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Abstract— Here we consider a pragmatic sample-based mo-
tion planning approach for a robot operating in a fixed, range-
only beacon field. We define and calculate entropy values for
regions of interest and provide a method for finding “safe,” risk
averse, low-entropy paths between these regions. We include an
experimental, real-world assessment of the approach.

I. INTRODUCTION

Given the widespread prevalence of wireless sensor net-
works for automated data acquisition and control purposes,
many industrial environments will have a priori, statically
deployed wireless devices that can be used by a mobile robot
for navigation purposes.

Here we propose a pragmatic, sample-based motion plan-
ning approach that allows a mobile robot to exploit infor-
mation provided by wireless devices already present in the
environment. We seek to identify safely navigable regions
and routes in the instrumented environment that enable the
robot to successfully execute its tasks. By safely navigable
regions, we mean areas where the robot’s pose uncertainty
is relatively low. We use the term navigation graph to
refer to a set of paths between safely navigable regions.
We assume only that the robot can: 1) determine a range
estimate to beacons in the environment and 2) use odometry
information to aid its pose estimate. For our initial studies we
designed and built a custom range-based navigation system
using a low-cost off-the-shelf commercial robot and wireless
components.

Sampling based motion planning approaches based on the
classic paper of Kavraki et al. [1] aim to build a road map
consisting of collision free configurations in the configuration
space of a robot moving in an obstacle-cluttered environ-
ment, with free configurations joined by edges that corre-
spond to collision-free positions. A large body of literature
elaborates this approach (see [2] ch. 5). The objective is
primarily to find a collision free path. Our approach likewise
precomputes a map; however, the objective is to find good
paths, via randomly sampled intermediate locations, between
regions where the robot is expected to travel. The “goodness”
of a path is determined by a measure of robot localization
ease and likelihood of traversing the path successfully.

Many graph model approaches to path planning use ver-
tices to represent cells in a cell decomposition of config-
uration space or physical space [2]. If cell adjacencies are
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known, and methods for moving within a cell are available,
then finding a path becomes a graph theoretic problem.
Graph edges may be weighted, and shortest-path algorithms
can be used. By contrast, our graph theoretic model does not
decompose the physical space. Instead, the graph associates
vertices with regions within which the robot can be localized
accurately and to which the robot will often be commanded
to travel. Edges in the graph are associated with reasonably
reliable routes between the regions. Thus, the focus is not
on finding a path, but rather, on finding what we call a
navigation graph, i.e., a reliable set of paths that connect
regions of frequent operation for the robot.

II. NAVIGATION GRAPH CONSTRUCTION

We consider the problem of constructing a navigation
graph G = (V,E) for a beacon-instrumented environment.
The vertices V = R ∪ Γ of G represent regions of interest
in the environment. Our regions of interest include both
initially provided operating regions R in the environment that
the robot will be expected to visit frequently during routine
operations, and additional random locations Γ′ (from which
Γ is selected to form V ) that allow the robot to navigate
between the operating regions using straight-line transits.
The edges E = {eij} of G represent paths through the
environment, weighted in proportion to the cost of the path
between the two neighbouring vertices. Once a cost-weighted
navigation graph is constructed for an environment, it can be
used for fast, on-line path planning.

To construct a navigation graph we:
1) Estimate a discretized entropy map of the environment;
2) Sample candidate navigation locations (x, y) to form

Γ′;
3) Estimate the navigation cost (risk) between each pair

of locations in R ∪ Γ′;
4) Produce an initial navigation graph G′ in which the

vertices are R ∪ Γ′;
5) For each pair of operating regions ri, rj ∈ R find the

lowest cost path pij ;
6) Construct a final navigation graph G = R ∪ Γ using

P =
⋃

pij .
A fundamental input to our approach is a beacon model

that specifies when the range to a beacon can typically be
obtained and what error is associated with a range estimate.
Additionally, an entropy map of the environment must be
computed as a function of the beacon locations. This can be
accomplished by precomputing an estimate for the entropy
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Fig. 1. a) estimated entropy throughout the region; black stars depict beacon locations b) a path of minimum entropy; higher entropy is represented by a
darker shade c) full navigation graph; black stars depict beacons, red circles operating regions, and black lines low entropy paths.
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Fig. 2. (a) iRobot Roomba instrumented with navigation components and
(b) time-difference-of-arrival ranging beacon.

of the probability distribution for the robot’s position at fixed
locations throughout the environment; e.g. see [3].

Given the discretized entropy map Z of the environment,
we find a set of paths that connect our operating regions
R. Motivated by classical sample-based motion planners,
e.g. [4], we uniformly sample N candidate points from our
environment. We then assess paths through these points for
robot navigation purposes. Similar to the approach of finding
minima in a potential field, our approach tends to select paths
through low entropy regions to improve navigation.

Given the N sampled points Γ′ and the original operating
regions R, we obtain a set of vertices V ′ = Γ′ ∪ R and
compute the pairwise navigation cost wij between each pair
i, j of vertices; i.e. we assign a weight to the undirected edge
eij . Our weight calculation takes as input: 1) the entropy that
would be observed in the PDF of the robot if it were able
to execute a straight line transit between the vertices i and
j and 2) the distance between i and j:

wij ≈
∫
eij

f(H(x))dx

where H(x) returns the value for the grid square in the
entropy map Z that contains x, and f is some cost function.

Once the pairwise costs among all vertices in V ′ are
computed, the lowest cost path pij is found between each
pair of operating regions ri, rj ∈ R. The final navigation
graph G consists of the union of all the edges and vertices
in this collection of paths between all operating regions.

III. PRELIMINARY RESULTS

We have implemented a simulation framework to evaluate
our navigation graph algorithm. We model the beacons as

angular sections radiating from the beacon location with
fixed range. Figure 1 shows the result of one simulation
result from a trial with 10 randomly placed beacons and 10
randomly placed operating regions. Beacons are represented
as blue stars, navigation locations are black crosses, and
operating regions are red circles.

Experimentation on hardware (Figure 2) using our
navigation system demonstrates the successful fusion
of range data obtained from the beacons into our state
estimation system. Due to the poor quality of the odometry
data, range data are essential; without the range data,
the error in the position estimate grows to the point that
the robot cannot successfully navigate a standard office
environment. Within a beacon-instrumented laboratory of
60 square meters, the robot could successfully execute
predefined sequences of moves and avoid major obstacles.

IV. CONCLUSION AND OPEN PROBLEM

Here we have considered navigation issues for a robot
carrying out routine tasks in an environment instrumented
with range-only beacons. We have aimed at finding low-
entropy routes among predefined regions in the environment.
In future work we will incorporate into our current frame-
work algorithms that use various environmental parameters
for localizing purposes [5].

More generally, we ask how to build on the empirical
success of sample-based algorithms to plan and execute high-
quality paths for error-prone systems guiding robots through
real-world environments.
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