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Abstract— We propose a robust planning algorithm to reject
visual-motor outliers and address uncalibrated visual servoing
in unstructured settings. The proposed framework is built
on the success and efficiency of the sampling-based planners
while incorporating robustness to outliers in both planning and
control.

I. INTRODUCTION

Planning for vision-based robot control in unstructured en-

vironments is an open challenging problem, because models

are not known a priori and sensor measurements contain

outliers. The planner should be efficient, while building

robustly on raw sensory-motor data.

Path planning has been applied to address some classic

problems in visual servoing [1], the real-time motion control

of robots using visual feedback (see Kazemi et al. [2] for a

recent survey). Most existing path planning approaches in vi-

sual servoing improve the convergence of the visual servo for

distant goals by avoiding visual, physical, or joint constraints.

However, they usually consider calibrated robot/cameras with

known scene/target models. These strong assumptions are not

realistic for operation in unstructured environments. Only

a handful of papers consider an uncalibrated robot/camera

system without using the 3D target model [3]–[5]. Early

approaches [3] are limited and cannot be generalized to more

realistic unstructured environments. Other methods [4], [5]

rely on partial scene reconstruction or homography interpo-

lation, which are ill-posed problems with an unknown scene

model. Sampling-based planning is a fairly new approach to

improve visual servoing performance [6]–[8]. However, they

rely on having an accurate model of the obstacle. In addition,

none of these methods consider noise and outliers in visual

measurements.

We consider a manipulator with an eye-in-hand configu-

ration, planar points on the target object, and planar points

on the obstacle environment without using their geometric

model. We propose a new algorithm built on the Rapidly-

Exploring Random Tree (RRT) planner. Our proposed al-

gorithm works in the visual-motor space to avoid visual

occlusions of the target by the obstacle that might occur

during servoing. In addition, the visual-motor planner avoids

joint and field-of-view (FOV) constraints. A unique property

of the planner is that it works directly with the raw data

and is able to reject outliers online. The raw visual-motor

data is used for both planning and control purposes. Both
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Fig. 1. (Right) A Barrett WAM with in-hand camera configuration. Since
the camera is on the elbow, 4 DOFs are controllable: N = 4. The flat
object (green) is the target with 4 point features M = 8. The box (red) is
the obstacle that might visually occlude the target. (Left) Initial and desired
images of the feature points, the desired trajectory (dotted line) and the
actual trajectory are shown for the case without visual occlusion.

the robustness to outliers and the algorithmic efficiency are

favorable properties for vision-based planning and control in

unstructured environments.

II. UNCALIBRATED VISUAL SERVOING

Uncalibrated Visual Servoing (UVS) studies vision-based

motion control of robots without calibration or modeling as-

sumptions [9], [10]. In particular, the uncalibrated approach

makes no use of the camera intrinsic parameters, the robot-

to-camera calibration, or the geometric object/scene models.

These assumptions are desired for operation in unstructured

environments, but impose theoretical and practical burdens.

The UVS control law should be defined without the need to

reconstruct the depth or other 3D parameters.

Let F : R
N

→ R
M be the mapping from configuration

q ∈ R
N of a robot with N joints, to the visual feature vector

s ∈ R
M with M visual features (see Figure 1). The visual-

motor function of such vision-based robotic system can be

written as s = F(q). The time derivative of the visual-motor

function leads to ṡ = Ju(q) q̇, where Ju = ∂F(q)/∂q is

the visual-motor Jacobian. With a local estimate Ĵu(q) for

Ju(q), the discrete-time form of the above can be written

as ∆s ≃ Ĵu(q)∆q. Similar to the Image-Based Visual

Servoing (IBVS) control law [1], the approximate visual-

motor Jacobian, Ĵu, appears in the uncalibrated control

law: q̇ = −λ Ĵ†
u

(s − s∗), where Ĵ†
u

is the Moore-Penrose

pseudoinverse of Ĵu. The visual-motor Jacobian may be

approximated from local least-squares estimation or using

a statistically robust M-estimation technique to reject out-

liers [11]. A numerical estimate of Jacobian matrix can be

further updated by the Broyden update rule [10], [12]. This

formulation is general to both eye-in-hand and eye-to-hand

systems.

There are two main reasons for the failure of the visual

servo: (a) visual constraints such as field of view (FOV) and



occlusions, and (b) configuration/physical constraints such

as kinematic singularity, joint limits, and obstacles. Image-

based methods can handle modeling uncertainties, however,

they have a local controller and not safe to use for distant

goals [9]. In addition, the visual features may leave the FOV,

which leads to system failure. Another failure is due to the

singularity of the interaction matrix or the kinematic Jacobian

during servoing. Some of these shortcomings can be resolved

by path planning [2].

III. ROBUST UNCALIBRATED RRT

In a realistic robotic application, outliers in the visual-

motor space are unavoidable. In our previous work [11], we

have demonstrated the need for robust Jacobian estimation

algorithms and proposed a statistically robust one.

To follow any planned path using the UVS controller, the

visual-motor Jacobian estimates along the path are needed.

Our proposed sampling-based planning algorithm is based

on the Bidirectional RRT (BIRRT) algorithm [13] with a

modified data structure that incorporates the sensory input

from the cameras. The standard configuration space would

only allow us to model the joint limits, kinematic singu-

larities, and other physical constraints (but not the visual

constraints). Our problem requires modeling the sensory

constraints in addition to the physical/joint constraints. We

augment the configuration space with the visual measure-

ments to construct the visual-motor space. A typical data

point in this space can be represented by a vector of joint

values and visual measurements. This data structure can

improve the tree extension routine to avoid visual constraints.

As the robot senses the environment and collects new

data points, a robust estimate of the visual-motor Jacobian

is calculated and kept for later use. When a new random

point is sampled, we can simultaneously estimate the robust

visual-motor Jacobian at the sample and label it as inlier

or outlier. This helps with building robustness into the tree

extension algorithm of the proposed RRT-based planner,

as follows. We can replace the outlier by a neighboring

inlier and extend the tree to the neighbor, if such exists or

discard the randomly sampled point otherwise. This ensures

robustness to outliers by tree construction. In the absence of

enough neighboring data to estimate the Jacobian, the robot

can perform exploratory orthogonal motions to estimate it.

In this framework, visual, physical, and joint constraints

are labeled as occupied space. Inclusion of the joint and the

FOV constraints in the occupied space are straightforward.

Visual occlusion is found by applying projective geometry

of plane intersections. Since visual occlusion is determined

entirely in the image space, there is no need for an explicit

3D model of either the target or the obstacle objects. The

planning is performed on the rest of the visual-motor space,

the free space.

For the typical setup shown in Figure 1, we consider the

initial and goal states, for which visual servoing without

planning fails due to visual occlusions. In Figure 2, the

free and occupied space, and the planned path are depicted.

The visual-motor space has M + N = 12 dimensions
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Fig. 2. Approximate visualization of the free and occupied configuration
spaces. The occupied space corresponds to visual occlusion (by an obstacle
different from the target) and FOV violations. The isolated data labeled
as occupied, correspond to visual constraints due to outliers or the 4th
dimension. The final path avoids the constraints with a tunable safety
margin.

(only 3 dimensions can be visualized). The proposed planner

produces a path that goes around the visual occlusion, while

avoiding other constraints and handling visual-motor outliers.
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