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Abstract—In this work, we consider the problem of manipu-
lating a polygonal object through an obstacle-filled environment
using only push interactions, or nudges. For this problem, we
propose a manipulation planner that could handle multiple
queries and offer solutions with a higher probability of success
than traditional planners, especially in the face of uncertainty. We
have implemented our approach in simulation, and offer some
preliminary results to demonstrate the technique.

I. INTRODUCTION

One of the goals in robotics is to make it possible for robots
to interact with objects in the real world. Such tasks usually
require the solution to a manipulation planning problem. In
our work, we seek ways to perform this kind of manipulation
on objects without relying on grasping, using special purpose
manipulators, or requiring the design of rigorous analytical
models for each type of object. Instead, we seek to perform
this manipulation just using push interactions, and through
sampling-based methods rather than of analytical models.

Currently, the most popular planners for solving problems
with kinodynamic constraints are tree-based planners such as
RRT [1], EST [2], PDST [3], and DSLX [4]. The general strategy
behind these planners is to grow an exploring tree rooted at
an initial state until one of the goal states is (approximately)
reached. However, if the initial or an intermediate state is
shifted even by a small amount (e.g., due to uncertainty in the
pose of the object relative to the robot, and inaccuracies in the
simulation and model), then the plan usually becomes invalid,
and a new tree must be built from scratch. As a result, many
tree-based planners use a limited planning horizon in practice.

Some planners such as in [5] deal with uncertainty through
analysis of theoretical models of uncertainty and control.
One interesting way to model planning problems is to use
Partially Observable Markov Decision Processes (POMDPs).
POMDP models are notoriously difficult to solve, but there
are several approximation and point-based algorithms such as
HSVI2 [6] and SARSOP [7] that have been shown to handle
relatively large problems in a reasonable time [8]. Another
general approach to handle uncertainty is to use a hybrid (or
“hierarchical”) motion planning approach, such as in [9], [10].
One interesting method that uses this technique is temporal
logic motion planning [11]. Along similar lines is the use
of uncertainty roadmaps as in [12], which explicitly capture
the probability of successfully transitioning from one valid
configuration (or set of configurations) to another.
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In our work, we propose a new planner that can support mul-
tiple queries and can provide solutions with high probability
of reaching a goal state despite uncertainties. To accomplish
these goals, we propose to use a graph-based planner. This
generates a reusable roadmap that can be used to improve the
efficiency of replanning. The graph generated by the planner
also encodes the configuration of the target object in a fuzzy
manner. That is, by considering regions of the configuration
space instead of single points, we reduce the sensitivity of
the resulting plans to uncertainty in position. Each edge
of the roadmap also encodes the probability of sucessfully
transitioning from one metanode to the next, similar to the
concept of uncertainty roadmaps. In our recent work [13],
a simplified version of this proposed strategy has already
been applied to solve group motion control problems involving
two groups of interacting agents with complex dynamics and
behaviors. Here, we propose a new method that may work
well in the scenario of pushing polygonal models, but should
be readily modified to handle other problems.

II. DESCRIPTION OF OUR METHOD

Our instance of the polygon pushing problem poses the
question of how to plan the motion for a cylindrical robot
R to move a polygonal target object P from a given initial
pose to a given goal pose using only push interactions. The
workspace may be filled with known obstacles that the robot
and the object are permitted to touch, but not penetrate.
We assume that R is a holonomic cylinder, and that the P
that is an extruded polygonal shape with known geometry.
We also assume that a black-box kinodynamic simulator is
provided, containing the obstacles, the robot, and the object.
The simulation provides the resulting trajectories of P and R
given control inputs for R.

Our method consists of several phases. First, we want to
create a local planning function LP that given a starting
configuation for P (pstart), and a desired destination con-
figuration for P (pdest), outputs a push manipulation that
supports moving P from Pstart to Pdest. To do so, we sample
information about how P will move when it is pushed by
R from various angles. We store this information as points
in a KD-tree so that when we are given the inputs pstart
and pdest, we can quickly look up the closest sampled push
manipulation that supports pushing P to pdest. Furthermore,
for each manipulation, we also sample many times with
random perturbations, to simulate uncertainty that may arise
from imperfectly executing pushes. This information will be
used later in roadmap generation to compute probabilities.



Fig. 1. An example scene. The robot is depicted as a red cylinder, and the
target object is the gray bar. White circles depict the meta-nodes sampled
from the configuration space after overlap reduction is performed.

Fig. 2. A safe corridor is computed for the target object to move inside the
room. The corridor is depicted by a series of connected circles (metanodes).

Next, we build the roadmap using this data. In general, we
first seek to generate metanodes which capture sets of states
rather than single states, and then we connect them with edges
whose weights reflect the probability of successful transit from
one metanode to the next. We begin by sampling from the
free space. Many sampling techniques can be used; we use
the sampling technique from Gaussian PRM [14], mixed with
uniform sampling. We convert each configuration s from the
set of samples into a metanode by building a sphere, centered
at s, with pre-defined radius. Configurations that lie within the
sphere defined for a configuration s are thus considered to be
conforming to the metanode for s. An example environment
with sampled metanodes is shown in Figure 1. This sampling
process may lead to many overlapping metanodes, so we also
attempt reduce the number of metanodes in the roadmap by
removing metanodes that have significant overlap.

Finally, to complete the roadmap, we connect meta-nodes
that are in close proximity. The edge between two nodes, sa
and sb is given a weight that is computed based on sampling

the number of feasible, successful pushes between uniformly
random configrations conforming to sa, and any configuration
conforming to sb. The number of successful pushes versus
the number of attempted pushes at an edge provides us with
a metric that can be used to estimate the probability of
successfully pushing an object from some state conforming
to node sa to some state conforming to sb, in the presence of
the obstacles. Other metrics can be used, such as the average
probability of success.

Given the weighted roadmap, we compute an all-pairs
shortest path. This information is stored so that upon any
query, a sequence of meta-nodes can be quickly obtained that
has the greatest probability of successful manipulation. We call
this sequence of meta-nodes a corridor, representing many
possible paths for pushing P . Figure 2 shows an example
corridor extracted from a query in the example scene. This
corridor represents a robust path and can be used online
quickly and efficiently to generate a final trajectory.
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