below. [h]

Algorithm 4.1: CE Motion Planning
1) Choose initial trajectory samples Z1, ..., ZN so that the

set P̂ = {ϕZi
}Ni=1 approximates (sparsely) the set of

feasible trajectories over X ; Set j = 0 and γ̂0 =∞
2) Update v̂j using (7) (e.g. by EM) over the elite set
Ej = {Zi | J(Zi) ≤ γ̂j}

3) Generate samples Z1, ..., ZN from p(·, vj)|Zcon and
compute the %–th quantile γ̂j+1 = Jd%Ne

4) If a stopping criteria is met then finish, otherwise set
j = j + 1 and goto step (2)

V. LINKS TO SAMPLING-BASED MOTION PLANNING

It is interesting to note that the CE approach effectively
constructs a sequence of parametric models of sets of pro-
gressively “better” trajectories, i.e. with decreasing costs.
Since a trajectory is a set of states this model can also be
regarded as a density over the state space X . A state x ∈ X
has a high importance density, say pX (x), if it belongs to a
trajectory ϕz ∈ P with high density p(z). Such a sampling
density is defined as

pX (X; v) = η · max
Z∈Zcon

{p(Z; v) | X ∈ κ(ϕZ)}, (8)

where X is a random variable over X and η > 0 is a
normalizing constant. For instance, the lower plots of Fig. 1
show the evolution of pX restricted to the position space of a

double-integrator vehicle example. The cost function in this
example is C(u, x) = ‖v‖ + λ‖u‖2, where v is velocity, u
is acceleration input, and λ is a scaling factor.

Thus, sampling-based motion planning (SMP) can be
combined with cross-entropy importance sampling (IS) to
develop a consistent way for balancing between exploration
and exploitation, respectively, dictated by the following prop-
erties:
• SMP: efficient exploration, but slow optimality,
• IS: fast convergence, but needs many feasible samples.
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We conclude by proposing the following algorithm:
Algorithm: Cross-Entropy PRM

1) Sample states {Xi ∼ pX }NX
i=1

2) Connect {Xi}NX
i=1 to graph G

3) Update pZ using elite trajectory set from G
4) Sample trajectories {Zi ∼ pZ}NZ

i=1
5) Update pX using the set {ϕ(Zi)}NZ

i=1
6) Terminate, e.g. when pZ is close to delta, otherwise

goto (1). REFERENCES

[1] M. Kobilarov, “Cross-entropy randomized motion planning,” in Pro-
ceedings of Robotics: Science and Systems, Los Angeles, CA, USA,
June 2011.

[2] R. Y. Rubenstein and D. P. Kroese, Simulation and the Monte Carlo
Method. Wiley, 2008.

[3] M. A. F. Figueiredo and A. K. Jain, “Unsupervised learning of finite
mixture models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 3, pp. 381–396, 2002.



0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

S

G

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G 0
.0

2

0.0
2

0.02

0
.0

2

0.02

0.02

0.0
4

0.04

0.04
0.04

0
.0

6

0.06

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G
0.02 0.02

0.0
2

0
.0

2

0.02

0.02

0.02

0.02

0.0
2

0
.0

4

0.0
4

0
.0

4

0.04

0.04

0.04

0.04

0.04

0
.0

4

0
.0

6

0.0
6

0
.0

6

0.0
6

0
.0

6
0
.0

6

0.0
8

0.08

0
.0

8 0.1

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G
0
.10
.1

0
.1

0.1

0
.1

0.2

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S

G

0.2

0
.2

0.2
0.2

0
.4

0.4

iteration #1 iteration #2 iteration #3 iteration #4
Fig. 1. The first four iterations of the CE algorithm 4.1, i.e. j = 1, ..., 4, applied to a double-integrator vehicle among obstacles. The upper plots show
the sampled trajectories ϕ(Z1), ..., ϕ(ZN ) and the current optimal path ϕ(z∗) (dashed). The lower plots visualize p(·, v̂j) as the level sets of another
density over the (x, y)-position space. The density of each point corresponds to the density of the best trajectory passing through it. The algorithm starts
from a nearly uniform state space exploration and converges towards a delta distribution at the global optimum.


