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Abstract—Asymptotically optimal motion planning algo-
rithms guarantee solutions that approach optimal as more
iterations are performed. Nevertheless, roadmaps with this
property can grow too large and unwieldy for fast online query
resolution. In graph theory there are algorithms that produce
subgraphs, known as spanners, which have guarantees about
path quality. Applying such an algorithm to a dense, asymp-
totically optimal roadmap produces a sparse, asymptotically
near optimal roadmap. Experiments performed on geometric
problems in SE(3) show that a large reduction in roadmap
edges can be achieved with a small increase in path length
(Fig. 1). Online queries can be answered faster with similar
results in terms of path quality. Additional time savings result
from applying the spanner algorithm incrementally so edges
that do not increase path quality will never be added to the
roadmap and will not be checked for collisions.

I. INTRODUCTION
Roadmap planners [1] utilize an off-line phase to build

up knowledge about the configuration space (C-space). PRM
attempts to connect sampled configurations to either a fixed
number, k, of nearest neighbors or all configurations within
a fixed radius ball centered at the new configuration. Higher
quality paths can result from constructing larger, denser
roadmaps that better sample C by investing more prepro-
cessing time. However, it has been shown that a PRM using
a fixed k will not converge to the optimal path [2].
The k-PRM∗ algorithm minimizes the number of neighbors

each new sample has to be connected to while increasing
path quality over time (i.e., asymptotic optimality) by making
k a logarithmic function of the roadmap size. Roadmaps
constructed with this variation will almost surely converge to
an optimal solution [2]. While such roadmaps are desirable
for their high path quality, their large size is problematic.
Large roadmaps impose significant costs during storage,
transmission, and query resolution. In order to relax opti-
mality requirements while producing sparser roadmaps it is
possible to use graph spanners, a tool from graph theory [3].
A graph spanner is a sparse subgraph. Given a weighted

graph G = (V,E), a subgraph GS = (V,ES ⊂ E) is
a t-spanner if, for all pairs of vertices (v1, v2) ∈ V , the
shortest path between them in GS is no longer than t times
their shortest path in G. Because t specifies the amount of
additional length allowed, it is known as the stretch factor of
the spanner. There are many algorithms in the literature for
constructing graph spanners, each with their own properties.
This work presents two approaches for integrating k-PRM∗

with graph spanners. In the first approach, the randomized
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Fig. 1. An asymptotically near optimal solution provides a large decrease
in roadmap density and solution query time. The larger the stretch factor, the
sparser the roadmap. These results are averaged over 1000 random queries
on 10 runs of 50,000 vertex roadmaps. The k-PRM∗ algorithm corresponds
to a stretch factor equal to 1.

(2k − 1)-spanner algorithm [4] was chosen for application
after a dense roadmap was constructed. This alternative
provides optimal stretch along with reasonable size and linear
time complexity. However, this algorithm operates on the
entire graph and can not be applied incrementally as the
dense graph is being constructed. In the second approach, an
algorithm with slightly worse time complexity is interleaved
with roadmap construction so that the entire dense roadmap
need not be held in memory all at once.

II. SEQUENTIAL APPROACH
The sequential approach [5] can be broken down into two

parts. First, a dense roadmap is constructed using k-PRM∗

and then passed through the randomized (2k − 1)-spanner
algorithm. This makes the roadmap sparse by removing
edges that do not contribute much to path quality. Without
the path quality guarantees provided by k-PRM∗, there would
be no guarantees on the path quality of the sparse roadmap.
Results for 100 random queries on roadmaps with 20,000

vertices show significant reduction in roadmap density and
query resolution time with small increases in path quality.
1) Space Requirements: While each spanner contains the

same vertices as the original roadmap, the space required for
connectivity is reduced by up to 85%. Environments with
a more connected free space had a larger reduction in the
number of edges because fewer are needed for connectivity.
2) Path Quality: The length of the resulting paths in-

creases as the number of edges in the spanner is reduced. For
random start and goal configurations, the extra cost is smaller
than the worst case guaranteed by the spanner algorithm.
Path quality degradation in the spanner roadmap is plotted

in Fig. 3 as a function of the original path length and k. The
worst degradation happens for short paths, where taking a
detour of even a single vertex can increase the path length
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Fig. 2. By adjusting the stretch factor parameter, IRS provides a range of trade-offs between roadmap density and solution quality. From left to right,
the stretch factors shown are 6, 4, 3, 2.5, 2, 1.75, 1.5, and 1.25. Note that IRS with a stretch factor of 1 is equivalent to k-PRM∗.
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Fig. 3. Mean path length degradation as a function path length with 20,000
vertices. Larger stretch factors result in fewer edges and longer paths. The
largest path degradation occurs at smaller path lengths.

by a large factor. The path length for the 17–spanner (k = 9)
in this experiment increases by up to 200% for paths that
were originally short. The mean increase is less than 25%.
3) Query Resolution Time: This time includes the effort

to connect the start and goal to the roadmap and perform
an A∗ search. The connection time is only affected by the
number of vertices in the roadmap. Since each spanner has
the same number of vertices as the original roadmap, the
discrete search dominates the query resolution time for large
roadmaps. Reducing the number of edges in the roadmap
lowers the query resolution time by up to 75%.

III. INCREMENTAL APPROACH
The Incremental Roadmap Spanner (IRS) [6] takes the

idea of the sequential approach one step further by interleav-
ing roadmap and spanner construction. When the algorithm
adds an edge, the spanner algorithm can reject it before the
edge is checked for collision and added to the roadmap.
The method used to filter edges is the same used by the

the naı̈ve greedy spanner algorithm [3] and Useful Cycles
[7]. A length-limited graph search is used to determine if
an existing path between two neighbors is no more than t
times the weight of the proposed edge. If so, the edge is
rejected. This criterion is applied during k-PRM∗ construction
before an edge is checked for collision. If an edge is filtered,
the expensive collision check step for this edge is avoided.

Otherwise, the k-PRM∗ algorithm is unchanged. The density
of the roadmap is reduced, resulting in lower space require-
ments and query resolution time. Additionally, construction
time is reduced by up to 50 percent. Fig. 1 shows the result
of applying this approach in one environment.
For each query, there was a simple attempt at path smooth-

ing. Nonconsecutive vertices on the path that were near each
other were tested for connectivity. If they could be connected,
then the path is shortened by removing intervening vertices.
This greedy and local method for smoothing brought the
quality of paths on the sparse graph closer to that on the
dense graph making the IRS approach even more favorable.

IV. DISCUSSION
This work shows that it is practical to compute sparse

roadmaps in C-spaces that guarantee asymptotically near
optimal paths. The experiments suggest that these roadmaps
have considerably fewer edges than k-PRM∗, while result-
ing in little degradation in path quality. The stretch factor
parameter allows this trade-off to be tuned (Fig. 2).
Vertices that do not improve path quality could be re-

moved, but previous work on this idea provides no guarantees
on the resulting path quality [8]. Future work will investigate
how to filter nodes while providing path quality guarantees.
Finally, it is important to study whether roadmap spanners
can guarantee the preservation of the homotopic path classes
[9]. Homotopic classes tend to be preserved by the spanner
because their removal has significant effects in path quality.
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