
Sampling-based Motion Planning with High-Level Discrete Specifications

Erion Plaku

Abstract— Motion planning has generally focused on com-
puting a collision-free trajectory to a goal region. Enhancing
the ability of robots in manipulation, automation, medicine, and
other areas, however, often requires richer task specifications.
Toward this goal, we study the problem of computing a
collision-free trajectory that satisfies task specifications given by
Finite Automata, STRIPS, Linear Temporal Logic, and other
logic models. We propose to combine sampling-based motion
planning with discrete planning. The search for a solution
trajectory is conducted simultaneously over the continuous
space of motions and the discrete space of the task specification.
In this search, discrete plans guide motion planning as it extends
a tree consisting of collision-free trajectories, while information
gathered from motion planning is used to further improve the
discrete plans. As a result of this interplay, the approach is able
to selectively sample and explore those continuous regions and
discrete plans that allow it to significantly advance the search
for a trajectory that satisfies the task specification.

I. INTRODUCTION

Motion planning has generally focused on the problem
of computing collision-free trajectories to a goal region.
Enhancing the ability of robots to act on their own requires,
however, richer task specifications. This is true in applica-
tions ranging from manipulation and automation to robotic-
assisted surgery and safety validation in hybrid systems. Such
applications pose significant challenges as they require plan-
ning at multiple levels of discrete and continuous abstractions
since these applications involve, on the one hand, an abstrac-
tion into discrete, logical steps, each of which may require,
on the other hand, substantial continuous motion planning to
carry out. Progress in this direction requires addressing the
combined discrete and motion-planning problem∗:

Given a discrete specification ∆ grounded in the
physical world, plan the continuous motions so
that the resulting robot trajectory is dynamically
feasible, avoids collisions, and satisfies ∆.

Toward this goal, we propose to treat the combined prob-
lem of discrete and motion planning as a search problem over
both the discrete space of actions and the continuous space
of motions [10], [11]. Conceptually, the approach consists
of a continuous and a discrete planning layer which work in
tandem to effectively compute a trajectory that satisfies ∆.

II. DISCRETE SPECIFICATIONS

Drawing from AI, the approach allows for high-level
discrete specifications to be given as Finite Automata, Linear

Department of Electrical Engineering and Computer Science, Catholic
University of America, Washington DC 20064. Email: plaku@cua.edu

∗This problem has been the subject of much research in recent years
[1]–[7], see also various IROS and ICRA workshops on bridging the gap
between high-level tasks and motion planning

Temporal Logic (LTL), and Planning Domain Definition
Languages (e.g., STRIPS). These specifications are built
in terms of propositions, predicates, Boolean and temporal
connectives, and action schemas.

Propositions express general statements, e.g., “robot has
grasped the object,” “needle is in the target area.” Predi-
cates express relations among objects, e.g., ON(book, table),
INCONTACT(needle, tissue). Propositions and predicates can be
combined with Boolean connectives, such as ¬(not), ∧(and),
∨(or), or temporal connectives such as X (next), U(until),
F(eventually), G(always). For example, the specification “the
robotic car, after inspecting a contaminated area A should
immediately go to the decontamination station B and then
eventually go to one of the base stations C or D” can be
expressed as an LTL formula G(πA → (X (πB) ∧ F(πC ∨
πD))), where πi, i = A,B,C,D is true iff the car enters i.

We can also consider action schemas A = (vars, pre, post),
as in STRIPS, which specify discrete changes in the world
and are defined in terms of object variables, a precondition
that must hold before execution, and a postcondition that will
hold after execution, e.g.,
(:action GraspObject(?R ?obj)
:pre (and (ROBOT ?R) (OBJECT ?obj) (NEAR ?R ?obj))
:post (GRASPED ?R ?obj))

Discrete specifications could be also given by finite au-
tomata, where each automaton state corresponds to a set of
predicates and each edge corresponds to a discrete action that
transforms the discrete state of the world according to the
automaton states that it connects. More details about discrete
specifications can be found in standard AI books [8], [9].

III. SEMANTICS OVER CONTINUOUS SPACES

The semantics of propositions and predicates are defined
over the continuous space S, which consists of a collection of
continuous variables that describes the world. As an example,
the predicate ON(book, table) holds iff the book is actually
on the table. This interpretation of which predicates actually
hold at a continuous state provides a mapping mapS7→Q from
the continuous space S to the discrete space Q.

Similarly, trajectories over S give meaning to the actions
in the discrete specification. A trajectory over S is a contin-
uous function ζ : [0, T ] → S , parametrized by time. As
the continuous state changes according to ζ, the discrete
state, obtained by mapS7→Q, may also change. As a result,
the trajectory ζ follows a discrete action a if mapS7→Q(ζ(0))
satisfies a’s precondition and mapS7→Q(T ) satisfies a’s post-
condition. In this way, a continuous trajectory ζ satisfies a
discrete specification if it maps to a sequence of discrete
actions [ai]

n
i=1 that transforms the world from its initial



discrete state to a discrete state that satisfies a given formula
φgoal. The problem statement is then to compute a continuous
trajectory ζ that satisfies a given discrete specification.

IV. SIMULTANEOUSLY SEARCHING THE
DISCRETE AND THE CONTINUOUS SPACE

Drawing from the success of sampling-based motion plan-
ning, the approach uses a tree T as the basis for conducting
the search in the continuous space S. Initially, T contains
only its root, i.e., the initial state sinit ∈ S . As the search
progresses, T is extended by adding new branches, where a
new branch is created by selecting a vertex s ∈ T and then
generating a trajectory ζ : [0, T ] → S that starts at s.

The computational efficiency of the tree search depends
on the ability of the motion planner to effectively extend
T along those directions that lead to the computation of
a trajectory that satisfies the discrete specification. Discrete
planning is then used to find such directions. In particular,
the discrete planner groups the tree vertices according to
mapS7→Q, i.e., Γq = {s ∈ T : mapS7→Q(s) = q}, and adds
an edge from Γqi to Γqj if there is a tree branch from a state
si ∈ Γqi to a state sj ∈ Γqj . This provides a mapping Γ of
T from the continuous space to the discrete space.

Consider one such group Γq ∈ Γ. Discrete planning is used
to determine a sequence of discrete states that transforms
the world from q to qgoal. Let q = q1, q2, . . . , qn = qgoal be
one such sequence, referred to as a discrete plan. A solution
trajectory ζ can then be constructed from the discrete plan
by extending T so that it reaches Γq1 , . . . ,Γqn in succession.
In this way, the discrete plan [qi]

n
i=1 provides a feasible

direction along which the motion planner can attempt to
extend T during the search for a solution trajectory ζ.

Note that there is a computational cost associated with
each attempt of the motion planner to extend T according to
the given discrete plan [qi]

n
i=1. Moreover, this computational

cost varies due to the system dynamics and interactions with
the environment. In some cases, it may not even be possible
to extend T along the direction indicated by the discrete
plan. Therefore, since the computational cost of the discrete
plans are not known a priori, an important aspect of this
work relates to the development of effective cost estimations
COST : [qi]

n
i=1 → R>0 associated with each discrete plan

[qi]
n
i=1. We can measure the progress made in extending T to

reach Γq1 . . . ,Γqn , the coverage of each Γ(qi) by states in T ,
the time spent extending T , and other quantities that provide
valuable information in estimating the cost of a discrete plan.

During discrete planning, the cost estimates are used to
select more frequently less costly plans. This provides the
greedy component to the search by guiding it along directions
that are estimated to quickly lead to a solution trajectory. To
balance greedy with methodical search, more costly plans
are not completely ignored, but are selected less frequently.

In this way, discrete planning and motion planning work
in tandem. On one hand, discrete planning guides motion
planning during the search for a solution trajectory. On the
other hand, information gathered during motion planning is
used to update the cost estimates of the discrete plans. As a

result of this interplay, the overall approach is able to make
proper use of the computational time by selectively sampling
and exploring those continuous regions and discrete plans
that allow the approach to significantly advance the search
for a collision-free and dynamically-feasible trajectory that
satisfies the overall discrete specification.

V. FUTURE WORK AND OPEN PROBLEMS
An objective for future work is to further improve the

interplay between discrete and motion planning. We are also
working on adapting the approach to real robotic platforms.
This will allow us to tackle increasingly complex problems
arising in robot manipulation, medicine, and automation.

Another challenge is to develop efficient and provably cor-
rect algorithms that offer formal guarantees about complete-
ness and overall performance when solving the combined
discrete and motion-planning problem. Note that probabilis-
tic completeness, which guarantees a solution will be found
with probability approaching one, is as strong a guarantee
as we can except given that motion planning is undecid-
able when combined with discrete logic [12]. To achieve
probabilistic completeness, we need to extend reachability
arguments to show that the approach systematically searches
the space of discrete actions and continuous motions.

ACKNOWLEDGMENT
This work is supported in part by the School of Engineer-

ing’s Burn’s Fellowship.

REFERENCES

[1] R. C. Arkin, “Integrating behavioral, perceptual and world knowledge
in reactive navigation,” Robotics and Autonomous Systems, vol. 6, pp.
105–122, 1990.

[2] D. W. Payton, J. K. Rosenblatt, and D. M. Keirsey, “Plan guided
reaction,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 20,
no. 6, pp. 1370–1372, 1990.

[3] A. Saffiotti, K. Konolige, and E. H. Ruspini, “A multivalued logic
approach to integrating planning and control,” Artificial Intelligence,
vol. 76, no. 1-2, pp. 481–526, 1995.

[4] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion,” IEEE
Robotics and Automation Magazine, vol. 14, no. 1, pp. 61–71, 2007.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Tem-
poral logic motion planning for dynamic mobile robots,” Automatica,
vol. 45, no. 2, pp. 343–352, 2007.

[6] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” Int. J. Robot. Res., no. 1,
pp. 104–126, 2009.

[7] K. Hauser and J.-C. Latombe, “Multi-modal motion planning for non-
expansive spaces,” in Int. Work. Algo. Found. Robot., Guanajuato,
Mexico, 2008.

[8] S. Russell and P. Norvig, Artifical Intelligence: A Modern Approach,
2nd ed. Prentice Hall, 2002.

[9] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: theory
and practice. Morgan Kaufmann, 2004.

[10] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic
action planning with geometric and differential constraints,” in IEEE
International Conference on Robotics and Automation, Anchorage,
AK, 2010, pp. 5002–5008.

[11] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of LTL safety
properties in hybrid systems,” in Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes in
Comp. Sci., vol. 5505, York, UK, 2009, pp. 368–382.

[12] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theor. Comp. Sci., vol. 138, no. 1, pp.
3–34, 1995.


