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Abstract— Motion planning has been used to solve problems
of high complexity in both robotic and biological domains. In
robotics, the topology of the planning environment often drives
the problem’s complexity. Environments can consist of many
different regions each of which may be well suited to a specific
planning approach. In biological domains, problem complexity
is primarily driven by the size of the moveable object. For
example, small proteins have hundreds of degrees of freedom,
medium proteins have thousands, and two proteins interacting
can have even more.

We present recent intelligent techniques applied toprob-
abilistic roadmap methods (PRM) in order to efficiently and
automatically solve complex motion planning problems. These
techniques use automated methods to learn abut the problem
space and then adapt based on the problem’s characteristics.
We demonstrate the use of these automated methods in both
robotics and protein folding applications.

I. INTRODUCTION

In order to address complex planning problems, adaptivity
has been proposed as a solution [1]–[6]. While significant
improvement has been shown over non-adaptive approaches,
these methods have all been seen to have serious drawbacks
that limit their usefulness such as requiring significant user
intervention (e.g., manual classifications of training instances
for supervised machine learning methods, parameter tuning
to set learning rates and learning weights) or restricting the
types of problems they are able to solve.

II. A PPLICATION: ROBOTICS

Although there are many motion planning techniques,
there is no method that outperforms all others for all problem
instances. Rather, each technique has different strengthsand
weaknesses which makes it best-suited for certain types of
problems. Moreover, since an environment can contain vastly
different regions, there may not be a single planner that will
perform well in all its regions. Ideally, one would use a
suite of planners in concert and would solve the problem
by applying the best-suited planner in each region.

In order to take advantage of this existing library of
methods, Feature Sensitive Motion Planning has explored
using the features of the planning space to help decide where
and when to apply particular planners. In preliminary work,
a supervised learning method classified features of the space
and selected a sampler to apply in a certain region of the
space [4], [5]. In recent work, we have used spatially and
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temporally identified features in order to better decompose
the problem and selectively apply planners that adapt over
time [9]. This new strategy takes advantage of unsupervised
learning methods at all stages of the planning process and
produces solutions in complex spaces with little cost and less
manual intervention compared to other adaptive methods.

An example is shown in Figure 1 for a maze environment
with a movable object. First, features from a small sampling
of the space are identified and used to cluster the samples.
Each cluster relates to a region of the space (Figure 1(b)).
In order to define the optimal number of clusters (n), the
elbow criterion is calculated from the variance in the clusters
(Figure 1(d)). Intuitively, this criterion selectsn such that
adding additional clusters does not add sufficient informa-
tion. Subsequently, an appropriate planner can be selected
from a library and applied in each region.

III. A PPLICATION: PROTEIN FOLDING

Protein motions play an essential role in many biochemical
processes. For example, as proteins fold to their native, func-
tional state, they sometimes undergo critical conformational
changes that affect their functionality, e.g., diseases such
as Mad Cow or Alzheimer’s are associated with protein
misfolding and aggregation. Knowledge of the stability,
kinetics and detailed mechanics of the folding process may
provide insight into how and why the protein misfolds.

In order to computationally study biologically-relevant
molecules, we have explored applying PRMs to study molec-
ular motions. For small proteins, both microscopic folding
pathways and global folding properties can be studied in a
few hours. However, as protein size increases, the compu-
tational complexity of the planning problem also increases.
Using standard techniques, planning for larger proteins can
become infeasible.

In order to efficiently simulate the motions of medium
and large proteins, we have explored adaptive planning
techniques. One technique, dimensionality reduction, can
be applied to landscape models [8]. This computational
technique finds the principal features of a high-dimensional
space, represented by our motion landscapes, and returns
a lower-dimensional representation that still captures the
principal features. Dimensionality reduction enables quick
and useful global analysis of our landscapes. Through a
new use of it as an analysis tool, it can reduce our original
model size by almost half, thus facilitating the study of larger
proteins.

Our results are quite promising. Our new techniques have
been able to capture structural events that have been shown in
lab experiments, such as those found for the small proteins
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Fig. 1. Automatic region identification in a maze environment. (a) Environment shown with movable body shown above and enlarged.
Notice there are three different regions which the robot must traverse: open, constrained, and open. (b) Clustering identifies 3 regions
(circled) corresponding to the features of the space. (c) Continued clustering can unnecessarily split the regions further. (d) An automated
method, the elbow criterion, determines the best number of regions (redstar).

G and its mutants, NuG1 and NuG2 [7]. The application
of dimensionality reduction to our roadmaps produced maps
that were up to 53% smaller for all proteins studied, yet were
still able to capture the experimentally determined folding
orders including those for Protein G and its mutants [8]. We
also demonstrate its usefulness with proteins of medium to
large size.
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Fig. 2. (a) The folding energy landscape is the set of all protein
conformations and their associated energy. Building an approximate map
of the energy landscape consists of two steps: (b) conformation sampling
and (c) connecting samples together with feasible transitions.


