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Abstract—This paper describes work in progress addressing
the problem of repeated coverage by a team of robots of the
boundaries of both a target area and the obstacles inside it.
Events are generated randomly on the boundaries and may have
different importance weights. In addition, boundaries of the area
and the obstacles are heterogeneous, in that events might appear
with varying probabilities on different parts of the boundary.
The goal is to maximize the reward by detecting the maximum
number of events, weighted by their importance, in minimum
time. The reward a robot receives for detecting an event depends
on how early the event is detected. To this end, a Markov Decision
Process (MDP) formalism is used to model the coverage problem
and capture the uncertainties in the scenario. The performance
of the algorithm proposed to solve the MDP will be compared
with two static algorithms on the basis of the total reward gained
during a repeated boundary coverage mission.

I. INTRODUCTION

Multi-Robot Boundary Coverage is a challenging problem

with different applications such as surveillance and monitor-

ing, cleaning, intrusion detection, facility inspection, and so

on. In this task, a team of robots cooperatively visits (observes

or sweeps) the boundaries of a target area and the obstacles

inside it. The goal is to build efficient paths for all the robots

which jointly ensure that every point on the boundaries is

visited by at least one of the robots. The Boundary Coverage
is a variant of the Area Coverage [3], [8]–[10] problem, in

that, the aim is to cover just the boundaries, not the entire

area.

There are two classes of boundary coverage problems:

• Single Coverage: The aim is to cover the boundary

until all its accessible points of interests have

been visited at least once, while minimizing

the time, the distance traversed by the robots,

or the number of visits to the points [4], [19].

• Repeated Coverage: The goal is to cover all the acces-

sible points of interest on the boundary repeatedly over

time, while maximizing the frequency of visiting points

on the boundary, minimizing the weighted average event

detection time, minimizing the sum/maximum length of

the paths/tours generated for the robots, or balancing

the workload distribution among the robots. Visiting the

points on the boundary can be performed with uniform

or non-uniform frequency, depending on the priorities of

different parts of the boundary
1

[1], [2].

II. PROBLEM DEFINITION AND PRELIMINARIES

In this paper, we address the Multi-Robot Repeated
Boundary Coverage problem with the following specifications:

• The environment is a simple polygon including rectilinear

or non-rectilinear polygonal obstacles.

• The 2D map of the environment is known a priori.
• An arbitrary number of homogeneous robots is involved

in the coverage mission. The robots are assumed to move

at the same unit speed.

• The robots are equipped with a panoramic visual sensor

with limited visual range. The sensors are ideal and

without noise, that is, they guarantee the detection of

an event occurring within the visual range of the robot.

• The events are generated randomly and might occur on

any part of the boundaries.

• The events can have different types, and each

event type has its own importance weight.

Definition 1. Event Type: m types of events

might happen in the environment which are

of interest to the robots. The set of all event

types is represented by E = {E1,E2, ...,Em}.

Similarly, an event of type Ei is denoted as ei.

Definition 2. Event Importance: A degree of importance

is defined for each event type E. The importance of

an event type E is given by weight(E). It is assumed

that weight(E) ∈ (0,1] such that 1 is the highest degree

of importance. The importance can also be referred

to as the priority, meaning that an event of higher

1
In this paper, we use the terms ‘Coverage’ and ‘Repeated Coverage’

interchangeably.
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Fig. 1: Sequential Stages of Building the Boundary Graph

importance should have higher priority of being detected.

• The reward a robot receives for detecting an event

depends on how early the event is detected. At each time

step after the event occurrence, the detection reward of

the event is decreased by a multiplicative discount factor.

• The boundaries are heterogeneous, in that,

events of one type might appear with varying

probabilities on different parts of the boundary.

Two types of approaches are proposed to handle the prob-

lem: (1) Uninformed Boundary Coverage and (2) Informed

Boundary Coverage algorithms.

Uninformed Boundary Coverage, consisting of two static

algorithms, ignores the uncertainties in the coverage mission.

In this approach, the robots presume that the events are all

of the same importance value and the boundaries are homo-

geneous. On the other hand, Informed Boundary Coverage

is primarily based on the Markov Decision Process (MDP)

formalism in which the robots try to cooperatively maximize

the reward function by detecting the maximum number of

events, weighted by their importance values, in minimum time.

To this end, the robots learn the expected reward of visiting

a state in the target area at each time step, and based on that,

they plan to select the best possible path to visit the most

promising state at the time in the target area.

The performance of the proposed approaches will be eval-

uated on the basis of the total reward gained during a finite

repeated boundary coverage mission.

III. ENVIRONMENT MODELING

The Uninformed Boundary Coverage and Informed Bound-

ary Coverage algorithms both require that a roadmap is built

within the target area, capturing the connectivity of the free

space close to the boundaries while taking into account the

limited visual range of the robots. To this end, a graph-based

representation called the Boundary Graph is constructed on the

target area. The Boundary Graph provides a roadmap for the

robots, enabling them to move throughout the environment to

monitor the boundaries of the area and the obstacles. In order

to construct the roadmap, a sufficient number of control points,

called the boundary guards, are placed within the environment,

considering the limited visual range of the robots.



A. Locating Guards with Limited Visual Range
In our problem definition, we presume the robots are

equipped with panoramic cameras with a 360 ◦ field of view.
However, the cameras’ visual range is limited. The proposed
approach initially locates a set of area guards required to
visually cover an entire area. The term guard is taken from the
Art Gallery Problem [17]. These static area guards are control
points that can jointly cover the whole environment while
satisfying the limited visual range constraint of the robots.
In other words, if we had as many robots as the number of
guards, and each robot was stationed on a guard, the entire
area would be covered visually by the robots.

To locate the guards, the algorithm decomposes the initial
target area, a 2D simple polygon with static obstacles, into a
collection of convex polygons using a Trapezoidal Decomposi-
tion method [20], and then applies a post-processing approach
to eliminate as many trapezoids as possible (Figure 1b). The
post-processing step is more effective in cluttered areas, and
since the number of guards located by the algorithm is directly
correlated to the number of trapezoids, fewer trapezoids will
result in fewer guards.

At the next step, a divide-and-conquer method similar to
that in [12] is used to successively subdivide each of the
resulting convex polygons (trapezoids) into smaller convex
sub-polygons until each of them can be covered visually by
one guard (Figure 1c).

Since, in the current problem, we are interested in moni-
toring just the boundaries, not all the computed area guards
are necessary. So, all the guards whose visual area does not
intersect the boundaries are removed from the set of area
guards. Figure 1d illustrates the boundary guards computed
on the sample environment.

B. Building the Graph
Once the boundary guards are located in the target area,

a graph called the Visibility Graph (VG) [13] is constructed
on the guards and the corners of the obstacles (Figure 1e). In
order to build the Visibility Graph, any two points of interest
(a boundary guard or an obstacle corner) which are mutually
visible are connected by an edge. Two points are mutually
visible if the edge connecting them does not intersect any
obstacles in the environment.

C. Boundary Graph
Algorithm 1 describes the steps of the construction of the

Boundary Graph on a given environment. The input of the
algorithm is the Visibility Graph made on the map of the area.

The method starts by using the Floyd-Warshall algorithm
to find the set MD =

�
(ci j,vi,v j)|vi,v j ∈Vvis

�
of minimum

distances, ci j, and the set SP =
�
(ri j,vi,v j)|vi,v j ∈Vvis

�
of

shortest paths, ri j, between any pair of vertices vi and v j of
the input graph (line 4).

The minimum value of all the minimum distances in MD
is then selected provided that both the endpoints of the

Algorithm 1: Boundary Graph
Input:
Graph Gvis(Vvis,Evis), where Vvis = SG

�
P /* VG */

SG = {g1,g2, ....,gm} /* Boundary Guards */

P = {p1, p2, ...., pn} /* Endpoints of Obstacles */

Output:
Gboundary(Vboundary,Eboundary) where Vboundary = SG

� �P,
�P⊂ P /* Boundary Graph */

1 begin

2 Vboundary ←− φ
3 Eboundary ←− φ
4 (MD,SP)←− FloydWarshall(Gvis)
5 (i, j)←− argmin

(i, j)
{ci j|(ci j,vi,v j) ∈MD & vi,v j ∈ SG}

6 ri j ←− GetCorrespondingShortestPath(i, j)
7 Gboundary(Vboundary,Eboundary)←−

InitialBoundaryGraph(ri j)
8 while ¬ all the guards added do

9 g←− FindClosestGuardTo(Gboundary)
10 Expand(Gboundary,g)
11 end

12 return Gboundary(Vboundary,Eboundary)
13 end

corresponding shortest path in SP belong to the set of boundary
guards, SG, computed in section III-A (line 5). The chosen
path (line 6), including all its nodes and edges, forms the
initial component of the Boundary Graph (line 7).

Next, among all the guards that have not yet been added to
the graph, the algorithm finds the closest guard to the current
component (line 9), merging the corresponding shortest path
with it (line 10). Following the same process, the algorithm
keeps expanding the Boundary Graph until there are no more
boundary guards to be added to the graph (lines 8-11). The
resultant graph is the final Boundary Graph (line 12). The
nodes of the Boundary Graph includes all the boundary
guards (SG) and the subset of the obstacles’ nodes (�P ⊂ P),
collectively referred to as Points of Interests (PoI = SG

� �P).
Traversing the Boundary Graph guarantees complete coverage
of the boundaries given the limited visual range of the robots.

Figure 1f illustrates the Boundary Graph built on the
Visibility Graph of figure 1e.

D. Boundary Segmentation

The boundaries of the area and the obstacles are divided into
identical length segments, each of which is small enough to
be completely visible by a guard, and such that the probability
of event occurrence is uniform along the segment.

Definition 3. Visual Area of a Guard (VAg): The visual area
of a guard, VAg, is the set of all the segments which are visible



to the guard g, i.e. VAg =
�

seg1
g,seg2

g, ..., .segp
g
�

.

Definition 4. Shared Segment: A shared segment is common
to the visual area of two or more guards.

Assumption 1. The events occurring within the visual area
of a guard are detected only when the robot is located on the
guard.

IV. UNINFORMED BOUNDARY COVERAGE

Uninformed Boundary Coverage ignores the presence of
uncertainties in the coverage mission. In this approach, the
robots assume that the events are all of the same importance
value and the boundaries are homogeneous. We suggest two
algorithms for Uninformed Boundary Coverage: (1) the Cyclic
Boundary Coverage and (2) the Cluster-based Boundary Cov-
erage algorithms.

A. Cyclic Boundary Coverage
In Cyclic Boundary Coverage (Algorithm 2), a tour is

constructed on the Boundary Graph using the Chained Lin-
Kernighan algorithm.

Chained Lin-Kernighan (CLK), a modification of the Lin-
Kernighan algorithm [14], is generally considered to be one
of the best heuristic methods for generating optimal or near-
optimal solutions for the Euclidean Traveling Salesman Prob-
lem [6]. Given the distance between each pair of a finite
number of nodes in a complete graph, the Travelling Salesman
Problem (TSP) is to find the shortest tour passing through all
the nodes exactly once and returning to the starting node [5].

This Lin-Kernighan algorithm, a local search algorithm
[11], is a generalization of the k-opt algorithm [7]. A k-opt
algorithm explores all the TSP tours which can be obtained
by removing k edges from the original tour and adding k
different edges, such that the resulting tour is feasible. In
order to improve the efficiency, Lin and Kernighan introduce
a variable k-opt algorithm, which adaptively decides at each
iteration what value of k to use [14]. Given the computation
time limit, the process is repeated by generating new initial
tours and applying the Lin-Kernighan algorithm to possibly
find a tour shorter than the best one thus far. Martin et. al
[15], [16] suggest that instead of repeatedly starting from new
tours, which is inefficient, the alternative is to perturb the Lin-
Kernighan tour, and then reapply the algorithm. If this leads
to a shorter tour, then discard the old tour, and start with the
new one. Otherwise, continue with the old tour and perturb it
again.

The input of the Chained Lin-Kernighan algorithm needs
to be a complete graph. To this end, the Boundary Graph
is made complete (line 2) by adding edges from the original
VG graph, when there does not exist an edge between two
nodes in the Boundary Graph. If there is not an edge between
the two nodes in the original graph either, a virtual edge is
added to the Boundary Graph to connect the two nodes. The
weights of these edges are set to the length of the shortest path

Algorithm 2: Cyclic Boundary Coverage
Input:
Gvis(Vvis,Evis), where Vvis = SG

�
P /* VG */

SG = {g1,g2, ....,gm} /* Boundary Guards */

P = {p1, p2, ...., pn} /* Endpoints of Obstacles */

Gboundary(Vboundary,Eboundary) : the Boundary Graph
|R|: Number of Robots

Output:
A tour, dTour, distributed among the robots, passing
through all the nodes (Points of Interests) of the
Boundary Graph

1 begin

2 CGBoundary ←−CompleteGraph(Gboundary,Gvis)
3 tour←− BuildTour(CGBoundary,CLK)
4 dTour←− DistributeRobots(tour, |R|)
5 return dTour
6 end

between the two nodes in the original VG graph. The Chained
Lin-Kernighan algorithm then finds the shortest tour passing
through all the nodes of the Boundary graph, returning to the
start node (line 3). The robots are then distributed equidistantly
along the tour (line 4) and move repeatedly around it in the
same direction.

B. Cluster-based Boundary Coverage

The Cluster-based Boundary Coverage algorithm (Algo-
rithm 3), uses the k-Means clustering algorithm to divide the
guards into |R| disjoint clusters. The initial centroids are found
as follows: the endpoints of the longest path in the original
VG graph are selected as the starting points of the first two
centroids, such that the endpoints belong to the set of guards,
SG. For the next centroid, a guard in SG is selected such that
it maximizes the minimum distance from the starting points
of the first two centroids. Similarly, for the next centroid, a
guard is selected that maximizes the minimum distance from
the starting points of the other three centroids. This continues
until |R| initial centroids are found for the |R| clusters of the
guards. In the next iterations, since the computed centroids
may not lie on the nodes of the Boundary Graph, they are
matched to the closest guard in the environment (line 2).

Distance from the centroids is determined based on the
distance in the original VG graph rather than the Euclidean
distance. Having built the |R| clusters on the guards (line
3), we connect each pair of guards in each cluster if they
have a corresponding edge in the Boundary Graph (line 5).
Thereafter, we do a connectivity test on all the clusters,
meaning that each pair of guards in each cluster should be
connected through a path. For this purpose, we first find the
disconnected components within the cluster (line 6) and then



Algorithm 3: Cluster-based Boundary Coverage

Input:

Gvis(Vvis,Evis), where Vvis = SG
�

P /* VG */

SG = {g1,g2, ....,gm} /* Boundary Guards */

P = {p1, p2, ...., pn} /* Endpoints of Obstacles */

Gboundary(Vboundary,Eboundary) : the Boundary Graph
|R|: Number of Robots

Output:

A set of |R| tours, Tours =
�

T1,T2, . . . ,T|R|
�

where

|R|�

i=1

VTi = SG, SG is the set of guards of the Boundary

Graph and VTi is the set of guards of the tour Ti

1 begin

2 initialCentroids←− FindInitialCentroids(Gvis, |R|)
3 Tours←− kMeans(Gvis, |R| , initialCentroids)
4 foreach Ti ∈ Tours do

5 ConnectGuards(Ti,Gboundary)
6 disconnectedComponents←−

FindDisconnectedComponents(Ti)
7 MST ←−

BuildMST (Gvis,disconnectedComponents)
8 Ti ←− Ti +MST
9 Ti ←− BuildTour(Ti,CLK)

10 end

11 return Tours
12 end

compute a Minimum Spanning Tree on them based on the

edges of the original VG graph (line 7). Finally, we add the

Minimum Spanning Tree’s corresponding edges and nodes to

the cluster (line 8), and the Chained Lin-Kernighan algorithm

is used to build a tour on it (line 9). The tour is then assigned

to a robot, and the robot repeatedly traverses the tour.

V. INFORMED BOUNDARY COVERAGE

Informed Boundary Coverage is primarily based on the

Markov Decision Process (MDP) formalism in which the

robots try to cooperatively maximize the reward by detect-

ing the maximum number of events in the minimum time,

considering the importance value of the events. To this end,

the robots learn the expected reward of visiting a state in the

target area at each time step, and based on that, they plan to

select the best possible path to visit the most promising state

at the time in the area.

The algorithm starts by decomposing the Boundary Graph
into as many clusters as there are robots in the environment

using the k-Means algorithm, similar to the process discussed

before in Section IV-B. Each robot then traverses the cluster

assigned to it according to the policy being learned. In this

approach, the robots do not need to communicate about every

one of the guards they visit. They only update each other

about the guards with one or more shared segments, and those

shared segments belong to more than one robot. When a robot,

Ri, visits a guard having a segment in common with another

guard assigned to robot R j, it notifies R j about the visit and

the events detected in the shared segment.

Definition 5. Time of Last Visit (TLV): Each robot keeps track

of the time of the last visit to its guards, and to the guards of

the other robots with some segments shared with one of the

robot’s guards. If {g1,g2, ...,gp} is the set of guards monitored

by a robot, then for each gi, T LVgi represents the last time the

guard gi was visited.

Assumption 2. The robots are aware of the types of the events
occurring on the boundaries and their importance weights.

The Multi-Robot Repeated Boundary Coverage
problem is formulated as a tuple (S,A,ST,ST R) where:

• S = SG×T LV is the set of states, where SG is the set of

guards and T LV is the set of last visits to the guards.

• A is the set of actions available for a robot in each state.

An action is defined as moving from one guard to another.

So in each state, the robot might have one or more actions

available.

• ST is the state transition function which is deterministic,

that is, it guarantees reaching the target state chosen by

the robot when the action is performed.

• ST R is the state reward, which is equal to the sum of

the discounted importance of the detected events at the

state. If t(e) is the time interval between starting event

e and the detection time, the STR is formulated as:

ST R(g) = ∑segg∈VAg ∑Ei∈E ∑ei∈Ei weight(ei)× γt(ei)

Once a robot arrives at a guard g, it can detect all the

events occurring within the VAg, the visual area of the

guard g. If a robot were aware of the starting time of

the events, it would receive the STR. It is assumed that

the reward a robot receives for an event depends on how

early the event is detected. At each time step after the

event occurrence, the detection reward of the event is

multiplied by a discount factor of γ = 0.95.

Definition 6. Policy: A policy, π : S → A at each state

determines what action should be performed next by the robot.

A. Learning

If the robots had knowledge of the probability of occurrence

of the different events in each state as well as the starting time

of the events, they would be able to utilize the STR to find

a policy which maximizes the total reward of the boundary

coverage mission. But since this information is not available

to the robots, the STR is estimated by the sum of the Expected



Segment Reward (ESR) of the segments comprising the state:

ST R(g)� ∑segg∈VAg(ESR(segg, t))

Expected Segment Reward (ESR) is defined to represent
the expected reward of segg at time t. The ESR can be
calculated using the sum of the discounted importance of
the events occurred between the last visit, T LVg, and the
current visit time, t, to the segment’s corresponding guard, g:

ESR(segg, t) = ∑Ei∈E ∑ei∈Ei(1+ γ1 + γ2 + ...+ γt−T LVg)×
PSE(ei,segg)×weight(Ei).

where γ is the reward discount factor. We assume that for
every time step after an event occurs without being detected,
the event detection reward is discounted by γ. Furthermore,
the Probability of Segment Event (PSE) is defined for each
event type Ei ∈ E and each segment segg, g ∈ SG, to indicate
the probability of events of type Ei occurring within the segg
at each time step.

The Expected Segment Reward can be reformulated as
below:

ESR(segg, t) = (1+ γ1 + γ2 + ...+ γt−T LVg)×
∑Ei∈E ∑ei∈Ei PSE(ei,segg)×weight(Ei)

In the above formula, ∑Ei∈E ∑ei∈Ei PSE(ei,segg)×weight(Ei)
is called the Potential Segment Reward (PSR), indicating the
potential reward of all the events at segg, per time step, and
is represented by PSR(segg). If a robot knows the PSR of the
events at each segment of the visual area of the guards, it can
calculate the ESR for any arbitrary time t.

To this end, a learning procedure for estimating the PSR
gradually updates its initial value. In the initialization step,
we assume that all the events have the same probability
of occurrence at each segment. Therefore, all the PSRs are
initialized to 1. When a robot arrives at a guard g, it can
detect whether an event has occurred at any of the segments
belonging to VAg. If there is at least one event occurring in the
segg, the PSR(segg) is updated using the following formula:

PSR(segg) = (1−α)×PSR(segg)+α× ∑Ei∈E ∑ei∈Ei (weight(ei))
t−T LVg

where α is the learning rate set to 0.9 and t is the time of
the visit to g. This formula gives more weight to the new
information than that given to the past information. The robot
performs the updating process for all the event types and all
the segments of the guards.

On the contrary, if no event occurs during the
time period between the last visit, TLVg, and the

current visit time, t, the PSR is updated to reflect
the new fact. To this end, the current value of the
PSR is multiplied by the discount factor of β = 0.9:

PSR(segg) = PSR(segg)×β

This helps to gradually discard the effects of the segments in
which events occur rarely.

In summary, the PSR is updated once a robot visits a guard.
As already mentioned, the PSR represents the potential reward
of each segment per time step. Now, we can use the PSR to
calculate the ESR using the following procedure:

At the beginning, the ESRs of all the segments
are initialized to zero. Then, at each time step, if
the robot has yet to arrive at a guard, the value
of ESR is updated using the following equation:

ESR(segg, t) = γ×ESR(segg, t−1)+PSR(segg), segg ∈
VAg and g ∈ SG

If the robot arrives at g, it detects all the events and conse-
quently:

∀segg ∈VAg, ESR(segg, t) = 0.

This updating process continues during the boundary coverage
operation.

B. Planning

Once a robot arrives at a guard and detects all the events
which might have occurred at the segments of the guard, it
selects the next action to perform. As already mentioned,
the action in the boundary coverage operation is defined as
moving from one guard to another. At each state, the robot
considers all the shortest paths to all the other guards it can
move to. Note that, since we divide the Boundary Graph
among the robots, each robot can only move to the guards
assigned to it. For each path, path(gi,g j), where gi is the
current guard and g j is the target guard, Path Reward (PR) is
defined as the reward the robot receives when moving from
the guard gi to the guard g j. The path from gi to g j includes
zero or more intermediate guards and can be represented as:

path(gi,g j) = [gi,gi+1,gi+2, ...,g j−1,g j].

Given the speed of the robot, the arrival time at each of the
guards on the path can be estimated. Hence, the robot can
have an estimate of the ESR(segg, tg) for each segment of the
guard g, in which tg is the arrival time to the guard g. For
such a path, the PR is calculated as below:



PR(path(gi,g j)) = ∑g∈path(gi,g j) ∑segg∈VAg
ESR(segg, tg).

When calculating the PR, the robot should take into account
the visits to the shared segment by the other robots. Moreover,
as long as a robot does not receive a message from another
robot regarding a visit to a shared segment, the robot assumes
that the shared segment has not already been visited and will
not be visited by any other robot.

Next, for each path, the Average Path Reward

(APR) is calculated using the following formula:

APR(path(gi,g j)) = PR(path(gi,g j))
tg j
−T LVgi

where g j is the target guard on the path, and tg j
is the arrival

time to the guard g j. The robot will select a path with the
maximum Average Path Reward to traverse next.

VI. PROPOSED EXPERIMENTS

We have developed a simulator to test the algorithms in
different scenarios. The simulator can support different num-
bers of robots in the workspace, different visual ranges for
the robots, and varying degrees of clutter in the environment.
A random map generator was also developed as a part of the
simulator which extends a library [18] to build rectilinear or
non-rectilinear polygons with free form polygonal obstacles
within the space. Maps can have different numbers of nodes
and percentages of clutter.

We aim to compare the Informed Boundary Coverage with
the two variants of the Uninformed Boundary Coverage algo-
rithm in terms of the total reward received by the team for
detecting the events. To this end, we consider three types of
environments in the experiments: sparse (0− 25% cluttered),
semi-cluttered (25−50% cluttered), cluttered (50−75% clut-
tered). Ten different maps are used in the experiments for
each of the three environment types (30 in total). The clutter
percentage of an environment is the ratio of the area of the
obstacles to the whole target area (i.e. obstacles + free space).
The experiments are conducted using 1,2,3, . . . ,15 robots. 5
different event types are also used in the experiments. Finally,
the effect of change in the robots’ visual range on the perfor-
mance of the boundary coverage algorithms is investigated.

VII. FUTURE WORK

In the Informed Boundary Coverage approach, we consid-
ered a static decomposition of the Boundary Graph among
the robots. However, this is not always a reasonable approach,
as it is possible that all the events are generated in just one
cluster, and so just one robot will be in charge of handling
all the events. In other words, for the other robots, there are
no events occurring in their clusters. To cope with this issue,
we are investigating a dynamic approach to decompose the

Boundary Graph among the robots, considering the location
and the weight of the events occurring on the boundary.
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Abstract—In this paper a novel approach to semi-autonomous 
sample drawing in unstructured environments is proposed. 
Therefore several key issues for reconnaissance robots have been 
addressed. A fully equipped robotic system with an extendable, 
highly flexible and platform independent software framework 
was developed, aiming at autonomous sample handling and 
adaptive task execution. Several sensory devices allow a detailed 
inspection including stereovision and thermal imaging. The 
complex task of sample handling is realized with an innovative 
container concept which avoids cross-contamination without 
expensive or complex additional devices. For user interaction, 
intuitive control concepts are implemented, leading to a system 
that is suitable for non-experts and performs dexterous 
manipulation tasks in highly unstructured environments. 
 
Index Terms—decontamination, dexterous manipulation, 
reconnaissance robot, sample handling, software architecture,  
outdoor robotics 

I. INTRODUCTION 
N many situations, the evaluation of risks is a compulsory 
need in order to protect action forces and civilians alike 
from being exposed to dangerous situations e.g. caused by 

hazardous materials. Therefore risky situations like natural 
catastrophes, structural fires, traffic accidents with unknown 
chemical materials, terrorist attacks and even industrial 
applications require a way of estimating the risks for potential 
helpers. Before anyone can help in case of such incidents, the 
personal risks of the rescue team must be evaluated in order 
not to endanger their health as well. 
For detecting hazardous substances in an unstructured 
environment, highly elaborate measuring methods have to be 
applied, which can indicate the presence of a dangerous 
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substance by its reaction with other chemical products. Some 
substances might be detectable using massive electronic 
devices, which are not easily manageable for a human due to 
their weight and the need of an electric power supply. 
Currently the problem of sample drawing is accomplished by 
specialized forces (e.g. firemen), which sent specialists in 
protective suits in order to determine the dangerousness of a 
certain situation through analysis of the gathered samples. 
This is a very time consuming process, as it requires a lot of 
different steps that have to be executed in a certain manner, as 
can be seen in Figure 1: 

 
Figure 1,  Sample drawing process – (1)label container, (2)fill measuring cup 
with liquid, (3)pour in prescribed amount into container, (4)close container, 
(5)edit accompanying protocol, (6)bundle container and protocol in carriage 
bag, (7)decontaminate carriage bag, (8)gather carriage bags in transport box 
Obviously this procedure is an elaborate and exhausting task, 
since it is extremely important that every single step is 
performed very thoughtfully. Moreover, a lot of different 
kinds of samples, like fluid, solid and gaseous samples, may 
be required in certain situations. This may result in fast fatigue 
of the workers, possibly influencing the quality of the 
samples. 
Manual sample drawing is a time-consuming process, 
considering that the experts might have to enter the site 
multiple times, running through the whole process of 
decontamination, refilling compressed-air cylinders, and rest 
periods, in order to get enough samples. All this leads to a 
situation where humans tend to make errors, which is fatal for 
sample drawing. So the focus of this work is the research and 
development of a robot-based concept for the problem of 
autonomous sample drawing in unstructured environments. 
In this paper, a mobile outdoor robotic system, which is 
designed for handling samples in unstructured environments, 
is presented. Section II describes the State-of-the-Art in this 
research field and the subsequent section III deals with the 
details of the considered system regarding soft- and hardware 
development. In Section IV current and upcoming results are 
given and finally section V demonstrates the outcome and 
future directions. 
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II. STATE-OF-THE-ART 
Due to the great significance of reconnaissance robots, a lot of 
research has been performed in recent years. A multitude of 
different systems exist, that intend to act more or less 
autonomously in different kinds of environments. The main 
fields of research are exploration-, security-, service- and 
EOD1- robots. 
One of the most prominent being the HAZBOT system from 
the JPL Fire Department[1], which serves to localize, 
characterize, identify and mitigate hazardous materials. Also 
the Hunter teleoperation system[2], designed by the Yangzhou 
University serves to inspect and dispose nuclear radiation or 
harmful chemical materials. The University of Bielefeld 
designed a robotic systems, which handles samples in a 
laboratory environment[3]. Other remarkable systems are the 
Packbot developed by iRobot Corporation[4], Telerob’s Safety 
Guard and tEODor[5] as well as the NAT-II and T.S.R. EOD-
robots from Elektroland[6]. 
However, most of those systems focus on teleoperation where 
the robot arm serves as an extension of the human arm, 
offering only a rather low level of automation. 
The Safety Guard system from Telerob is the only system 
capable of taking samples, including the whole procedure as 
mentioned in section I. All other systems cannot handle fluid 
and gaseous samples, but only graspable objects. Those 
systems concentrate on remote controlled inspection, 
observation and object handling. Hence they must be 
considered as security- or exploration-robots rather than 
sample-robots. A common drawback of all systems is that they 
need experts to be operated, since teleoperation is rather 
difficult. One of the main objectives, to prevent the user from 
exhausting and error-prone task execution, cannot be 
accomplished by these systems. Besides this, all systems 
suffer from a restricted workspace due to a restricted degree of 
freedom of the manipulator. 
The mobile robotic system RecoRob presented here includes a 
robot arm with 7 degrees of freedom for dexterous 
manipulation in unstructured environments, where the user 
can focus on navigation and decision making. The developed 
software allows autonomous task execution in order to 
disburden the user from the complex process of sample 
drawing by performing the sophisticated manipulation tasks 
autonomously. This will lead to a system suitable for a wide 
range of users that neither need any expertise in robotics nor 
in manipulation. 

III. SYSTEM CONCEPT 
As outlined in the previous section, a multitude of unsolved 
problems exist in reconnaissance robotics so far. Therefore the 
RecoRob robotic system is presented. 

A. System Setup 
The RecoRob system is equipped with various hardware 
devices as can be seen in Figure 2-a. 

 
1 EOD – Explosive Ordnance Disposal 

 
(a) 

 
(b) 

Figure 2, RecoRob reconnaissance robotic system - (a)hardware setup, 
(b)Mapped Virtual Reality (MVR) used as simulation environment in the 
RecoRob system 
It is based on a mobile ASENDRO platform from Robowatch, 
which consists of a variable drive system that can be equipped 
with either chains or wheels, depending on the desired 
application. In addition the chains are supported by swing 
arms which are capable of continuous rotation, enabling the 
basis to climb stairs and overcome obstacles. For actuation, 
there is a Schunk 7DOF lightweight robot arm for the object 
manipulation and a 2DOF Pan-Tilt-Head for steering the 
vision system. The sensor system consists of an ATI 
Technologies Force-Torque sensor in the manipulator’s wrist, 
a PointGrey Bumblebee stereovision camera for 3D 
reconstruction, a Samsung SNC Dome Camera for workspace 
observation and an NEC ThermoTracer IR-Camera for 
thermal inspection of the working area. For the computational 
power, there are two SPECTRA NISE 3140P2E embedded 
computers and for communication a D-Link DAP-2590 Access 
Point is installed. The user interaction is realized with a Getac 
M230N-5 ruggedized notebook, including Wireless LAN and 
a touchscreen. 
In order to ensure the systems power supply, two additional 
accumulators are mounted to support the computers in case 
the main accumulator inside the mobile basis runs out of 
energy. 
A major problem in sample handling is the avoidance of cross-
contamination. In our approach, the samples are stored in 
disposable one-way containers where the actual sampling tool 
is an integral part of the container itself, as can be seen in 
Figure 3. 

 
Figure 3, Simulated wipe sample sequence – (1)unused sample container, 
(2)extracted tool with sponge, (3)taking wipe sample, (4)closed and filled 
container 
Cross contamination is almost impossible, since the robot 
touches the containers only from the outside and the tool is 
encapsulated inside the container. In order to avoid a tool 
changing system for the robot, the containers have an identical 
outer size and shape and can be handled by a single gripper. 
Four different kinds of samples are considered at first: wipe 
sample, fluid sample, soil sample and pipette sample. 
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B. Software Architecture 
The software architecture of the RecoRob system is 

constructed to be easily adjustable and extendable to different 
system configurations. This is achieved by a hierarchical 
structure with defined interfaces for all its modules. Figure 4 
shows a schema of the architecture. 

 
Figure 4, RecoRob software architecture 

The system is equipped with two computers. One uses the 
operating system (OS) Windows and the other uses a Unix 
OS. The different OSs are presently necessary due to the 
available drivers for the hardware. Windows is required for 
the camera modules and therefore also performs the 
compression of the video streams. The Unix PC controls the 
platform, the manipulator and the pan-tilt-head of the camera 
system as well as the sample containers. On the long term it is 
planned to use one OS only. 

Communication with the system is performed using a 
proprietary command format via a TCP/IP connection. For 
system control, the user connects and sends the commands to 
a server on the Windows PC where they are either processed 
directly or forwarded to the Unix computer, if necessary. 

Hardware control is handled by separate server software 
modules for each hardware component. They are connected to 
the main system by the CORBA[7] framework which allows 
the connection of software elements that may be executed on 
different computers. This approach enables a maximum of 
flexibility and scalability concerning the hardware. The 
hardware servers stop continuous movements once the 
connection to the user is interrupted for too long in order to 
avoid uncontrolled movements. Next to the hardware servers 
there are several skill servers which permit hardware actions 
on a higher level of abstraction. At last, data servers provide 
necessary information to the other servers, required to 
accomplish the requested task, e.g. the dimensions of the 
RecoRob system itself. The servers are controlled by a server 
manager, which can start, stop and automatically restart them. 

Movement of the manipulator is calculated with the help of 
a mapped virtual reality (Figure 2-b) which represents relevant 
parts of the system and the environment by geometric 
primitives (cuboid, cylinder, sphere). 

One of the core functions of the RecoRob software 
architecture is sample handling. Therefore a sample manager 
exists, which controls the inventory of sample containers and 

their current state. In case of sample drawing, the available 
samples are checked and an appropriate one is chosen. For 
each sample type its unique accompanying manipulation 
sequence is defined and saved in the system. The only missing 
information is the target location, which is determined by the 
user during execution. 

C. Communication 
As the system setup involves three computers, the 

communication between them is an important point to 
consider. Communication must be robust, fast, independent 
from specialized hardware or operating system and extensible 
with respect to the number of participants and the bandwidth.   

The simple network communication via TCP/IP seems to be 
a suitable solution to match these prerequisites. Internally the 
both computers are connected to a gigabit switch, allowing 
fast transfer of real-time video. The remote control PC is 
connected via 802.11n Wireless LAN, which is still fast 
enough to transfer up to two simultaneous video streams with 
acceptable frame rate. 

The currently chosen hardware components can easily be 
exchanged if the requirements change. If long range 
communication between remote controller and main system is 
required, the WLAN part can be replaced with an 
UMTS/HSDPA capable device without touching the software. 

Besides the hardware and low level protocol considerations, 
the high level protocol is important for an easy interfacing of 
the system. While the internal communication of the Unix PC 
utilizes CORBA, which completely hides the communication 
details from the programmer, the Windows PC uses a 
command interface, where the commands are simple byte 
sequences, giving some basic information about the command, 
followed by the actual data payload, e.g. a video frame. This 
command interface can easily be implemented on any device 
that supports TCP/IP communication. By using this interface, 
restrictions concerning the availability of CORBA for a 
certain device / operating system are avoided.  

D. User interface 

Easy and effective guidance of the investigation unit demands 
a clear overview of the current situation on-site and 
information about current state of the task execution as well. 

 
Figure 5, First setup of the RecoRob user Interface - module ‘camera view’: 
normal camera view (left), thermal image (middle), optional map view (right) 
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In order to display all available information without overload 
of the user the GUI of the RecoRob system is divided in four 
modules: 

 Mission overview integrates map based view of the mission. 
Allows optional single camera view as well as  navigation of 
the mobile platform and simplified manual control of the 
robot arm  

 Camera view provides up to two simultaneous live camera 
streams and control of available camera features, e.g. pan-
tilt-zoom. Allows optional map view as well as mobile 
navigation and simplified control of the manipulator  

 Sampling control module aims to provide simple and 
intuitive mission control: choice of sampling mode 
(teleoperated / autonomous) like selection of sampling place 
and type for autonomous sampling and display of the 
execution state. Dependent on selected sampling mode, 
extended or simplified manipulator control interface is 
available  

 Extended system info integrates additional information about 
system state like connection status and battery state. Offers a 
possibility of remote control of the computers integrated in 
mobile investigation unit 

IV. RESULTS 
Since the project is in an early stage, only preliminary results 
can be presented by now. The focus of this project, as outlined 
in section III, is the autonomous sample handling. In order to 
verify our expectations to the system and to test all 
functionalities, we set up a simulation environment using a 
mapped virtual reality. The environment can be seen in Figure 
2-b. 
For the reconstruction of three dimensional data, the OpenCV 
library from willow garage is used to compute a point cloud 
from the stereo images and gather information for the 
autonomous task execution. An exemplary point cloud can be 
seen in Figure 6-a. 
Ongoing research is also in progress for the analysis of the 
thermal images (Figure 6-b), which will be used for 
localization of heat sources, that might indicate a point of 
interest for specific sampling acquisition. 
 

 
(a) 

 
(b) 

Figure 6, Machine Vision approaches - (a)pointcloud generated with test 
images using OpenCV and Stereo Blockmatching, (b)thermal imaging with 
NEC IR-Camera 
In order to realize our ideas for sample handling, we are 
currently investigating possible solutions for the containers 
with integrated tools. 

V. CONCLUSION / OUTLOOK 
This paper focuses on design and development of a new 
approach in reconnaissance robotics for semi-autonomous 
sample drawing in unstructured environments. We proposed 
the robotic system RecoRob which can be operated by users 
without special expertise in robotics and manipulation. Thus it 
allows focusing on the main objectives analysis, 
characterization and identification of hazardous materials by 
taking samples. 
An extendable, hybrid multilayer software architecture was 
presented, using a virtual environment for simulation and 
wireless communication in combination with an adequate user 
interface. 
Simulated and experimental results verify that the system 
concept achieves the targeted goals of object manipulation, 
sample handling, wireless communication and user 
interaction. 
Upcoming research goals include further machine vision 
approaches, integration of multiple sample scenarios using 
developed sample containers and practical tests of the whole 
system with appropriate users in outside applications. 
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An Adaptive Field Estimation Algorithm

for Sensor Networks in Dynamic Environments

Amanda Prorok, William C. Evans and Alcherio Martinoli

Abstract— The efficiency of distributed sensor networks de-
pends on an optimal trade-off between the usage of resources
and data quality. This workshop paper addresses the problem
of optimizing this trade-off in self-configured distributed sensor
networks. In our case-study example, we investigate a quadtree
network topology and describe how we integrate a fully
distributed node controller and field estimation algorithm. In a
further step, we present a variant control algorithm, which
continuously adapts network sampling and node activity to
match spatio-temporal field variability. Realistic simulations
are performed on the e-puck robot platform, and show that
the proposed sampling strategy potentially economizes 20% of
resource usage.

I. INTRODUCTION

Since the beginnings of research on sensor networks in
the 1970s, the monitoring of environments and habitats has
become one of its major application fields [3]. Technological
advances in embedded systems, such as the development
of reliable wireless communication, and miniaturization and
improved efficiency of microcontrollers and sensors have
have answered key needs, and encouraged an increasing
deployment of wireless sensor networks as a main tool to
monitor spaces [8]. Still, one of the challenges presented with
the deployment of sensor networks is the accurate estimation
of fields with unpredictable environmental phenomena, while
simultaneously addressing the critical issues of resource
usage such as local memory, communication and processing
constraints.

With networks often consisting of a considerable number
of sensor nodes, the necessity of limiting energy consumption
as well as bandwidth requirements increases. Research in
the domain of ad hoc wireless routing has produced a range
of algorithms which propose solutions for these problems.
Improved routing algorithms have been developed which aim
to accomplish in-network load balancing and an increased
system lifetime, employing techniques that are mostly based
on system information such as remaining energy levels and
routing capacities.

A. Spatial & Temporal Suppression

There are two main approaches to optimizing the energy
consumption of sensor networks. In temporal suppression
schemes, each node uses its own history of measurements
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to determine if a new value can be inferred by the network
sink instead of being transmitted, or even to avoid sampling
and local processing entirely. A simple example would be
transmitting measurements only when they differ from the
previous value. Typically these approaches make use of much
more complex models, often providing bounded error.

The Probabilistic Adaptable Query (PAQ) system is one
notable such scheme based on time series forecasting [23].
It uses autoregressive models maintained locally per sensor
node in order to keep from sending data directly to the sink.
Instead, nodes communicate model parameters as necessary
in order to keep the sink’s predictions within some defined
error bound. Tulone and Madden extend this work with their
Similarity-based Adaptive Framework (SAF) [24], adding
robustness to quick changes in data trends as well as a
location-independent clustering technique that allows the
detection of redundant nodes.

On the other hand, spatial suppression exploits spatial
correlations between nearby sensor nodes in order to reduce
communication load. Many spatial suppression algorithms
attempt to detect and deactivate sets of redundant nodes.
Arici and Altunbasak propose using a first-order model to
determine the predictability of particular nodes [1]. They de-
fine some of the nodes in the network as macronodes which
attempt to fit a plane over their neighbors’ positions and
data, commanding easily predictable nodes to stop reporting
measurements for some period of time. Similarly, Willett et
al. define the idea of a fusion center that is responsible for
estimating a field based on received sensor measurements
and then directly deactivating redundant nodes [26].

Chu et al. propose the use of replicated dynamic proba-
bilistic models between the sink and disjoint cliques of data
sources [4]. The sink then uses these models to predict future
sensor data. If the root of a clique observes data inconsistent
with the sink’s current prediction model, a subset of the
clique’s recent observations are sent and the sink’s model
is updated as necessary.

B. Motivation

In our work, we address the problem of designing dis-
tributed sensor networks for surveillance and monitoring.
It is clear from [14] that self-configuration is a necessary
element for effective as well as efficient performance of
such networks. The proposed design paradigm suggests
hierarchical topologies, following a top-down control and
bottom-up reconfiguration principle. Here, we build upon
this design rule, implementing a distributed, multi-layer tree-
based routing algorithm and combining it with a threshold-



based clustering strategy which is adaptive to the state of
the field being estimated. Our algorithm leans on established
field estimation methods described in [18] and [26]. The
approach is similar to the one described by Arici et al. in
[1], which describes an adaptive sensing method also based
on a tree-like, hierarchical network structure. Their method
exploits the fact that a manual deployment of sensors may
offer more information than necessary (over time and space)
to reconstruct an accurate field estimate. They propose a
self-configuration algorithm which will put nodes into pas-
sive mode when their measurements become ‘predictable’.
Here, also motivated by previous research in the domain
of distributed sensor node controllers as presented in [7],
we develop a fully distributed node controller that is easily
implemented on resource constrained and noisy hardware,
which aims to optimize system performance by finding
a trade-off between use of resources and data quality. In
contrast to the methods described in [2, 13, 27], we base
our clustering strategy on field data, rather than on system
information. Also, our resulting data aggregation method
follows a multi-layer bottom-up principle, which enables
global abstraction of the target field, different from the
local collaborative processing methods of [15, 28]. Lastly,
in contrast to [18] and [26] we focus on the whole system
rather than only on communication and routing activities, and
our work in [19] demonstrates the approach on real hardware
by comparing the performance to theoretical predictions.

The method in this work especially targets heterogeneous
sensor-networks, given its non-homogeneous communication
constraints. This allows for the deployment of large numbers
of cheap sensor nodes to increase granularity, while more
expensive, robust sensor nodes are placed at strategically
important positions. Nevertheless, in order to guarantee the
scalability and robustness of the system, redundancy must be
foreseen by implementing efficient role selection strategies.
Finally, although our current algorithm does not explicitly
take into account node mobility, its design easily accom-
modates extensions such as node redeployment or network
reconfiguration. This capability may equally be deployed
non-homogeneously throughout the sensor network.

II. SPATIAL SUPPRESSION USING HIERARCHICAL

NETWORK TOPOLOGIES

In accordance with our above-mentioned motivation to
port our algorithms onto mobile platforms, we base the
following elaborations on robotic sensor networks. As sug-
gested in the theoretical work of [26], we superpose a
quadtree (Fig. 1) on the robotic sensor network. Especially
when computing spatial problems typical in computer aided
design and geo-data applications [12], the quadtree data
structure has proven an efficient and powerful tool [11, 20].
An early work in [10] shows how an active quadtree network
facilitates image representation and analysis. Also, a recent
study in [9] shows how a quadtree can be utilized for in-
network data querying in a fully distributed wireless network.

N1

N1

N1 N2 N5 N6 N3 N11 N12 N15 N16N4 N7 N8 N9 N10 N13 N14

N3 N9 N11

L0

L1

L2

(a) Quadtree hierarchy

Fig. 1. A 16-node quadtree structure. The quadtree hierarchy is decom-
posed into 3 hierarchy levels. A node will participate in either of the 3
subsets: {L0}, {L0, L1} or {L0, L1, L2}.

A. Distributed Network Organization

Here, although our controllers and models are general
to any hierarchical topology, we showcase our study on a
quadtree based network with each robotic node within our
sensor field representing a leaf node in the tree structure. The
robots are distributed on a regular grid in a square arena. In
a network of a total n nodes, assuming that the robots are
aware of their location, each one allocates itself to one of
n sensing cells in the decomposed space. We thus obtain a
robotic sensor network ordered by the intrinsic hierarchy of
the quadtree. Adapted and implemented in a fully distributed
sensor network, this hierarchy can be explored in terms of
i) communication channels and ii) fine-tuning the spatial
resolution of the sensor network. Whereas exploring i) is
relatively straightforward as we can directly exploit the
quadtree hierarchy, there are many approaches to ii)—our
chosen approach will be discussed later in Section II-B.2.

On a global level, the quadtree structure depends only on
the number of nodes (implicitly a power of 4), and can be
constructed in a distributed manner, assuming that all nodes
know their location. As is evident in Fig. 1, a single node
may have multiple roles within the network, depending on
the status of the network. Thus, we create the notion of
layers Li. In a network of 4K nodes, we have K + 1 layers
(L0, ..., LK), and a node’s current role in the network is
defined by its current processing layer Lcurrent. Every node
Ni has a maximum layer Lkmax

with Ni ∈ Lkmax
such that

there is no k > kmax with Ni ∈ Lk. Also, any node Ni in
Lk, k > 0 is a clusterhead, with four descending nodes in
Lk−1 as its cluster children (including itself). Lastly, for the
sake of clarity, we don’t go into the details of an eventual
clusterhead rotation or election strategy.

The group of robotic nodes uses wireless communication
as a means of inter-node organization. There are two classes
of messages being used within the network: control messages
and data messages (measurements). The messages typically
contain the following elements: control or measurement data,
i and k, with i the id of the sender node Ni and Lk its
current processing layer. Control messages are sent top-down
through the network structure, and measurement messages
bottom-up. Nodes throughout the network or within the com-
munication range of the transmitting node may receive mes-
sages at all times and asynchronously from various senders.



nodeLk

Lk+1

Lk-1

control

measurements

Fig. 2. The node is currently processing data in layer Lk . Measurement
messages are sent bottom-up and control messages are sent top-down the
quadtree structure.

A clusterhead will only accept measurement data from nodes
belonging to its cluster, and following the top-down control
principle, a node will only accept control messages from its
clusterhead. Fig. 2 illustrates the communication protocol.

B. Control of the Robotic Node

We elaborate two control variants: first, a naive sensing

strategy (NS), and second, an improved threshold-based

sensing strategy (TBS). With NS, the nodes are in one of
three possible states, whereas with TBS, the nodes are in
one of four possible states. The controller is simple and
distributed, homogeneous on all nodes.

1) State Machine: The controller can be represented by
a simple state-machine, and is depicted in Fig. 3. Initially,
a node is in the sample state. Each time a node takes a
measurement, it will transition to the process state. If the
node is a leaf node (its processing layer is Lcurrent = Lkmax

at all times) it will transition directly to the broadcast state,
send its measurement and then return to the sample state. If
the node is a clusterhead, it will increment its processing
layer Lcurrent once it has received (and aggregated) the
data from all the nodes in its cluster, and will enter the
broadcast state if it has reached its maximal layer Lkmax

.
Otherwise, it will re-enter the sample state. Finally, upon
sending the (collected) measurement data in the broadcast

state, the clusterhead will return to the sample state.

In a further step, we develop the controller for TBS, with
the goal of optimizing the use of resources by reducing the
number of messages sent and measurements taken. The aim
is to prune certain node-clusters off the quadtree by putting
the nodes in those clusters to sleep. A clusterhead will then
replace measurement values of all its descendant nodes with
its own. A fourth state is added to the NS controller, and is
illustrated by dashed line on the right-hand side in Fig. 3. If
a node has received a relevant pruning control message, it
will be absorbed by the idle state.

2) Threshold-Based Pruning Algorithm: In TBS, a clus-
terhead makes the decision to prune or not prune its child
nodes. Thus, we implemented a threshold-based pruning
algorithm, which builds on the theoretical formula proposed
in [18]. Assuming that the field is anisotropic, the chosen
approach is to prune sensor-node clusters which are sampling
values in isotropic subparts of the field. The resulting field
estimator will display a higher sensing resolution along the
boundaries of the anisotropic field and lower resolution in
the isotropic subparts. This principle is illustrated by the

sample broadcast

process

idle PRUNED

¬ PRUNED

L current = L kmax

L current ≠ L kmax

L current ≠ L kmax

L current = L kmax

BRANCHED

Fig. 3. Schematic illustration of two variant state-machines implemented
for the quadtree structure. (a) NS (without dashed line): A node samples
environmental events. Measurement data from cluster nodes is received and
processed. When the cluster data is complete, a node will broadcast the
collected data. (b) TBS (with dashed lines): A node which is shut down is
absorbed by the idle state. If change is perceived an idle node may re-enter
the sampling state.
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Fig. 4. The graphs show the calculated power of an acoustic event at a
given moment. Each of the 16 cells is occupied by one robotic sensor node.
An acoustic source is located in the bottom left corner of the arena. (a) A
snapshot of the true field values (b) The data sent out of the network by
the top-level node after completion of the pruning algorithm

example in Fig. 4. Fig. 4 (a) and (c) show a fully active
(un-pruned) quadtree and the values transmitted by the full
network, whereas Fig. 4 (b) and (d) show a pruned quadtree
and the values transmitted by the remaining active nodes.

The following formal details are as previously elaborated
in [19]. From [18] we have

f̂n = argmin
f(θ),θ∈Θn

R(f(θ), x) + 2s2p(n)|θ| (1)

where s2 is the signal noise variance and p(n) a mono-
tonically increasing function of the total number of nodes.
The finite set Θn includes all possible pruning variations
(partitions) of a quadtree with n nodes, and θ is one particular
partition. Then, for the set of partitions Θn, the algorithm
will seek the optimal partition θ which minimizes the cost
of the resulting field estimator, f̂n. This cost is comprised
of two terms. The first term R(f(θ), x) is the approximation
error resulting from the pruned clusters in the partitions. The



error is calculated as in

R(f(θ), x) =
n
∑

i=1

(fi(θ)− xi)
2

where fi(θ) is the estimated value for a node Ni in a
particular partition θ and xi is the true field value. The aim of
the second term in (1), 2s2p(n)|θ|, is to penalize increasing
complexity, where the factor |θ| is the number of not pruned
nodes in the partition. In [17], p(n) = 2/3 log n and s2 is
homogeneous on all sensor nodes.

We can solve equation (1) in a distributed manner by using
the bottom-up messaging protocol mentioned in Section II-A.
The work in [17] confirms that both terms of the estimator
are additive functions, thus the error and the penalty cost
of a subsquare can be calculated by each corresponding
clusterhead independently. Then, following our messaging
protocol, a clusterhead in the quadtree hierarchy will receive
from its 4 child nodes (three child nodes and itself) the field
estimate which minimizes the estimation cost as given by
the formula.

In order to implement the field estimation technique in our
distributed network, we propose a threshold-based pruning
algorithm. We are interested in studying the performance of
a fixed-size sensor network in function of a threshold Tk. At
layer L0, there is no propagated error from lower levels, the
cost f̂i(θL1

) at a clusterhead Ni is thus equal to

f̂i(θL1
) =

{

8s2p if not pruning
R(fi(θL1

), x) + 2s2p if pruning

The algorithm will seek the minimal cost min{f̂i(θL1
)},

therefore the threshold on the approximation error
R(fi(θL1

), x) for layer L1 is

T1,i(s, p) = 6s2p

In other words, if the approximation error
R(fi(θL1

), x) < T1,i(s, p), the cluster will be pruned.
For layers Lk with k > 1, the estimator takes into account
the propagated errors and complexity penalizers from lower
level layers, with

f̂i(θLk
) =

{
∑

j∈Ck,i
f̂j(θLk−1

) if not pruning

R(fi(θLk
), x) + 2s2p if pruning

where Ck,i is the set of all children nodes of clusterhead Ni

at layer k. Since the network size is fixed, p is constant and
the threshold Tk(s) for level Lk, k > 1 is then

Tk,i(s) = 6s2p+
∑

j∈Ck,i

R(fj(θLk−1
), x) (2)

3) Branching Algorithm: Sensor networks often deal with
non-static environments. In order to take into account these
changes in the environment, we extend the pruning algorithm
elaborated above in order to enable an adaptive pruning
behavior. We develop a branching mechanism, which enables
initially pruned nodes to resume their full activities (sam-
pling, data processing and message sending). This behavior
is illustrated by the left dashed arrow in the state-machine

Fig. 5. The figure shows a screenshot from the Webots simulation environ-
ment. 16 robotic nodes (e-pucks) are evenly spaces out in a 1.5× 1.5m2

large space. The links show the detection of the acoustic source, a 17th

robot, placed in the top half of the arena.

depicted in Fig. 3. In contrast to the controller described in
Section II-B.2, where pruned clusters remain pruned, nodes
can now potentially receive reactivation signals enabling
entire clusters to branch.

Intuitively, we might implement a simple branching al-
gorithm by defining a constant time interval, at which a
branching control message is sent to all nodes within the
network. Yet, defining an optimal constant branching interval
a-priori may be difficult or even impossible, due to the
unknown and unpredictable characteristics of environmental
phenomena. Thus, we developed a simple distributed strategy
which will branch pruned clusters as a function of change
perceived in the environment by the active nodes. This
strategy exploits the fact that in a dynamic environment,
the boundaries of an anisotropic field are moving. Thus,
according to our threshold-based pruning algorithm, in a
dynamic environment, active nodes may eventually be pruned
as at they no longer cover anisotropic parts of the field.
Each time an active node is pruned, it signals the need for
a reevaluation of the current quadtree partition. Hence, the
quadtree will branch if for a node i

R(fi(θLk
), x) ≤ Tk,i.

Following this additional threshold-based rule, active nodes
in isotropic parts of the field will send branching control
messages to pruned nodes in the quadtree.

III. RESULTS

We designed an experimental setup using the robotic
simulation software Webots [16]. Our robotic nodes are
modeled by simulated e-puck robots [5] (which run on a
microcontroller of the dsPIC30 family). The robots have a
trinaural microphone array, enabling them to detect acoustic
events, and are equiped with radio modules enabling short
range communication [5]. An additional robot plays the role
of a sound source, which will, depending on the experiment,
remain stationary, or move randomly about the arena, avoid-
ing the other robots and boundaries (Braitenberg vehicle
with a speed of one robot-size per second). As elaborated in
previous work by Cianci et. al. [6], the dynamics of the sound
source are accurately modeled, taking into account reflection,
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Fig. 6. Performance with i) NS and ii) TBS. 500 runs were performed per
threshold, for 24 different thresholds with s in [0..12000]. (a) Total active
nodes (b) MSE. The errorbars show a 95% confidence interval.

fading and mixing. Also in [6], the radio communication is
realistically modeled within the simulation software using
a plugin based on OMNeT++ [25], which accurately simu-
lates the physical layer (i.e., with channel fading) and data
link layer (i.e. modulation properties, channel coding, MAC
protocol).

Fig. 5 shows the experimental setup with 16 robotic nodes
spaced out evenly in a 1.5×1.5m2 arena. The sound source
in this setup generates a continuous, local acoustic field.
The robotic nodes in the network sample at a frequency
of approximately 288 kHz, take measurements at regular
intervals of 256 ms, and calculate the power of this acoustic
event. Figured 6 (a) and (b) summarize the behavior of
the two control variants NS and TBS as elaborated above,
with respect to (a) the number of active nodes and (b) the
MSE. We performed 500 runs per threshold, for 24 different
thresholds with s in [0..12000]. For NS, the total number
of active nodes as well as the resulting MSE will remain
constant. As expected for TBS, we observe a decreasing
number of active nodes and an increasing MSE as the
threshold increases.

Figures 7 (a) and (b) show the performance of the sensor
network with four variant control algorithms: NS, TBS, TBS
with random branching and TBS with adaptive branching.
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Fig. 7. The graphs show the MSE and average number of active nodes,
for the quadtree structure implemented with three different controlling
algorithms. The error-bars show the standard deviation.

We see that in comparison with the pruning control TBS,
adaptive branching reduces the resulting MSE for a moving
sound source. Also, the number of active nodes is reduced
by over 20% with respect to a fully active network as in NS.
Post-evaluation of the data gathered by the adaptive pruning
algorithm shows that in 42% of the time, the quadtree was
branched. Thus, in order to better evaluate the adaptive
pruning controller, we implemented a random branching
mechanism with an equivalent branching probability instead
of the threshold-based branching rule. We see that for both
branching mechanisms the MSE is nearly identical, but that
in the case of a dynamic environment, the adaptive algorithm
outperforms the random one.

IV. CONCLUSION & OUTLOOK

In this work we first developed a layer-based fully asyn-
chronous distributed node controller, specific to hierarchical
network topologies, and we implemented a self-configuration
method based on an estimation technique. Whereas the
theory for the estimation technique optimizes communication
costs, we decoupled our performance metric by considering
a sensor-node as either fully active or shut-down. In our
previous work [19], we additionally verified the system’s
performance on hardware, and developed a probabilistic



model that accurately captured the behavior of a real sensor
network. Also, we developed a framework which ultimately
allows for a specific, user-defined trade-off between the cost
and accuracy of a sensor network. Beyond our previous
work, this paper explores the feasibility of an augmented
node control that envisions the reactivation of nodes absorbed
by the idle state through the branching of pruned quadtree
nodes. With our simulation results, we showed how the pro-
posed quadtree branching algorithm may lead to significantly
reduced resource usage without compromising the quality of
the data obtained.

There are a number of possible extensions to this work,
but most importantly, the introduction of clusterhead rotation
cycles and distributed node responsibilities lead to increased
robustness, which is a key factor for large-scale networks.
Building upon the current baseline method, we will explore
how the controlled movement of robotic sensor nodes affects
the spatial resolution of the sensor network as a whole,
thus also affecting its performance. Simultaneously, we will
explore how to optimally allocate nodes in heterogeneous
networks. To this purpose, we will employ SensorScope
stations [21] as well as flying robotic vehicles [22] for
outdoor operation, offering a promising set of tools for
validating our future approaches on mobile systems as well
as in outdoor scenarios.
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Environmental Monitoring with the Particle Plume Explorer Algorithm

Gonçalo Cabrita and Lino Marques

Abstract— This paper presents an environmental monitoring
application for monitoring gas concentrations achieved by
means of an odor guided exploration and plume tracking
algorithm (Particle Plume Explorer) through manipulation of
the gas mapping algorithm (Particle Plume). This is achieved by
giving an expiration time to the gas data being collected so that
the robot is forced to continuously revisit previously explored
areas, thus arriving at a monitoring-like behavior. The idea was
validated through both simulations and real world experiments
on two different floors of an indoor environment using a robot
equipped with a gas sensor. The results show that the robot is
able to visit most of the environment with a good distribution
giving however more emphasis to areas where chemicals are
present in the air.

I. INTRODUCTION

Environmental health hazards are slowly slipping into the
homes of developed countries. Among the most common
hazards is indoor air pollution. This problem is finding its
way to the top of the agenda due to the significant burden
of disease it imposes. Environmental monitoring can be
described as the process of characterizing and monitoring
the quality of any given environment. Developments in the
field of mobile robotics during recent years have turned the
mobile robot into a viable tool for environmental monitoring.
Research on the field of odor related mobile robotics has
however been focusing on the problem of odor source
localization.

The existing solutions to the odor source localization
problem can be divided in three families of algorithms, (1)
hill climbing or gradient ascent techniques; (2) biologically
inspired algorithms; and (3) probabilistic methods.

Gradient based techniques require comparisons between
two or more spatially separated chemical measurements,
meaning that there must be more than one gas sensor on
the same agent or, in the case of a unique sensor, the agent
must perform multiple measurements separated in time and
space in order to estimate the gradient and make a decision
for the next move. This behavior has been widely observed
in several insects (e.g. Drosophila) and in some bacteria (e.g.
E. coli). However, this type of behavior is satisfactory only
if the agent is either close to or inside the plume, otherwise
it will perform random movements while trying to re-acquire
the plume.

Biologically inspired algorithms have been broadly used
in robotics as an attempt to mimic the successful behaviors
of animals, in this case while performing odor tracking or

G. Cabrita and L. Marques are with the Department of Electrical and
Computer Engineering, Institute of Systems and Robotics, University of
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odor source declaration. The bacterium E. coli, which is also
referred in smooth gradient ascend techniques, presents a
chemotaxis behavior that consists of a series of movements
that probabilistically lead towards highest concentrations.
However, the moth is the being that inspired the most algo-
rithms in this area. The moth performs a set of movements
to reach the odor source [1], [2] which consist of moving
straight upwind while inside the odor plume - the surge;
then, the moth performs counter-turning patterns (zig-zag
movements) along the plume and according to the wind
direction, aiming to acquire odor cues - the casting. Some
silkworm moths [3] also describe some kind of irregular
spiral movements when the casting strategy bears no fruits.
Along with this case, other bio-inspired algorithms have
been implemented and tested in mobile robots to accomplish
the task of odor source localization [4], [5], using search
strategies like Lévy-taxi [6], [7] or Biased Random Walk
[8]. Different approaches of bio-inspired algorithms which
rely on large groups of individuals carrying out a task as a
whole (swarm behavior) can be found in [9], [10].

The odor source localization problem was also researched
employing probabilistic methods such as Hidden Markov
Methods [11] or Bayesian methods [12], [13]. These works
proposed to localize the odor source by building a probability
map of the source localization and, whenever new informa-
tion was available, updating each cell in the map.

Environmental monitoring is usually achieved by means of
a sensor network. The network nodes can be static, mobile
or a combination of both. Static wireless sensor networks
(WSN) consist of small nodes equipped with sensors capable
of measuring the desired phenomena. The available solutions
are usually cheap and easy to deploy, even over large areas,
both indoors and outdoors. Static WSN have found their way
into many monitoring applications, from museums [14] to
large glaciers [15]. Mobile robots equipped with multiple
sensors can create a mobile WSN. Mobile robot platforms
come in many shapes, from small ground robots to unmanned
aerial vehicles (UAVs) or even underwater unmanned vehi-
cles (UUVs), allowing for their deployment in almost any
scenario. A mobile WSN will ultimately perform the same
task a static WSN would, however a small number of mobile
sensors is able to achieve a similar spatial resolution to that
of a static WSN installed over a larger area. Furthermore
a team of robots can be deployed virtually anywhere in
a short amount of time, hence being a far more flexible
solution [16]. Finally some applications can benefit from the
use of both static and mobile WSNs. Mobile robots deployed
within an environment equipped with a static WSN can tap
into the existing network to access the environmental data



of the covered area. This allows the robot to make decisions
based on this data and get more detailed readings, thus
improving the coverage and spatial resolution of the complete
system [16].

Traditionally mobile robot environmental monitoring is
achieved by means of patrolling or area coverage, or sweep-
ing algorithms. Sensors placed on the robot take readings,
thus characterizing the environment. The most common
types of chemical variables monitored are: volatile organic
compounds (VOCs), air contaminants, and other type of toxic
or hazardous gases [17], [18], [19]. So how is environmental
monitoring related to odor source localization? Algorithms
from the families of patrolling, area coverage or sweeping
will produce a monitoring behavior oriented to the surround-
ing environment, the robot moves in order to optimize the
frequency at which each map node is visited or to optimize
the covered area. In this paper a solution that produces an
odor guided monitoring behavior is proposed, where the
chemical data being gathered is not merely being stored,
but also being used to guide the robot. To accomplish this
the odor guided exploration and plume tracking algorithm
Particle Plume Explorer and the Particle Plume gas mapping
algorithm were be used.

The remaining of this paper is organized as follows,
section II presents the proposed approach for solving the pre-
sented problem. In section III one can find the experimental
setup used to validate the proposed method. Section IV holds
the results and section V the discussion. The conclusions can
be found in section VI.

II. ODOR GUIDED ENVIRONMENTAL
MONITORING

The goal of this work is to monitor a known indoor
environment using an odor guided exploration and plume
tracking algorithm. The proposed method focuses on Particle
Plume (PP), a plume mapping algorithm and Particle Plume
Explorer (PPE), an odor guided exploration and plume
tracking algorithm. Although these were presented in [20]
an overview of both algorithms follows.

A. Particle Plume

The chemical readings from the gas sensor mounted
on the robot are converted into a point cloud around the
sensor’s location on a global frame, following a gaussian

Chemical 
reading

Convert to 
global frame

Point cloud

Convert to 
point cloud

Overlaping
points?

YesRemove older 
points

No

Add to plume Plume

Fig. 1. Flowchart for the Particle Plume plume mapping algorithm.

distribution. The number of points generated for each reading
is proportional to the chemical reading in parts per million
(ppm). The point cloud is confined to a predefined radius
around the point of origin. The newly created point cloud is
finally added to the plume. If the volume occupied by the new
points contains older points, these older points are removed
from the plume. This process is represented in Figure 1.

The result is a low-pass-filter-like behavior, producing a
smooth representation of the plume. Point clouds with bigger
radius produce smoother plumes while smaller radius result
in bigger variations inside the plume. The goal is to tackle
the intermittency problem found in gas distribution mapping
[21].

Along with the particle cloud representation of the plume
PP is in charge of generating a grid of visited cells. This
means that it is possible to differentiate between explored
areas with no odor detected and unexplored areas.

Due to the fact that a plume is not static PP provides the
possibility to give an expiration time to the particles on the
plume. This feature is the key in obtaining the monitoring
behavior presented in this work.

B. Particle Plume Explorer

The PPE algorithm is in charge of odor oriented explo-
ration and plume tracking. This is accomplished in four
steps. (1) Initially a circle of radius r is drawn around
the robot and divided into n slices. (2) Next the slices
which overlap with obstacles are removed. (3) The slices
which contain a percentage of explored area over a certain
threshold are then also removed. (4) Finally the cost of each
remaining slice is calculated using Equation 1, where Wo,
Wv and Wd represent the weight of the odor, visited cells and
direction, respectively; the mad() is the minimum distance
angle function; α, β and θ are the angles of the odor, the slice
and the robot, respectively; finally, the Av is the visited area.
The slice with the lowest cost is chosen and the goal pose
is set. The four stages of the PPE algorithm are illustrated
in Figure 2.

Scost = Wo · |mad(α, θ)|+ Wv · Av + Wd · |mad(β, θ)| (1)

There might be situations where all slices are removed
before the final stage. When this happens PPE enters a
recovery behavior where the area surrounding the robot is
scanned for the closest viable spot to continue the explo-
ration. This is done respecting the obstacles present in the
environment. Determining if a certain location is suitable
for further exploration is accomplished using the four-stage
algorithm discusses earlier. If while performing the recovery
behavior PPE is unable to locate a suitable pose to continue
exploration the algorithm comes to an end.

Since the purpose of PPE is odor exploration and plume
tracking, areas which appear to have odor cues are given
more importance and are thus more thoroughly explored.
This is achieved by means of a dynamic threshold in the third
stage (Figure 2(c)) of the algorithm. The presence of nearby
odor cues results in higher thresholds for the percentage of



(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Fig. 2. The four steps of the Particle Plume Explorer algorithm: a) Draw a circle of radius r around the robot and divide it in n slices; b) Remove the
slices which overlap with obstacles; c) Remove the slices which contain a percentage of explored area over a certain threshold; d) Calculate the goal using
the cost function in Equation 1. The robot is represented in black, obstacles in blue, the visited cells in yellow and the particle plume in red.

visited area for each slice while the absence of odor cues
results in little tolerance for visited areas.

C. Achieving the Monitoring Behavior

As stated previously the monitoring behavior is achieved
by using the expiration time on the particles generated by PP.
As the robot moves it leaves a trail of visited cells behind
which will begin to fade as time goes by. As a result the
robot will re-visit previously explored areas. In order for the
robot not to explore the environment completely and exit
the algorithm the expiration time on the plume should be
lower than the time that takes for the robot to complete a
full exploration. On the other hand if the expiration time is
too low the robot will not leave the same area. The choice
for the expiration time will depend on the speed of the robot
and the size of the environment being monitored.

D. Implementation

Both PP and PPE were implemented in C++ under the
ROS framework [22]. All the source code developed for this
project is open source and can be downloaded for free at
http://www.ros.org/wiki/pp explorer.

III. EXPERIMENTAL SETUP
For the real world experiments an Erratic robot was used.

It was equipped with a Hokuyo LASER range finder and
a Microsoft Kinect for obstacle avoidance and a Figaro
TGS2620 MOX gas sensor for reading chemical concentra-
tions. The robot can be viewed in Figure 3. The robot was
running the ROS navigation stack for autonomous navigation
and localization. The metric map of the environment was
provided to the robot for each experiment. The Figaro
TGS2620 gas sensor is considerably slow, with about 2.0
seconds of rising time and about 15.0 seconds of decay time.
In spite for this the maximum robot speed allowed during
the experiments was 0.50m/s, although this produced a drag
effect on the plume the desired monitoring effect was still
achieved without having to decrease the speed of the robot.

The Figaro TGS2620 MOX sensor was calibrated to
provide readings in ppm. The sensor was placed inside a
sealed chamber of known volume containing clean air. Next
a known quantity of CH3OH (the chemical used throughout
the experiments) was released into the chamber. After the

(a) The Erratic used for the experiments.

(b) Figaro TGS2620 MOX sensor on the left.

Fig. 3. The Erratic equipped with a Hokuyo LASER range finder, a
Microsoft Kinect and a gas sensor.

sensor stabilized a sensor reading was recorded along with
the current quantity of chemical inside the chamber in
ppm. MOX sensors produce changes in resistance as the
chemical concentration changes. The procedure was repeated
for several calibration points until the sensor was close to
saturation. The obtained data set was then fitted by least
square minimization to a logarithmic model.

The following set of parameters was used for all the
experiments: For PP the sphere radius used was 0.50m and
the particle life time was 10min. For PPE the pie radius
r used was 2.0m; the number of slices n used was 32;
the visited area, current heading and odor weights used
were respectively 1.00, 0.01 and 0.10; the maximum allowed
percentage of discovered area per slice on the absence of
odor was 20% and for the presence of odor 50%.
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(c) Simulation results for ISR Floor 0.
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(d) Simulation results for ISR Floor 1.
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(e) Real world results for ISR Floor 0.
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(f) Real world results for ISR Floor 1.

Fig. 4. Results of the experiments.

Two real world experiments were performed in floors 0
and 1 of the Institute of Systems and Robotics of the Univer-
sity of Coimbra. For each experiment the robot was allowed
to monitor the environment during 1 hour. An experiment
was performed on each floor. Each time the robot visited a
cell of the map the corresponding cell count was increased
allowing to determine how homogeneous the monitoring was
during the experiment, ideally the robot should visit each
cell map the same number of times. The maps being used
have a resolution of 0.05m per cell. The maps are shown in
Figures 4(a) and 4(b) where the green stars mark the location
of the odor source used in the experiments. The chemical
substance released during the real world experiments was
methanol vapor (CH3OH), appropriate for the gas sensor
being used. It was always released at a point about 0.3m
above the ground using the bubbling method.

A. Simulated Experiments

Initially a set of simulations was conducted using the robot
simulator Stage and the plume simulator PlumeSim [23]
on a ROS environment. The robot used for the real world
experiments was simulated in the same maps used for the real
world experiments to guarantee the simulations were as close
as possible to the real world. A PlumeSim gaussian plume
model was used having the following parameters, diffusion
in x of 0.2, diffusion in y of 0.005, 20 max points per cell,
a radius of 0.1m and a plume length of 7m. The location

of the odor sources used during the simulated experiments
are shown in Figures 4(a) and 4(b) as blue circles. During
a first stage the simulations were used to extract the best
parameters for PP and PPE. Finally simulations of the real
world experiments were produced for longer times than those
allowed by the battery of the real robot. Two simulation of
2 hours each were performed, one for floor 0 and another
for floor 1 of the Institute of Systems and Robotics of the
University of Coimbra. Once more a count was recorded for
each time a map cell was visited by the robot.

IV. RESULTS

The results of the experiments can be found in Figure 4.
A map of each floor is presented followed by the map cell
visit count for each experiment. The less visited cells show
up in blue whereas the most visited cells are displayed in
red. The graphics in Figures 4(c), 4(d), 4(e) and 4(f) were
obtained by applying a sliding window filter of size 10x10
cells to the raw cell count data in order to allow for a better
visualization of the data.

It is also possible to see a screenshot of the robot per-
forming a real world experiment in Figure 5. The robot is
near the odor source in floor 1 of the ISR University of
Coimbra. Figure 5(a) shows a screenshot taken from rviz,
a 3D visualization software where it is possible to see the
robot, the visited cells in yellow and the particle plume.



(a) Rviz screenshot.

(b) Erratic robot during an experiment.

Fig. 5. The Erratic performing environmental monitoring near the odor
source on floor 1 of the ISR University of Coimbra.

Notice that recent particles appear in red. The particle’s color
slowly turns into blue as they approach the expiration time.

V. DISCUSSION
Analyzing Figures 4(c) and 4(d) it is possible to see that

during the simulations the robot visited almost all of the
environment having skipped the upper rooms of floor 0
(Figure 4(a)) and the upper right room of floor 1 (Figure 4(b))
which is acceptable. However in floor 1 the robot did not
visit the right most corridor during the 2 hours period it was
running. In both graphics it is noticeable the tendency of
the robot to visit the left part of the maps more often, more
precisely the upper left part of the maps, where the odor
sources were placed. This is the the result that was intended.

In Figures 4(e) and 4(f) it is possible to see that once
more the robot did not visit all the map and that each area
was visited less often when in comparison to the simulation
results. This is obviously natural as the robot was running for
only 1 hour against the 2 hours simulations. Furthermore in
the real world the robot has to deal with dynamic obstacles
such as people passing by which further delays the advancing
of the robot. In floor 1 (Figure 4(f)) the robot did not visit
the center upper room which is acceptable. It is also possible
to see that the cells near the odor source do not present an
increase in activity in comparison to neighbor cells. This is
probably due to the fact that the odor source was located in
a narrow passage. The middle of each vertical corridor of
floor 1 is in fact a glass bridge with metal bars, although

in the simulations the robot is allowed to fully explore the
hourglass shaped areas in the real world experiments the
obstacle avoidance layer does not allow it. Figure 4(e) it
is possible to see that the robot failed to visit the left upper
room and the small branch at the center. The area near the
odor source does however present an increase in activity.

VI. CONCLUSIONS
An environmental monitoring behavior for monitoring

gas concentrations was implemented using an odor guided
and plume tracking algorithm. The proposed method was
validated through simulations and real world experiments
on floors 0 and 1 of the Institute of Systems and Robotics
of the University of Coimbra. The results show that the
robot performed well, having visited most of the designated
areas. Furthermore the robot succeeded in exploring the areas
where odor was present more extensively, thus achieving the
desired effect.

In order for the algorithm to work properly, i.e. for the
robot to visit all areas of interest, the expire time on the
gas mapping algorithm must be adjusted depending on the
environment which is a limitation. Furthermore the robot tens
not to visit small branches off the main path. Future work
will focus on creating a hybrid solution where the robot will
be aware of the need to visit all areas yet optimize its path
with regard to the chemical concentrations present in the
environment.

The possibility of integrating a fixed sensor network into
the algorithm will also be studied, as with little cost it is
possible to greatly increase the robustness and effectiveness
of the system.
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Decentralized Multi-Robot Active Exploration for

Probabilistic Classification of Hotspots

Kian Hsiang Low, Jie Chen, John M. Dolan, Steve Chien, and David R. Thompson

Abstract— A central problem in environmental sensing and

monitoring is to classify/label the hotspots in a large-scale

environmental field. This paper presents a novel decentralized

multi-robot active exploration (DEC-MAX) strategy for proba-

bilistic classification/labeling of hotspots in a Gaussian process-

based field. In contrast to existing state-of-the-art exploration

strategies for learning environmental field maps, the time

needed to solve the DEC-MAX strategy is independent of the

map resolution and the number of robots, thus making it

practical for in situ, real-time active sampling. Its exploration

behavior exhibits an interesting formal trade-off between that

of boundary tracking until the hotspot region boundary can

be accurately predicted and wide-area coverage to find new

boundaries in sparsely sampled areas to be tracked. We provide

a theoretical guarantee on the active exploration performance

of the DEC-MAX strategy: under conditional independence

assumption, we prove that it can optimally achieve two formal

cost-minimizing exploration objectives based on the misclassifi-

cation and entropy criteria. Importantly, this result implies that

the uncertainty of labeling the hotspots in a GP-based field is

greatest at or close to the hotspot region boundaries. Empirical

evaluation on real-world plankton density and temperature field

data shows that, subject to limited observations, the DEC-MAX

strategy can achieve better classification of the hotspots than

state-of-the-art active exploration strategies.

I. INTRODUCTION

A fundamental problem in environmental sensing and
monitoring is to identify and delineate the hotspot regions in
a large-scale environmental field [1], [2]. It involves parti-
tioning the area spanned by the field into one class of regions
called the hotspot regions in which the field measurements
exceed a predefined threshold, and the other class of regions
where they do not. Such a problem arises in many real-
world applications such as precision agriculture, monitoring
of ocean and freshwater phenomena (e.g., plankton bloom),
forest ecosystems, rare species, pollution (e.g., oil spill), or
contamination (e.g., radiation leak). In these applications,
it is necessary to assess the spatial extent and shape of
the hotspot regions accurately due to severe economic,
environmental, and health implications, as discussed in [2].
In practice, this aim is non-trivial to achieve because the
constraints on the sampling assets’ resources (e.g., energy
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consumption, mission time, sensing range) limit the number
and coverage of in situ observations over the large field that
can be used to infer the hotspot regions. Subject to limited
observations, the most informative ones should therefore be
selected in order to minimize the uncertainty of estimating
the hotspot regions (or, equivalently, classifying/labeling the
hotspots) in the large field, which motivates our adaptive
sampling work in this paper.

Mobile robot teams are particularly desirable for perform-
ing the above environmental sensing task because they can
actively explore to map the hotspot regions at high resolution.
On the other hand, static sensors lack mobility and are there-
fore not capable of doing this well unless a large quantity
is deployed. While research in multi-robot exploration and
mapping have largely focused on the conventional task of
building occupancy grids [3], some recent efforts are put
into the more complex, general task of sampling spatially
distributed environmental fields [4], [5]. In contrast to occu-
pancy grids that assume discrete, independent cell occupan-
cies, environmental fields are characterized by continuous-
valued, spatially correlated measurements, properties of
which cannot be exploited by occupancy grid mapping
strategies to select the most informative observation paths.
To exploit such properties, exploration strategies for learning
environmental field maps have recently been developed and
can be classified into two regimes: (a) wide-area coverage
strategies [4], [5], [6] consider sparsely sampled (i.e., largely
unexplored) areas to be of high uncertainty and consequently
spread observations evenly across the field; (b) hotspot
sampling strategies [7] assume areas of high uncertainty and
interest to contain extreme, highly-varying measurements
and hence produce clustered observations. Formal, principled
approaches of exploration [4], [5] have also been devised
to simultaneously perform hotspot sampling when a hotspot
region is found as well as wide-area coverage to search
for new hotspot regions in sparsely sampled areas. These
strategies optimize their observation paths to minimize the
uncertainty (e.g., in terms of mean-squared error or entropy)
of mapping the entire continuous-valued field. They are,
however, suboptimal for classifying/labeling the hotspots in
the field, which we will discuss and demonstrate theoretically
and empirically in this paper.

This paper proposes a novel decentralized multi-robot
active exploration (DEC-MAX) strategy for probabilistic
classification/labeling of hotspots in a large-scale environ-
mental field (Section V). The environmental field is assumed
to be realized from a rich class of probabilistic spatial
models called Gaussian process (GP) (Section II) that can



formally characterize its spatial correlation structure. More

importantly, it can provide formal measures of classifica-

tion/labeling uncertainty (i.e., in the form of cost functions)

such as the misclassification and entropy criteria (Section III)

for directing the robots to explore highly uncertain areas of

the field. The chief impediment to using these formal criteria

is that they result in cost-minimizing exploration strategies

(Section IV), which cannot be solved in closed form. To re-

solve this, they are reformulated as reward-maximizing dual

strategies, from which we can then derive the approximate

DEC-MAX strategy to be solved in closed form efficiently.

The specific contributions of our work include:

• analyzing the time complexity of solving the DEC-MAX

strategy: we prove that its incurred time is independent

of the map resolution and the number of robots, thus

making it practical for in situ, real-time active sampling.

In contrast, existing state-of-the-art exploration strategies

[4], [5], [6] for learning environmental field maps scale

poorly with increasing map resolution and/or number of

robots;

• analyzing the exploration behavior of the DEC-MAX

strategy through its formulation: it exhibits an interesting

formal trade-off between that of boundary tracking until

the hotspot region boundary can be accurately predicted

and wide-area coverage to find new boundaries in sparsely

sampled areas to be tracked. In contrast, ad hoc, reactive

boundary tracking strategies [8], [9] typically require a

hotspot region boundary to be located manually or via

random exploration and are not driven by the need to max-

imize the fidelity of estimating multiple hotspot regions

given limited observations;

• providing theoretical guarantee on the active exploration

performance of the DEC-MAX strategy: we prove that, un-

der conditional independence assumption, it produces the

same optimal observation paths as that of the centralized

cost-minimizing strategies, the latter of which otherwise

cannot be solved in closed form. This result has a simple

but important implication: the uncertainty of labeling the

hotspots in a GP-based field is greatest at or close to the

hotspot region boundaries;

• empirically evaluating the active exploration performance

of the DEC-MAX strategy on real-world plankton density

and temperature field data: subject to limited observations,

the DEC-MAX strategy can achieve better classification

of the hotspots than state-of-the-art active exploration

strategies [5], [10].

II. GAUSSIAN PROCESS-BASED ENVIRONMENTAL FIELD

The Gaussian process (GP) can be used to model an envi-

ronmental field as follows: the environmental field is defined

to vary as a realization of a GP. Let X be a set of sampling

locations representing the domain of the environmental field

such that each location x ∈ X is associated with a realized

(random) measurement yx (Yx) if x is sampled/observed

(unobserved). Let {Yx}x∈X denote a GP, that is, every finite

subset of {Yx}x∈X has a multivariate Gaussian distribution

[11]. The GP is fully specified by its prior mean µx
�= E[Yx]

and covariance σxs
�= cov[Yx, Ys] for all x, s ∈ X . In

the experiments (Section VI), we assume that the GP is

second-order stationary, i.e., it has a constant prior mean

and a stationary prior covariance structure (i.e., σxs is a

function of x − s for all x, s ∈ X ). The prior mean and

covariance structure of the GP are assumed to be known. Let

S denote a subset of locations of X sampled a priori (either

by the robot team or other sampling assets) and yS be a row

vector of corresponding measurements. Given the set S of

sampled locations and corresponding measurements yS , the

distribution of Yx at any unobserved location x ∈ X \ S
remains Gaussian with the following posterior mean and

variance µx|S = µx + ΣxSΣ−1
SS{yS − µS}� (1)

σ2
x|S = σ2

x − ΣxSΣ−1
SSΣSx (2)

where µS is a row vector with mean components µs for

every location s ∈ S, ΣxS is a row vector with covariance

components σxs for every location s ∈ S, ΣSx is the

transpose of ΣxS , and ΣSS is a covariance matrix with

components σss� for every pair of locations s, s� ∈ S. To map

the entire field, the measurements at its unobserved areas can

be predicted using the posterior mean (1) and the uncertainty

of each of these point-based predictions is represented by the

posterior variance (2). An important property of GP is that

the posterior variance σ2
x|S (2) is independent of the observed

measurements yS .

If the environmental field evolves over time, then its

domain is extended to include the temporal dimension: let X
instead denote a set of spatiotemporal inputs such that each

input x ∈ X comprises both the spatial location and time.

The rest of the GP model formulation remains unchanged.

III. COST FUNCTIONS

Recall that the exploration objective is to select obser-

vation paths that minimize the uncertainty of estimating the

hotspot regions in the field. To achieve this, formal measures

of uncertainty (specifically, in the form of cost functions)

have to be defined. Let us first consider the feasibility

of using cost functions that quantify the uncertainty of

mapping the entire continuous-valued field, such as (a) sum

of posterior variances (2) over the unobserved locations in

X \ S [4]
�

x∈X\S

σ2
x|S

and (b) posterior joint entropy of the measurements YX\S at

the unobserved locations in X \ S [5]

H[YX\S |yS ] �= −
�

P (yX\S |yS) log P (yX\S |yS) dyX\S .

These cost functions have been utilized in [4], [5] to guide

exploration: the resulting active exploration strategies for

learning GP-based field maps are non-adaptive and perform

wide-area coverage, that is, observation paths are distributed

evenly across the field. Do these wide-area coverage strate-

gies also optimize our exploration objective or should ob-

servation paths be directed to sample specific features of

the field instead? In the rest of this paper, we will show

that, by defining cost functions to measure the uncertainty



of classifying the hotspots in the field, our objective can be

better achieved by performing the latter.

Let us begin by framing the problem of estimating the

hotspot regions in a field formally as one of classify-

ing/labeling the hotspots in the field: A location x is defined

as a hotspot if its corresponding field measurement Yx is

greater than or equal to a predefined threshold, denoted by

γ. Let {Zx}x∈X denote a binary random process such that

Zx is an indicator variable of label 1 if Yx ≥ γ (i.e., location

x is a hotspot), and label 0 otherwise. Then, our problem of

estimating the hotspot regions is equivalent to one of labeling

the hotspots in the field, specifically, by predicting the label

of Zx for every location x ∈ X . As a result, our exploration

objective can be achieved through the use of cost functions

that measure the uncertainty of labeling the hotspots in the

field. Two such cost functions will be defined next.

Let �Zx be the predicted label of Zx for every location

x ∈ X and the cost of predicting (or, more precisely,

misclassifying) the label of Zx with �Zx be denoted by the

following 0− 1 loss function

L(Zx, �Zx) =
���Zx − �Zx

��� =

�
1 if Zx �= �Zx ,

0 otherwise.
(3)

That is, (3) counts a false positive (i.e., the location x is

labeled as a hotspot but it is not) or false negative (i.e., x
is not labeled as a hotspot but it is) as a misclassification.

If Zx is unlabeled (i.e., location x is unobserved), then we

calculate the expected cost (or risk) of predicting the label

of Zx with �Zx instead, which is denoted by

R bZx|S
=

�1
i=0 L(Zx = i, �Zx) P (Zx = i|yS)

= �Zx (1− P (Zx = 1|yS)) + (1− �Zx) P (Zx = 1|yS)
= P ( �Zx �= Zx|yS)

(4)

where P (Zx = 1|yS) = P (Yx ≥ γ|yS), the second equality

results from P (Zx = 0|yS) = 1 − P (Zx = 1|yS), and the

last equality states that the risk (4) is equal to the probability

of misclassification.

The risk (4) is minimized by the Bayes deci-

sion/classification rule

�Z∗
x =

�
1 if P (Zx = 1|yS) ≥ 0.5 ,

0 otherwise.

= arg max
i∈{0,1}

P (Zx = i|yS) .

Using �Z∗
x as the predicted label of Zx, the risk (4) reduces

to

R bZ∗
x|S

= min (P (Zx = 1|yS), 1− P (Zx = 1|yS)) . (5)

Consequently, the sum of risks (or expected number of

misclassifications) over the unobserved locations in X \ S

is �

x∈X\S

R bZ∗
x|S

, (6)

which defines our first cost function. We call this (6) the

misclassification criterion.

The second cost function, which we call the entropy
criterion, is defined as the posterior joint entropy of the labels

of ZX\S at the unobserved locations in X \ S

H[ZX\S |yS ] . (7)

IV. CENTRALIZED ACTIVE EXPLORATION

In this section, we will formulate greedy cost-minimizing

exploration strategies based on the misclassification (6) and

entropy (7) criteria defined in Section III. Unfortunately,

these centralized strategies cannot be evaluated in closed

form, as explained in this section. To resolve this, these cost-

minimizing strategies must first be reformulated as reward-

maximizing dual strategies, from which we can then derive

the approximate DEC-MAX strategy (Section V) to be

solved in closed form efficiently.

Supposing the misclassification criterion (6) is used and

a set S of locations are previously sampled, the exploration

strategy for directing a team of k robots has to select the next

set O ⊆ X \ S of k locations to be observed that minimize

the sum of expected risks:

min
O

�

x∈X\S

EYO|yS

�
R bZ∗

x|S
S
O

�
. (8)

This cost-minimizing strategy (8) can be reformulated as the

following reward-maximizing dual strategy, which selects the

next set O of locations to be observed that maximize the sum

of expected risk reductions:

max
O

�

x∈X\S

R bZ∗
x|S

− EYO|yS

�
R bZ∗

x|S
S
O

�
. (9)

The equivalence between these two strategies follows imme-

diately from observing that the first term
�

x∈X\S R bZ∗
x|S

in

(9) remains constant with any choice of O. Both strategies

cannot be solved exactly due to the expectation term, which

cannot be evaluated in closed form.

If the entropy criterion (7) is used instead, then the

exploration strategy has to select the next set O of locations

to be observed that minimize the expected posterior joint

entropy of the labels of ZX\(S
S
O):

min
O

EZO|yS

�
H[ZX\(S

S
O)|yS , ZO]

�
. (10)

This cost-minimizing strategy (10) can be reformulated as the

following reward-maximizing dual strategy, which selects the

next set O of locations with maximum label entropy to be

observed:

max
O

H[ZO|yS ] . (11)

To show their equivalence, H[ZX\S |yS ] (7) is first expanded

using chain rule of entropy:

H[ZX\S |yS ] = H[ZO|yS ]+EZO|yS

�
H[ZX\(S

S
O)|yS , ZO]

�
.

(12)

From (12), since H[ZX\S |yS ] is a constant, the choice

of O that maximizes H[ZO|yS ] (i.e., (11)) minimizes

EZO|yS

�
H[ZX\(S

S
O)|yS , ZO]

�
(i.e., (10)). When |O| =

k ≥ 2, both strategies cannot be solved exactly due to the

entropy terms, which contain multivariate Gaussian cumula-

tive distribution functions that cannot be evaluated in closed

form.



V. DECENTRALIZED ACTIVE EXPLORATION

This section presents a novel decentralized multi-robot
active exploration (DEC-MAX) strategy that can approxi-
mately achieve both cost-minimizing exploration objectives
(8) and (10) (Section IV) based on the misclassification and
entropy criteria, respectively. Unlike the centralized cost-
minimizing and reward-maximizing exploration strategies
(Section IV), the DEC-MAX strategy can be solved in closed
form efficiently.

The DEC-MAX strategy for directing each of the k robots
has to select the next location x ∈ X \S to be observed that
trades off between (a) minimizing the difference between its
predicted measurement µx|S and the boundary threshold γ,
and (b) maximizing the square root of its posterior variance
σ2

x|S : min
x

|γ − µx|S |/σx|S . (13)

Intuitively, the behavior of the DEC-MAX strategy exhibits
an interesting trade-off between that of (a) boundary track-
ing and (b) wide-area coverage: it simultaneously tracks
a hotspot region boundary that is found until it can be
accurately predicted as well as searches for new hotspot
region boundaries in sparsely sampled areas to be tracked.

In this paper, the domain X of the field is assumed to
be a grid of sampling locations. The next location x to be
observed by each robot is then constrained to be selected
from the 4-connected neighborhood N of the robot’s current
location instead of from X \ S.

Theorem 1 (Time Complexity): Solving the DEC-MAX
strategy (13) requires O

�
|S|2(|S|+ |N |)

�
time.

The above result reveals that the time needed to compute the
DEC-MAX strategy is independent of the map resolution
(i.e., domain size |X |) and the number k of robots, thus
making it practical for in situ, real-time active sampling.

Theorem 2 (Communication Overhead): Let the commu-
nication overhead be the number of broadcast messages sent
by each robot over the network. Then, the communication
overhead of DEC-MAX strategy (13) is O(1).
In terms of data sharing, each robot broadcasts a message
to the other robots sharing its sampled observations since its
last broadcast. Coordination between robots is needed only
if their neighborhoods intersect: in this case, they may select
the same next location to be observed. To avoid this, each
robot can broadcast on the same or another message sharing
its selected location to be observed next.

Under conditional independence assumption, the DEC-
MAX strategy (13) produces the same observation paths as
that of the centralized cost-minimizing strategies (8) and (10)
(Section IV), as established in the result below:

Theorem 3 (Performance Guarantee): If the unobserved
measurements YX\S are conditionally independent given the
sampled measurements yS , then the DEC-MAX strategy (13)
is equivalent to both cost-minimizing strategies (8) and (10)
based on the misclassification and entropy criteria.
The proof of the above result can be found in Appendix A.
The proof construction in fact describes how the DEC-MAX
strategy (13) can be derived from either reward-maximizing
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Fig. 1. Temperature field bounded within lat. 30.75 − 50.75N and lon.
157.75 − 222.25E: γ is set to 3 ◦C, which results in a hotspot region in
the top left and another one in the bottom right.
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Fig. 2. Plankton density field bounded within lat. 30 − 31N and lon.
245.3625− 246.1125E: γ is set to 30 mg/m3, which results in a hotspot
region in the top right and another one in the bottom left.

dual strategy (i.e., (9) or (11)) (Section IV). A simple but
important implication of this result is that the uncertainty of
estimating the hotspot regions in a GP-based field (i.e., in
terms of misclassification or entropy criterion) is greatest at
or close to the hotspot region boundaries.

In practice, how restrictive is the conditional independence
assumption? We conjecture that the assumption becomes less
restrictive (i.e., Theorem 3 becomes more reliable) when
the number |S| of sampled locations increases to potentially
reduce the degree of violation of conditional independence,
the spatial correlation between field measurements decreases,
and the robots are sufficiently far apart (this last case applies
only to the entropy criterion).

VI. EXPERIMENTS AND DISCUSSION

This section evaluates the active exploration performance
of the DEC-MAX strategy (13) empirically on 2 real-world
spatial datasets off the west coast of USA: (a) August 2009
AVHRR temperature data (Fig. 1), and (b) March 2009
MODIS plankton density data (Fig. 2). These regions are
discretized, respectively, into (a) 130× 41 (i.e., |X | = 5330)
and (b) 61 × 81 (i.e., |X | = 4941) grids of sampling
locations. Each location x is, respectively, associated with
(a) temperature measurement yx in ◦C, and (b) chlorophyll-
a (chl-a) measurement yx in mg/m3. Using a team of k =
2, 4, 8 robots, each robot is tasked to, respectively, explore
1250, 625, 312 locations in its path to sample a total of about
2500 observations. The robot team is given 120 randomly
selected observations as prior data before exploration. We



TABLE I
COMPARISON OF ACTIVE EXPLORATION STRATEGIES (WC: WIDE-AREA COVERAGE, HS: HOTSPOT SAMPLING, BT: BOUNDARY TRACKING).

Exploration strategy Behavior Coordination type Time complexity Map resolution |X | Number k of robots
Maximize mutual information [6] WC Centralized O

`
|N |k|X |2(|X |+ k2)

´
Cubic Exponential

Minimize sum of variances [4] WC Centralized O
`
|N |k|S|2|X |

´
Linear Exponential

Maximum entropy sampling (MES) [5] WC Centralized O
`
|N |k|S|2(|S|+ k2)

´
Independent Exponential

MES coupled with HS [5] WC+HS Centralized O
`
|N |k|S|2(|S|+ k2)

´
Independent Exponential

Straddle [10] WC+BT Decentralized1 O
`
|S|2(|S|+ |N |)

´
Independent Independent

DEC-MAX WC+BT Decentralized O
`
|S|2(|S|+ |N |)

´
Independent Independent

use 2000 randomly selected observations to learn the hy-
perparameters (i.e., mean and covariance structure) of GP
through maximum likelihood estimation [11].

Since the domains X of both fields are considerably large,
it is prohibitively expensive to compare meaningfully with
the wide-area coverage strategies [4], [6] that scale poorly
with increasing map resolution and are thus not practical
for in situ, real-time active sampling. For example, it was
reported in [12] that the greedy mutual information-based
strategy of [6] incurred more than 62 hours to generate
paths for 3 robots to sample a total of 267 observations in a
grid of only |X | = 1424 locations. The performance of the
DEC-MAX strategy is therefore compared to that of three
state-of-the-art exploration strategies whose incurred times
are independent of the map resolution: (a) The decentralized1

straddle strategy [10] for directing each robot selects the next
location x to be observed using maxx 1.96σx|S− |γ−µx|S |.
Its exploration behavior is expected to be similar to that of
DEC-MAX, but emphasizes boundary tracking more than
wide-area coverage (due to space constraint, this analysis is
not provided here). As a result, it tends to persist in tracking
boundaries that are already well-predicted before deciding
to search for new ones. Subject to limited observations, it
may consequently not perform as well as DEC-MAX in
a field with multiple hotspot regions. Also, it cannot be
formally related to achieving the cost-minimizing exploration
objectives (8) and (10); (b) The centralized maximum entropy
sampling (MES) strategy [5] for directing the robot team
performs only wide-area coverage by selecting the next
set O of locations with maximum entropy to be observed
using maxO H[YO|yS ]; (c) It can be coupled with hotspot
sampling (HS) by modifying the exploration objective to
maxO H[YO|yS ] +

�
x∈O µx|S . We call this the MES+HS

strategy [5]. For these centralized strategies, the joint action
space is exponential in the number of robots. So, they
scale poorly with increasing number of robots. Table I
summarizes and compares the characteristics of the above-
mentioned active exploration strategies; it does not include
the communication overhead, which is O(1) for all strategies.

A. Performance Metric
The performance metric used to evaluate the tested strate-

gies is the number of misclassifications

M(A) �=
�

x∈A
L(zx, �Z∗

x)

1The original straddle strategy proposed by [10] is developed for a single
robot. To transform it into a decentralized multi-robot strategy, we simply
execute the single-robot straddle strategy on every robot in the team.

over all locations in a given set A where the function L is
previously defined in (3). Three cases are considered:
(a) A = X (i.e., all locations in the domain of the field),
(b) A = X � where

X
� = {x ∈ X | |γ − yx| ≤ 0.2(max

x�∈X
yx� − min

x�∈X
yx�)}

(i.e., all locations with measurements that are close to the
boundary threshold of 30 mg/m3 for the plankton density
field and 3 ◦C for the temperature field), and
(c) A = X \ X �.
We observe that |X �| is only about 22% of |X | for both
fields.

B. Temperature Field Data
Fig. 3 shows the results of the performance of tested

strategies averaged over 5 randomly generated starting robot
locations for the temperature field. In terms of the M(X )
performance, Figs. 3a−3c show that the DEC-MAX strategy
quickly outperforms the MES and MES+HS strategies as
the number of observations increases: their performance
differences have been verified using t-tests (α = 0.1) to
be statistically significant after a total of 500, 750, and
800 observations sampled by teams of 2, 4, and 8 robots,
respectively. Hence, the boundary-tracking DEC-MAX strat-
egy reduces a greater number of misclassifications over the
entire field than wide-area coverage and hotspot sampling.
With more observations, the DEC-MAX strategy can also
perform better than the straddle strategy: their performance
differences have been verified using t-tests (α = 0.1) to
be statistically significant after a total of 500, 1000, and
1600 observations sampled by teams of 2, 4, and 8 robots,
respectively. To explain this, we examine the observation
paths of a team of 2 robots in one of the 5 test runs, as shown
in Fig. 4. The initial performance of the DEC-MAX and
straddle strategies are similar because they are both searching
for hotspot region boundaries (Fig. 4a). As the number
of observations increases further, DEC-MAX’s performance
improves over that of the straddle strategy because we
observe that it directs the robots to search for new boundaries
when the ones that are currently being tracked are well-
predicted. In contrast, the straddle strategy tends to persist
in tracking boundaries that are already well-predicted before
deciding to search for new ones (Figs. 4b−4e). In terms
of the M(X �) and M(X \ X �) performance, Figs. 3d−3i
reveal that, with increasing observations, the DEC-MAX
strategy also reduces a greater number of misclassifications
than the other evaluated strategies whether they are over
locations close to the boundaries (i.e., in X �) or away from
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Fig. 3. Graphs of (a-c) M(X ), (d-f) M(X �), and (g-i) M(X \ X �) vs. no. of observations/robot for varying number of robots actively exploring the
temperature field.

the boundaries (i.e., in X \ X �). It is interesting to note
that locations close to the boundaries incur the majority of
the misclassifications as compared to those away from the
boundaries, which further corroborates the implication of
Theorem 3 that there is higher uncertainty in labeling the
locations close to the hotspot region boundaries.

C. Plankton Density Field Data

Fig. 5 shows the results of the performance of tested
strategies averaged over 5 randomly generated starting robot
locations for the plankton density field. The results are very
similar to that of the temperature field (Section VI-B) except
that the performance of the straddle strategy approaches
that of the DEC-MAX strategy with excessive observations:
their performance differences have been verified using t-tests
(α = 0.1) not to be statistically significant after a total of
2000 and 2240 observations sampled by teams of 2 and 4
robots, respectively. This is expected because the straddle
strategy can track and predict the boundaries as well as
the DEC-MAX strategy given a long enough exploration.
However, subject to limited observations (which is more

practical, as explained in Section I), the performance of the
DEC-MAX strategy is clearly superior to that of the straddle
strategy.

VII. CONCLUSION

This paper describes a decentralized multi-robot active
exploration (DEC-MAX) strategy for probabilistic classifi-
cation of hotspots in a large-scale Gaussian process-based
environmental field. It has the practical advantage of being
significantly more time-efficient over existing state-of-the-art
active exploration strategies [4], [5], [6] because its incurred
time is independent of the map resolution and the number
of robots. In terms of active exploration performance, we
have theoretically guaranteed that, under conditional inde-
pendence assumption, the DEC-MAX strategy can optimally
achieve the formal cost-minimizing exploration objectives
based on the misclassification and entropy criteria, both
of which otherwise cannot be optimized exactly to yield
closed-form solutions. We have demonstrated theoretically
and empirically that the uncertainty of labeling the hotspots
in a GP-based field is greatest at or close to the hotspot region
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Fig. 4. Evolution of 2-robot observation paths produced by DEC-MAX

(left column) and straddle (right column) strategies sampling a total of (a)

250, (b) 500, (c) 750, (d) 2000, and (e) 2500 observations. The robots start

at locations of different lat. 37.75N and 40.75N and same lon. 192.75E.

boundaries. The DEC-MAX strategy is capable of exploiting

this to produce an exploration behavior that formally trades

off between that of boundary tracking until the hotspot region

boundary can be accurately predicted and wide-area coverage

to find new boundaries in sparsely sampled areas to be

tracked. Empirical evaluation on real-world plankton density

and temperature field data shows that, given limited observa-

tions, the DEC-MAX strategy can reduce a greater number

of misclassifications than state-of-the-art active exploration

strategies.

APPENDIX

A. Proof of Theorem 3
In Section IV, we have already shown the equivalence be-

tween the cost-minimizing and reward-maximizing strategies

based on the misclassification and entropy criteria. Therefore,

it suffices to prove that the DEC-MAX strategy (13) is

equivalent to the reward-maximizing strategies.

Let us first prove that the reward-maximizing strategy (9)

for the misclassification criterion is equivalent to the DEC-

MAX strategy (13). From (9),
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The first equality follows from R bZ∗
x|S

S
O

= 0 for x ∈ O.

The second equality is due to the conditional independence

assumption that is provided as a sufficient condition in the

theorem. The third equality is due to the second summation

term evaluating to zero. The last equality follows from the

observation that each risk term in the summation depends

only on the choice of the next location x to be observed by

a single different robot. Hence, we can maximize each risk

term in the summation independently and in a decentralized

manner to achieve the same result as that in the third equality.

max
x
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The first equality follows from (5). The first equivalence is

due to P (Yx ≥ γ|yS) =
1
2

�
1− erf
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γ − µx|S

σx|S

√
2

��
.

Now, let us prove that the reward-maximizing strategy (11)

for the entropy criterion is equivalent to to the DEC-MAX

strategy (13). From (11),

max
O

H[ZO|yS ]

= max
O

�

x∈O
H[Zx|yS ]

=
k�

i=1

max
xi

H[Zxi |yS ] .

The first equality follows from chain rule of entropy and

conditional independence assumption. The second equality

follows from observing that each entropy term in the sum-

mation depends only on the choice of the next location x
to be observed by a single different robot. Hence, we can

maximize each entropy term in the summation independently

and in a decentralized manner to achieve the same result as

that in the first equality.

max
x

H[Zx|yS ]
≡ min

x
P (Zx = 1|yS) log P (Zx = 1|yS) +
(1− P (Zx = 1|yS)) log(1− P (Zx = 1|yS))
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Fig. 5. Graphs of (a-c) M(X ), (d-f) M(X �), and (g-i) M(X \ X �) vs. no. of observations/robot for varying number of robots actively exploring the
plankton density field.
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Abstract— This paper presents a sampling strategy for 
mobile gas sensors. Sampling points are selected using a 
modified artificial potential field (APF) approach, which 
balances multiple criteria to direct sensor measurements 
towards locations of high mean concentration, high 
concentration variance and areas for which the uncertainty 
about the gas distribution model is still large. By selecting in 
each step the most often suggested close-by measurement 
location, the proposed approach introduces a locality constraint 
that allows planning suitable paths for mobile gas sensors. 
Initial results in simulation and in real-world experiments with 
a gas-sensitive micro-drone demonstrate the suitability of the 
proposed sampling strategy for gas distribution mapping and its 
use for gas source localization. 
 

Index Terms—autonomous UAV, chemical sensing, gas 
distribution modelling, gas source localization, gas sensors, 
mobile sensing system, quadrocopter, sensor planning, artificial 
potential field. 
 

I. INTRODUCTION 
as distribution modelling and gas source localization 
play an important role in environmental management 

applications such as leak detection and landfill monito-
ring [1], for example. The response of many gas sensors, 
however, is caused by direct interaction with the chemical 
compounds and thus represents only a small area around the 
sensor surface. For practical applications either a large 
number of stationary sensors or mobile sensors are required.  
In this paper we consider the case of gas sensors carried by a 
mobile robot, which offers a number of advantages including 
rapid deployment, adaptation to changing environmental 
conditions, and the possibility to move to areas of high 
concentration, to name but a few. A crucial element for gas-
sensitive mobile robots is a sensor planning strategy that 
selects preferable sampling locations based on the current 
knowledge about the environment and more specifically the 
current knowledge about the gas distribution. The purpose of 
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the sensor planning component is to reduce the time that is 
necessary to converge to the final gas distribution model or 
to reliably identify important parameters of the distribution 
such as areas of high concentration, for example. Sensor 
planning is especially important in the case of a flying gas-
sensitive robot such as the one considered in this paper due 
to its limited battery life time. 

In this paper, we adapt a newly developed sensor planning 
approach by introducing locality constraints to plan the path 
for a micro-drone. The sensor planning algorithm uses 
information about the target area and previous sampling 
locations. In addition, it considers the current statistical gas 
distribution model to direct sensor measurements towards 
locations of high mean concentration, high concentration 
variance and areas for which the uncertainty about the gas 
distribution model is still large. The different objectives are 
combined in an Artificial Potential Field (APF) in a way that 
allows to include additional objectives, e.g. from human 
operators, in an intuitive and straightforward way. In 
addition to the introduction of the modified APF-based 
sensor planning algorithm and the demonstration on a gas-
sensitive micro-drone, we also demonstrate that the peak in 
the predictive variance model can provide an accurate 
estimation of the location of a stationary gas source. 

In the reminder of this paper, we first describe the APF-
based approach for sensor planning and its modification to 
provide meaningful search paths for a mobile gas sensor 
(Sec. II). Next, we describe the robotic platform used 
(Sec. III) and the experimental set-up (Sec. IV). Finally we 
present the results (Sec. V), draw conclusions and identify 
directions of future work (Sec. VI). 

II. SENSOR AND PATH PLANNING 

A. Statistical Gas Distribution Modelling 
The first step in the proposed algorithm is to create a 

statistical gas distribution model using the Kernel DM+V/W 
algorithm introduced by Reggente and Lilienthal [6]. The 
input to this algorithm is a set of measurements 
D = {(x1,r1,v1), …, (xn,rn,vn)} with gas sensor measurements 
ri and airflow measurements vi collected at locations xi. The 
output is a grid model that computes an estimate of 
distribution mean and variance for each cell. We use the 2D 
version of the Kernel DM+V/W algorithm as basis for the 
APF sensor planning algorithm to avoid the higher 
computational complexity of the 3D Kernel DM+V/W 
algorithm [7] and because of the limited battery capacity of 
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the micro-drone, which does not permit a full 3D search. In 
the experiments, the drone was kept in a single 2D plane. 

The Kernel DM+V/W algorithm works as follows. In the 
first step, it computes weights !i

(k) that model the 
information content of measurement i at grid cell k. This is 
done by evaluating a two-dimensional, multivariate Gaussian 
kernel N at the distance between the location of the 
measurement i and the center x(k) of cell k: 

 

. (1) 
 

The shape and orientation of the kernel depends on the 
local airflow vector v and on two meta-parameters that 
determine a spatial scale (") and a wind scale (#). If no wind 
is measured (or if no wind information is available), the 
Gaussian kernel has a circular shape. In case of a non-zero 
wind measurement the kernel takes the shape of an elongated 
ellipse with the semi-major axis rotated in wind direction and 
stretched according to the strength of the wind. 

Second, weights !i
(k), weighted sensor readings !i

(k)$ri, and 
weighted variance contributions !i

(k)(ri - r(k(i)))2 are integrated 
and stored in temporary grid maps.  

 

, (2) 
 

, (3) 
 

 (4) 
 

The variance contributions are computed using the 
difference between the actual measurements ri and the 
corresponding prediction of the model r(k(i)), i.e. the 
predictive mean for the grid cell k(i) closest to the point at 
which ri was measured. 

Third, a confidence map %(k) is computed from the 
integrated weights &(k) using another scaling parameter "& as 
a soft threshold: 

 

. (5) 
 

The confidence map expresses an increased confidence at 
locations for which we have a large number of sensor 
readings in the close vicinity (“close” is to be understood 
relative to the kernel width ").  

Finally, the map estimate of the mean r(k) and the 
corresponding variance estimate v(k) is calculated using (6) 
and (7) as 

 

, (6) 
 

. (7) 
 

The final estimate is obtained by linear interpolation 
between the map prediction and an a priori estimate for cells 
with low confidence. For the mean, the a priori estimate r0 is 
computed as the average concentration over all sensor 
readings. Similarly, the average over all variance 
contributions v0 is used to estimate the distribution variance 
in regions far away from measurement points.  

B. Artificial Potential Field (APF) based Sensor Planning 
In each step, the sensor planning component suggests a 

selectable number nsp of locations to place sensors in the area 
of interest in the next iteration. The algorithm uses 
information about the target area, previous sampling 
locations, and the current statistical gas distribution model 
(described in the previous section). The selection process 
considers three objectives to direct the sensor towards areas 
of (1) high predictive mean, (2) high predictive variance and 
(3) areas in which the model uncertainty is high.  

The first two objectives implement exploitation of the 
information in the gas distribution model. They are realized 
with an attractive potential generated by charges placed in 
each grid cell center. The strength of these charges is given 
by the corresponding predictive mean and variance. Accor-
dingly, two APF contributions are computed for each cell k 
as 

 

,         (8) 
 

.         (9) 
 

The third objective that corresponds to exploration is 
implemented by a repulsive potential generated by placing 
charges at all |D| = n previous measurement locations: 
 

.             (10) 
 

Associating the sensors to be placed as negative charges, 
the virtual charge q has to be negative as well. In the current 
implementation, we assign the same repulsive force to all 
previous measurements and select q = -1. Finally, the APF 
contributions are additively combined with importance 
factors 'M, 'V, and 'R for each objective: 
 

.     (11) 
 

Finally, nsp locations are identified iteratively by selecting 
the location at which the potential takes its minimum as a 
suggested measurement point and updating the APF by 
temporarily placing an additional measurement charge at the 
selected location. Theoretically it could happen that the 
attractive forces towards an increased mean in one direction 
and towards and increased variance in the opposite direction 
cancel themselves out. In practice, we did not observe such 



  

an effect. It is unlikely that the attractive forces are 
completely balanced at the position of the sensor, and if they 
are not the sensor will be directed towards one of the 
directions so that in the next step the symmetry is broken. 

C. Selection of the Next Measurement Location 
The sensor planning approach detailed in the previous 

section distributes its suggestions over the target area without 
any spatial order. Moving the mobile gas sensor directly to 
these locations could create a seesaw movement, which tends 
to empty the batteries sooner, resulting in fewer 
measurements. Therefore, we add a locality constraint by 
selecting out of the nsp suggestions from the sensor planning 
component the most often suggested close-by measurement 
location. This is implemented by a matrix S that has the same 
discretization as the gas distribution model. For each grid 
cell S(k) it counts how often the cell was suggested since it 
was actually visited the last time. The next measurement 
point is ultimately selected as the one with the highest ratio 
S(k)/d(k), where d(k) is the distance between the current 
position of the sensor and grid cell k. Thus, a location far 
away from the current position will only be selected if it is 
frequently suggested.  

In the current implementation, we increase not only the 
counter for a suggested cell but also the counter of 
neighboring cells within a radius of 0.5 m by one, which 
corresponds to the scale of the drainage area below the drone 
(that has a diameter of 1m). 

D.  Path Planning Algorithm for the Micro-Drone 
The initial measurement location is chosen randomly in the 
target area. Then the following steps are iteratively 
performed: 
 
! collect gas sensor and wind measurements while 

keeping the drone at a fixed position for a prolonged 
time (here: 20 s); 

! average the wind measurements over the measurement 
time (20s); 

! compute the predictive gas distribution model using the 
Kernel DM+V/W algorithm (Sec. II.A), the input to the 
algorithm are the current positions and gas sensor 
readings and the averaged wind measurement; 

! derive an estimate of the source location from the 
predictive gas distribution map (detailed below); 

! determine the nsp suggested sampling locations with the 
APF based sensor planning component (Sec. II.B); 

! update the matrix S and select a sampling location that 
maximizes the ratio S(k)/d(k) as described in Sec. II.C; 

! fly the drone autonomously to the chosen sampling 
location and repeat with the first step. (Measurements in 
between two sampling locations are not used to 
decrease the influence of a memory effect in the sensor 
response due to the slow sensor recovery.) 

 

The algorithm terminates either if the battery runs out or 
the confidence map "(k) is above a defined threshold for each 
cell k. 

III. ROBOTIC PLATFORM 
Federal Institute for Materials Research and Testing 

(BAM), in cooperation with Airrobot GmbH & Co. KG, has 
developed a mobile and flexible measurement system as part 
of an R&D project funded by the Federal Ministry of 
Economics and Technology [2], [3], [4]. The result of the 
project is a gas-sensitive sensor module (approx. 200 g) for 
the Airrobot drone AR100-B (Fig. 1). The drone can be 
flown by line of sight, via onboard video camera and video 
goggles as well as by autonomous waypoint tracking.  

The Inertial Measurement Unit (IMU) is an important part 
of the drone. It provides the basis for flight control and wind 
vector estimation and can be read out during operation. The 
IMU consists of three orthogonally arranged accelerometers, 
which detect linear accelerations along the x-, y- and z-axis, 
and three orthogonally arranged rotation rate sensors, which 
measure angular accelerations along the x-, y- and z-axis. 
Magnetic field sensors (compass) and GPS are used to 
improve the accuracy of the IMU and to compensate for 
sensor drift. The IMU of the drone also contains a 
barometric pressure sensor to control the drone’s altitude.    

A commercially available gas detector (Dräger X-am 
5600), which was originally designed as a handheld device 
for personal safety, is the base unit of the gas sensitive 
payload. Depending on the scenario, it can measure many 
combustible gases and vapors with the catalytic sensor as 
well as different (toxic) gases, e.g. O2, CO, H2S, NH3, CO2, 
SO2, PH3, HCN, NO2, and Cl2 with electrochemical and 
infrared sensors. 

An additional electronic circuit controls the 
communication between the gas detector and the drone via 
appropriate device interfaces. A temperature and humidity 
sensor was also integrated as both factors may affect the 
measurement data (however, no compensation for varying 
temperature or humidity was applied in the experiments 
presented in this paper). The casing of the gas detector is 
protected against water and dust according to IP 67 (see [5] 
for further information) and therefore capable of working 
outdoors. 

 
Fig. 1.  Pollution source and micro-drone during one of the experiments.   
 



  

IV. EXPERIMENTAL SETUP 
All experiments were carried out inside an 8 x 12 m2 area 

in an outdoor environment with a micro-drone equipped with 
electrochemical CO sensors. Gas concentration and wind 
measurements were recorded with 1 Hz. Measurements were 
taken at each measurement position for about 20 s, which is 
of the same order as the T90 response times of the used 
sensors. The wind vector was then averaged over all the 
measurements collected at the measurement point. Each gas 
sensor measurement was then included into the gas 
distribution model as if it was acquired together with a 
measurement of the average wind vector, i.e. the average 
wind vector was used for all individual gas sensor 
measurements acquired at the measurement position. 

The parameters of the Kernel DM+V/W algorithm were 
heuristically set to c = 0.15 m (grid cell size), ! = 0.40 m 
(kernel width), !" = N(0, ! = 0.4) # 1.0, and $ = 0.2 s-1. 
Equal importance factors %M, %V, and %R were chosen for the 
APF contributions. The flight speed of the drone between the 
measurement positions was set to 1 ms-1. Because of the low 
flight height of about 1 m, the height of the drone was 
controlled manually during the experiments. Each run took 
around 14 – 19 minutes to complete. A barbecue filled with 
burning coal and fresh, damp wood was used as a pollution 
source (Fig. 1) and was placed approximately in the middle 
of the experimental area (at approx. (6.3, 3.8) m from the 
bottom left corner). The drone was set to autonomous 
waypoint mode directly after take-off, which started the 
experiment. 

V. RESULTS  
The results presented in Fig. 2 and Table I demonstrate 

the suitability of the proposed algorithm for gas distribution 
mapping and its use for localization of a stationary gas 
source. Table I shows for all five runs the distance between 
the true gas source location and three different estimates 
after the last measurement point. The first estimate is derived 
by selecting grid cells in which the predictive mean is larger 
than 90% of the maximum. The center of this area is taken as 
the source location estimate and the maximum extension in 
x- or y-direction is used to specify a confidence interval. In 
the same way the other two estimates are computed using the 
variance (second result) or the product of mean and variance 
(third result). The true source location was within the mean 
estimation area only in one trial and within the variance 
estimation area in two trials. This is in line with previous 

observations that the concentration variance often provides a 
better indication of the gas source location [8] than the mean. 

Fig. 2 shows the final snapshot of run number 3 after 31 
measurement points. The first four diagrams are related to 
the Kernel DM+V/W algorithm and show the weight map 
"(k), the confidence map &(k), the mean distribution map r(k), 
and the variance distribution map v(k). The last two diagrams 
show the measurement positions suggested by the sensor 
planning component (green dots) together with the predicted 
source location (red dot) and the APF map. Fig. 3 shows 
exemplarily the trajectory produced by the SP algorithm in 
run 3 with starting position (x, y) = (11.02, 7.00) m (compare 
with Fig. 2). 
 Keeping the gas emission rate constant over time with the 
chosen gas source was difficult. A re-ignition of the almost 
extinguished source in run #4 for example (after the 20th 
measurement) created an intense emission that likely caused 
very high concentrations also far away from the source. The 
21st measurement taken at position (x, y) = (8.85, 4.95) m 
was affected by this outburst, which caused a strong change 
in the gas source location estimate and is therefore. Results 

 
Fig. 2.  The top row shows the weight map !(k) (left) and the confidence 
map "(k) computed with the Kernel DM+V/W algorithm (right). The middle 
row shows the corresponding mean distribution map r(k) (left) and variance 
distribution map v(k) (right). Bottom row, left: area with the suggested next 
measurement points (green dots) and the source location estimate (red dot). 
Bottom row, right: visualization of the APF. All plots were created after the 
last time step of the SP algorithm (run 3, measurement 31). 
 
 

 
Fig. 3.  Calculated sample trajectory of the SP algorithm (run 3) with 
starting position (x, y) = (11.02, 7.00) m. 
  
 

TABLE I 
RESULTS OF THE EXPERIMENTS 

run measurement 
points 

distance to true source location, 
estimate using mean / variance / mean'variance 

1 27 (1.66±0.75) m / (1.52±0.71) m / (1.57±0.50) m 
2 24 (2.64±0.65) m / (2.84±0.68) m / (2.75±0.46) m 
3 31 (0.68±0.77) m / (0.25±0.80) m / (0.46±0.57) m 
4 20 

34 
(3.01±2.43) m / (2.05±0.89) m / (1.89±0.64) m* 
(1.84±1.32) m / (2.51±0.50) m / (2.28±0.49) m 

5 32 (1.72±0.80) m / (0.74±0.86) m / (1.41±0.55) m 

 
 



  

are given in Table I for the 20 measurement points up to this 
event, marked with an asterisk (*), and for the full duration 
of the experiment. Another difficulty, which should be 
mentioned here, is the slow sensor decay. Flying from one 
measurement position to another directly over the source can 
also lead to wrong source estimates when the sensor still 
responds to the high concentrations close to the source. 

VI. CONCLUSIONS AND FUTURE WORK 
Statistical gas distribution modelling indicates areas of 

high mean and variance and the respective maxima suggest 
areas that are good candidates for further inspection. The 
proposed APF-based approach balances objectives related to 
exploration and exploitation. The repulsive part prevents 
repeated measurements at the same locations and thus 
promotes exploration. The attractive part directs the attention 
to areas for which higher gas accumulation or higher 
variance in the predictive gas dispersion is predicted 
(exploitation). Through the introduction of a locality 
constraint, implemented by selecting in each step the most 
often suggested close-by measurement location, the results of 
the sensor planning component could be used to plan 
suitable paths for a mobile gas sensor. The proposed 
algorithm was tested in real-world experiments with a gas 
sensitive micro-drone. The initial results presented in this 
paper show the potential of this approach for gas distribution 
mapping and highlight that the produced maps can provide 
good estimates of the gas source location.  

The method presented in this paper leaves ample room for 
future work. With respect to real-world applications, it 
should be investigated how robust the proposed approach is 
with respect to changing wind directions and to different 
levels of turbulence.  

The current implementation does not take into account the 
time when the measurements were made. We will study 
therefore an extension of the approach proposed in this paper 
that introduces time-dependency at two points. First, a time 
dependent statistical gas distribution modeling algorithm will 
be used, for example the Time-Dependent (TD) Kernel 
DM+V/W algorithm introduced in [9]. Second, the charge q 
that scales the strength of the repulsive potential exerted 
from previous measurement points should also be time-
dependent, namely it should be lower for earlier 
measurements. We also plan to study an extension to a 3D 
approach.  

Finally, we will investigate methods to select optimal 
relative weights (! parameters) for the different objectives in 
Eq. (11), and include more real-world experiments and 
simulations to test the algorithm.  
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A Networked Telerobotic Observatory for

Collaborative Remote Observation of Avian Activity

and Range Change

Siamak Faridani, Bryce Lee, Selma Glasscock, John Rappole, Dezhen Song, and Ken Goldberg

Abstract—The scientific field study of wildlife often requires

vigilant observation of detailed animal behavior over extended

periods. In remote and inhospitable locations, observation can

be an arduous, expensive, and dangerous experience for field

scientists. We are developing a new class of networked tele-

operated robotic “observatories” that allows “citizen scientists”

and professional scientists to remotely observe, record, and

index animal activity and behaviors via the internet. This

paper describes CONE-Welder, installed at the Rob & Bessie

Welder Wildlife Foundation in Texas to gather photographic and

quantitative data for a biological study of avian activity and

hypothesized range change for selected subtropical bird species.

Since the system was deployed on 12 May 2008, over 600 users

(“players”) have participated online. Players have requested over

2.2 million camera frames and captured over 29,000 photographs.

Within these photos, citizen scientists have classified 74 unique

species, including eight avian species previously unknown to have

breeding populations within the region. The collected dataset

quantifies seasonal presence of birds of particular interest, e.g.,

the Green Jay (Cyanocorax yncas). This paper describes the

system architecture, the game interface that provides incentives

for player participation, and initial data collected. CONE-Welder

is available online at: http://cone.berkeley.edu/

I. INTRODUCTION

To assist field biologists, we are developing Collaborative

Observatories for Natural Environments (CONEs), a new class

of networked teleoperated robotic “observatories” that allows

“citizen scientists” and professional scientists to remotely

observe, record, and index wildlife activity via the internet.

Our broader goal is to advance understanding of automated

and collaborative systems that combine sensors, actuators, and

human input to observe and record natural behavior in remote

settings.

This paper presents the latest in a series of field installations

based on a joint effort among UC Berkeley, Texas A&M,

the Smithsonian Institution, and the Rob & Bessie Welder

Wildlife Foundation. CONE-Welder is deployed at the Rob

& Bessie Welder Wildlife Refuge, 12 km NE of Sinton,

Texas (28E6’51.1” N, 97E25’2.2” W). The region in which

the refuge is located has the highest diversity of bird species

in North America outside of the tropics. Welder has detailed

records of its avifauna, as well as many other aspects of its

S. Faridani, B. Lee, and K. Goldberg are with University of California,

Berkeley, CA. S. Glasscock is with Welder Wildlife Foundation, Sinton, TX.

J. Rappole is with Smithsonian National Zoological Park and Roger Tory

Peterson Institute, Jamestown, NY. D. Song is with Texas A&M University,

College Station, TX.

Fig. 1. Sample screenshot of CONE-Welder from an Internet browser. The

interface (using Adobe Flash) allows users to share control of a networked

telerobotic video camera to capture photos, and classify the photos taken by

other players. This screenshot includes a Great Kiskadee (Pitangus sulfuratus)

and a color-marked Green Jay (Cyanocorax yncas), two of the species of

interest in this project.

ecological communities, dating back to its establishment in

1954 [1], [2].

The field research objectives of CONE-Welder are as fol-

lows: 1) To collect data documenting daily and seasonal

presence of subtropical bird species not previously known

to breed as far north as the Welder Refuge (Fig 1); and

2) To record the daily and seasonal presence of individuals

of some of these species that have been banded and color-

marked allowing individual recognition by photo [3]. This

study is relevant to larger questions regarding the proximate

and ultimate causes for such shifts, which may include global

effects such as climate change.

At Welder, scientists including co-authors Glasscock and

Rappole designed, constructed, and maintain an avian feeding

station. To document the presence of the new species, they

capture and band individuals of these species, and to allow in-

dividual recognition, they color-band birds from these species.

Rappole and colleagues have also undertaken two years of nest

searches to locate nests and document breeding. The Welder

Foundation and resident scientists provide additional field and

laboratory support for the project and collect information on

range change in these bird species.

The CONE-Welder networked robotic camera system en-

gages citizens around the world, including students from

local and non-local schools, to systematically photograph and

collect data on the daily and seasonal occurrence of subtropical
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birds at the site.
The project builds on our past installations that have de-

veloped new models for collaborative observation drawing on
computational geometry, stochastic modeling, and optimiza-
tion [4].

CONE-Welder introduces several new features:
• Remote environment with extreme bird diversity
• Professionally designed feeding stations
• Lights for observation at night
• Flash interface for cross-browser compatibility
• Zone based image classification
• Multi-dimensional image and classification scoring met-

rics

A. Related Work and Previous Experience
Shortly after the introduction of the World Wide Web,

Goldberg and his colleagues developed the Mercury (1994)
and the Telegarden (1995-2004) networked telerobot systems.
In the Telegarden, users could plant and water seeds remotely
over a nine-year period [5].

These and many subsequent Internet-based telerobotic sys-
tems are surveyed in [6]. Goldberg and colleagues later
explored multi-user control of telerobots and human “Tele-
Actors’ [7]. For recent examples see [8]–[10]. In other work,
Kimber, Liu, Foote et al developed a multi-user robotic camera
for video conferencing [11], [12].

The “frame selection problem” for a shared networked
telerobotic camera was defined in [13]. They study the problem
of controlling a single, online, robotic camera based on si-
multaneous frame requests from n users. The initial algorithm
based on grouping and sorting of virtual corners had time
complexity O(n2m) for n users and m zoom levels. Har-
Peled et al. improved this to O(mn3/2log3n) and proposed a
near linear �-approximation algorithm. Song et al. describe the
approximate and distributed algorithms for solving the frame
selection problem [14]. They show that with approximation
bound �, their algorithms runs in O

�
n/�3

�
time. They also

show that their algorithm can be distributed to run with time
complexity O

�
n/�3

�
at each client and in O

�
n+ 1/�3

�
at

the server. See [15] for recent results.
In the context of avian observation, Chen and colleagues

developed the Bird-Watching Learning system (BWL) [16].
BWL participants must be physically present at the observation
site where they use camera-equipped PDAs. BWL explores
how the network can be used to classify the resulting images.

CONE-Welder’s zoning and classification game was in-
spired by von Ahn’s PeekaBoom [17] game where remote
users collaborate to identify and label photos. In CONE-
Welder, users are restricted to a finite set of image classifi-
cation labels.

B. System Architecture
CONE-Welder has three major components: a robotic cam-

era, a multi-purpose network server, and a cross-platform
client interface. As shown in Fig. 2, channeling communi-
cation through an intermediate server improves performance
and ease of maintenance. This layout also allows us to modify

content and functionality at a single location, promoting thin-
client development.

C. Collaborative Camera Control

Since the camera can only stream video from one viewpoint
at a time, we developed an algorithm to satisfy multiple,
simultaneous user requests. Given a set of n simultaneous
frame requests R = {r1...rn}, we must select an optimal
single frame f (Fig. 3). We formalize and then minimize user
dissatisfaction.

Specifically, we are interested in reducing the time taken
to fulfill a request ri or “time-dissatisfaction”. Requests that
have been waiting longer get weighted more. This metric
prevents starvation, where frame requests are left unfulfilled
indefinitely.

The CONE frame-selection algorithm minimizes both the
mean and the variance of time-dissatisfaction across all re-
quests ri. Mean is a measure of general satisfaction and vari-
ance is a measure of fairness. The memory-less algorithm [18]
only minimizes user dissatisfaction for a single frame. It does
not take into account satisfaction over time. To solve this
problem the time- dissatisfaction model is used in CONE [4].
In this model users expects to view their request for some
amount of time TSAT . Ideally, in a single user camera, a
user’s request is satisfied immediately. In a shared camera,
the resulting frame may only cover a portion of a requested
frame. In the time-dissatisfaction model, the “coverage-time”
is also taken into account and a frame that is partially covered
receives some satisfaction.

We define request fulfillment as how well the current
response satisfies the original request and use intersection over
maximum (IOM) metric:

S(f, ri) =
Pi

max (Af , Ari)
(1)

Fig. 2. Block diagram of the CONE system. The camera is communicated
with using a relay server, and users receive video stream from the server. The
server processes the user requests and runs the frame selection algorithm.
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Fig. 3. Camera frame selection among multiple requests, adapted from [4].

Dotted rectangles represent user frame requests ri. The solid bordered

rectangle indicates the frame f chosen by the camera.

where f is a candidate frame, ri is user i’s frame selection,

Ari is the area enclosed by ri, Af is the area enclosed by f ,

and Pi is the intersection of Af and Ari . The maximum value

is achieved when the requested frame and selected frame are

identical, resulting in a complete intersection. This maximum

considers both frame location and zoom level, since each

requester is expecting a level of detail with their coverage.

Fulfillment also depends on coverage time. Ideally, we would

provide coverage as long as desired. Since this is often not

possible, we define a set duration of time that a request can

receive attention before being considered fulfilled.

Schmidt and Dahl implement these metrics in the “d-

weighted” frame selector, developed for CONE Sutro

Fores [4]. They used the time-satisfaction model as an input to

the partial-frame satisfaction [14]. The goal is to maximize the

total satisfaction per request weighted by time-dissatisfaction

(eq. 2).

�

ri∈R

S(f, ri)Dri (t) (2)

The dissatisfaction value (Dri(t)) is defined recursively:

Dri(t) =




1 t = 0

Dri(t− 1)
�
1− S(f,ri)

TSAT−E(ri,t)

�
S(f, ri) > 0, t �= 0

Dri(t− 1) + 1 S(f, ri) = 0, t �= 0

(3)

E(ri, t) is the cumulative coverage function. E(ri, t) is also

calculated recursively:

E (ri, t) =

�
0 t = 0
Eri,t−1 + S(f, ri) t > 0

(4)

When E(ri, t) = TSAT the request is satisfied. A requests

dissatisfaction will decrease during fulfillment, but incremen-

tally increase for each frame selection where the requested

frame is neglected.

II. CLIENT INTERFACE

The CONE-Welder interface shown in (Fig. 1) is designed

to look like a “bird lookout”. Figure 4 is an example of zone

classification where users can define a bounding box (zone)

around the bird in the picture, and propose the name of the

species. Submitted classifications help establish zone identifi-

cations through a voting scheme. When the total number of

classifications exceeds a predefined threshold (currently 3), the

zone is classified based on the majority vote (if there is one).

If these conditions are not met, the zone remains unclassified.

Figure 5 is a snapshot of the online classification report. It uses

the timestamps of classified photographs to plot the number

of daily sightings for each species. A general sighting plot is

also available to help identify trends.

III. GAME MODEL FOR USERS

As an incentive for online users to gather data and generate

useful information for field biologists, we designed a game

where users gain points for taking and classifying photos.

Leading players are recognized on leader boards. The system

is designed to be self-organizing, in that scores are assigned

automatically based on activity of all users. For example, there

is a Daily Parrot Award for the most useful commentary of the

day; Cumulative Photographer Award for the user who gener-

ates interest in another user’s photo; and Cumulative Primary
Classification Award given to the first person to classify a

new zone correctly. There are currently seven different types of

awards in the system. As of April 2009 there were over 97,000

awards with total value of over 125,000 points. A diagram of

the total daily values of awards is shown in (Fig. 6).

A. Rating-based Awards
User interest of a photograph can be related to the presence

of novel events that are valuable to researchers. We attempt to

capture this interest through the “star” rating system (Fig. 4).

Aggregate calculations over the data can help identify these

interesting pictures. We reward the photographers of these

pictures with the daily “Eagle Eye” award. To determine the

winner, we consider all photographs taken on the target day.

Valid candidates within this set must also have at least one

rating from the target day. Each candidate photograph pi is

assigned a value V (pi) according to the following formula:

V (pi) =
�

r∈Ri

�
r − Smax + Smin

2

�
, Smin ≤ r ≤ Smax (5)

Fig. 4. The box drawn around the bird is an example of Zone Classification.

On this image, the photographer and at least three other participants have

classified the bird in the Zone as a Northern Cardinal. Users can also rate

each photo by assigning stars to each picture (top right)
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where Ri is the set of submitted ratings for pi, Smin is the

least possible stars given by a rating (In the current

version of CONE Smin = 0), and Smax is the greatest

possible stars given by a rating (currently Smax = 5).

This formula is based on the idea that not every submitted

rating is positive. It adjusts the rating system so that a mid-

range rating is considered neutral. The photograph with the

highest, positive, calculated value receives the award. In the

event of a tie, all winners receive the award, but points are

equally distributed among them. Low-rated photographs could

potentially win this award when the candidate set is small. We

account for differing levels of competition by rewarding points

as a function of the candidate size. Each award a has a point

value P (a), calculated as follows:

P (a) = BA

�
Ca

DA

�
, a ∈ A (6)

where A is the award type of a, BA is the base point value

for A, Ca is size of the candidate photograph set for a, and

DA is a scaling factor for A. A maximum and minimum value

is also imposed to restrict the possible point range.

B. Time-based Awards
To encourage users to use the system throughout a 24-

hour period, we initiated the “Early Bird” and “Night Owl”

awards. We consider these conditions in our scoring model

by comparing the winning photograph to the runner up.

The awarded point value is determined by an exponential

decay function. The function awards points based on how

close the winning photograph is time-wise to the runner up

photograph.We designed this function to have a maximum

value of 10 points and a half-life of one hour. It helps prevent

users from targeting set times by awarding a negligible amount

of points for solitary camera operation.

IV. DATA

Table I summarizes system usage. These data are summa-

rized in Figure 7 where the number of log-ins to the system

is modeled as a non-homogenous Poisson process.

Graph of Green Jay sightings over time.

Fig. 5. Avian data visualizations on the CONE-Welder site.

3.1 Rating-based Awards

User interest of a photograph can be related to the pres-

ence of novel events that are valuable to researchers. We

attempt to capture this interest through the “star” rating

system (Fig. 4). Aggregate calculations over the data can

help identify these interesting pictures. We reward the

photographers of these pictures with the daily “Eagle

Eye” award. To determine the winner, we consider all

photographs taken on the target day. Valid candidates

within this set must also have at least one rating from

the target day. Each candidate photograph pi is assigned

a value V (pi) according to the following formula:

V (pi) =
�

r∈Ri

�
r − Smax + Smin

2

�
, Smin ≤ r ≤ Smax (5)

where Ri is the set of submitted ratings for pi, Smin is

the least possible stars given by a rating (In the current

Fig. 4. The box drawn around the bird is an example of

Zone Classification. On this image, the photographer

and at least three other participants have classified

the bird in the Zone as a Northern Cardinal. Users

can also rate each photo by assigning stars to each

picture (top right)

Graph of Green Jay sightings over time.

Fig. 5. Avian data visualizations on the CONE-Welder

site.
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Fig. 6. Daily value of game points as of 6 April 2009. There

are two maintenance periods in the diagram during

which no points were allocated.

version of CONE Smin = 0), and Smax is the greatest

possible stars given by a rating (currently Smax = 5). This

formula is based on the idea that not every submitted

rating is positive. It adjusts the rating system so that a

mid-range rating is considered neutral. The photograph

with the highest, positive, calculated value receives the

award. In the event of a tie, all winners receive the award,

but points are equally distributed among them. Low-rated

photographs could potentially win this award when the

candidate set is small. We account for differing levels

of competition by rewarding points as a function of the

candidate size. Each award a has a point value P (a),
calculated as follows:

P (a) = BA

�
Ca

DA

�
, a ∈ A (6)

where A is the award type of a, BA is the base point value

for A, Ca is size of the candidate photograph set for a, and
DA is a scaling factor for A. A maximum and minimum

value is also imposed to restrict the possible point range.

3.2 Time-based Awards

To encourage users to use the system throughout a 24-hour

period, we initiated the “Early Bird” and “Night Owl”

awards. We consider these conditions in our scoring model

by comparing the winning photograph to the runner up.

The awarded point value is determined by an exponential

decay function. The function awards points based on how

close the winning photograph is time-wise to the runner up

photograph. We designed this function to have a maximum

value of 10 points and a half-life of one hour. It helps

prevent users from targeting set times by awarding a

negligible amount of points for solitary camera operation.

Table 1. Summary of statistics as of 6 April

2009

Case Amount
Frames requested by users 2,294,535
Frames selected by the system 2,014,196
Subselections 33,110
Comments 15,609
Ratings 15,362
Awards distributed 97,326
Total value of awards 125,375

Fig. 6. Daily value of game points as of 6 April 2009. There are two

maintenance periods in the diagram during which no points were allocated

Over 460 users have logged in to the system between April

18, 2008 to April 6, 2009. Of these, 256 users have contributed

to classification and zoning. CONE has a highly dedicated

community of active users. The 30 most active users account

for 120,838 score points, 96.4% of the total. A histogram of

the number of snapshots is shown in Fig. 8.

A. Image Classification

Image classifications are useful to researchers to help doc-

ument new species and track previously seen species. Partic-

ipants defined zones, each a classification opportunity, on 93

percent of all photographs. Among these zoned photographs,

73 percent had at least one zone with a consensus classifica-

tion. Furthermore, consensus classifications were established

with an average of 4.5 votes. Users have identified a total of 74

unique species to date, shown in Fig 9. These results confirm

that Welder Refuge is extraordinarily diverse, and also confirm

the the presence of eight species whose range did not extend

to the Welder refuge 30 years ago [3].

The project produced a collection of bird images with more

than 29,000 individual photos. This collection can serve as

a training set for bird detection algorithms. The data set is

available at (http://cone.berkeley.edu/frontdesk/gallery/).

B. Avian Range Change Data

There are fifteen Subtropical or Balconian (central Texas)

species that now occur at Welder during the breeding period

that were not there as breeders 30 years ago [1], [19], [20].

We have documented the presence of eight of these species by

photos taken at the CONE-Welder site (Table II). Photographs

of a newly-fledged Green Jay and a juvenile Bronzed Cowbird

TABLE I

SUMMARY OF STATISTICS AS OF APRIL 6,2008

Case Amount

Frames requested by users 2,294,535

Frames selected by the system 2,014,196

Species 723

Subselections 33,110

Comments 15,609

Ratings 15,362

Awards distributed 97,326

Total value of awards 125,375
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TABLE II
SUBTROPICAL OR BALCONIAN (CENTRAL TEXAS) SPECIES THAT NOW
OCCUR AT WELDER DURING THE BREEDING PERIOD THAT WERE NOT

THERE AS BREEDERS 30 YEARS AGO

Species Photos
Green Jay (Cyanocorax yncas) 3659
Bronzed Cowbird (Molothrus aeneus) 1710
Buff-bellied Hummingbird (Amazilia yucatanensis) 1671
Black-chinned Hummingbird (Archilochus alexandri) 768
Great Kiskadee (Pitangus sulphuratus) 516
Eastern Bluebird (Sialia sialis) 144
Audubon’s Oriole (Icterus graduacauda) 28
Couch’s Kingbird (Tyrannus couchii) 12

being fed by a Northern Cardinal confirm breeding by those
species. A juvenile Eastern Bluebird was photographed in July
2008. In addition, we obtained photos of color-banded Green
Jays from every month of the year, demonstrating year- round
residency for this species at Welder.

V. CONCLUSION AND FUTURE WORK

Our three-year NSF project is drawing to a close; this paper
describes our latest Collaborative Observatory for a Natural
Environment to date. CONE-Welder is installed at the Welder
Wildlife Foundation in Texas to gather photographic and
quantitative data for a biological study of avian distribution
and activity. We described the system architecture, the game
interface that provides incentives for player participation and
initial data collected.

In future work, to collect data when no users are online and
to provide an ongoing stream of interesting video for passive
viewers, we are developing an “autonomous agent” to control
the camera. It will be based on statistical learning of patterns
and desired frames from the first year of user/frame/timing
data that we collected. We are working on software to au-
tomatically detect if a bird is visible in the video frame
using machine vision. We are interested in determining if it

Fig. 7. Poisson regression on the number of visits per hour of the day.
Midnight is represented as time t = 0.

Fig. 8. Histogram of the number of snapshots taken by users.

is possible to automate the “search” for birds in the camera’s
workspace.

We hope CONE-Welder can be a useful model for obser-
vatories in other locations. The system has been remarkably
robust, remaining online 24 hours a day for approximately one
year so far, with short periods of downtime due to network in-
terruptions and maintenance. It has attracted over 600 “citizen
scientists”, with over 30 dedicated regular (daily) players, who
have collectively identified over 70 unique species, including
eight unexpected bird species whose breeding range previously
did not include the Welder Refuge. A large corpus of photo-
graphic, taxonomic, and timing data have been collected. In
many photos, colored leg bands can be clearly distinguished.
This set also provides valuable machine learning information
for researchers in the field of computer vision. We look
forward to analyzing these data, and will report results in a
future publication.
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Abstract— Robotic aircraft provide a unique and valuable

means for remote sensing of the environment. They can traverse

large distances with minimal energy requirements and hence

are more environmentally friendly than manned systems; can

carry significant sensor payload capacity compared to other

robotic systems; can operate at lower altitudes than manned

aircraft and hence can attain higher spatial and temporal

resolution; and can be configured for intelligent and adaptive

sampling. Over the last five years the aerial robotics group at the

Australian Centre for Field Robotics (ACFR) has conducted a

number of significant experiments and field trials using robotic

aircraft in a number of remote sensing applications including

terrain mapping, vegetation classification, and animal tracking.

Our research has focussed principally on novel data fusion

and classification algorithms suited for such tasks, as well as

control strategies for adaptive mapping, search and track. This

workshop paper provides an overview and examples of this

research and a discussion of the future potentials for aerial

robotics in environmental monitoring.

I. INTRODUCTION

Robotic aircraft or Unmanned Aerial Vehicles (UAVs) pro-
vide a unique and valuable means for remote sensing of the
environment. They can traverse large distances with minimal
energy requirements and hence are more environmentally
friendly than manned systems; can carry significant sensor
payload capacity compared to other robotic systems; can
operate at lower altitudes than manned aircraft and hence
can attain higher spatial and temporal resolution; and can be
configured for intelligent and adaptive sampling.

There has thus been much recent interest in the use of
UAVs in environmental monitoring and ecology studies;
recent applications of interest include weed monitoring [1],
[4] crop health assessment [6], rangeland monitoring [7],
antarctic ecology [5] and wildlife surveys [8], [11]. These ap-
plications take advantage of the low-cost and high-resolution
imagery available from UAV systems. Remote sensing data
available from traditional means such as from satellites or
manned aerial photography often suffer from fundamental
limits to the spatial and temporal resolution available; spatial
resolution is often limited by the high operating altitude of
these platforms and temporal resolution is often limited by
the high-cost of data collection (particularly from manned
aircraft), which is particularly important in small-scale envi-
ronmental science and ecology studies.

This work was based at the Australian Cen-
tre for Field Robotics, University of Sydney, NSW
2006, Australia m.bryson@acfr.usyd.edu.au,
salah@acfr.usyd.edu.au

Fig. 1. Aerial robotic platforms used in environmental monitoring at
the ACFR: Left, 1/3 scale J3 Cub fixed-wing UAV with sensor payload
consisting of GPS, IMU and downwards-looking colour vision camera.
Right, autonomous helicopter with attached spray booms used in precision
herbicide delivery, and sensor payload consisting of GPS and downwards-
looking colour vision camera.

This paper summarises research efforts at the Australian
Centre for Field Robotics (ACFR) in using UAVs for
environmental monitoring applications. Results from three
example applications are presented, the first two focussing
on weed detection and mapping using both hovering and
fixed-wing UAV systems, and the last application focusing
on the use of UAVs for studying insect band movements.

II. AQUATIC WEED SURVEILLANCE USING A ROBOTIC
HELICOPTER

This work focused on the development of a hovering UAV
system (robotic helicopter) (see Figure 1, right), for the
monitoring and spraying of aquatic weed species that grow
in river systems, wetlands and irrigation channels. Aquatic
weeds such as Salvinia (Salvinia molesta) and Alligator weed
(Alternanthera philoxeroides) have been named as weeds of
national significance in Australia due to their invasive spread
into waterways, creating thick blankets of vegetation across
water surfaces that kill bottom-growing native vegetation,
deoxygenate water and kill fish populations. The developed



Fig. 2. Monitoring and spraying of aquatic weeds using a hovering

UAV system: Left top, stitched mosaic of images of a weed-infested area

taken by the hovering UAV. Left bottom, The same stiched mosaic colour-

labelled based on weed probability from an offline weed classification

process (high-probability in red, medium probability in yellow and low

probability in blue). Right top, autonomous spraying system in action for

delivering herbicide to invasive weeds. Right bottom, ground-based photo

of a white paper target sprayed with colour dye by the hovering UAV during

an autonomous spray test.

system carries a sensor payload consisting of a downwards-

looking colour camera, magnetometer and GPS receiver to

collect geo-referenced imagery while hovering at a low-

altitude over river banks and wetlands. An onboard autopilot

was used to guide the helicopter over a target area to collect

imagery; after landing this data was then processed on the

ground to detect weed species in the imagery. The detected

weed locations were then mapped based on GPS recorded

positions and the UAV was used in a second flight to hover

over weed points and deliver herbicide to the effected area.

A. Results

Figure 2, left, illustrates a stitched mosaic of images

collected from the helicopter and the associated classification

colour associated with the probability of areas in the image

corresponding to a weed or non-weed class. A Support

Vector Machine (SVM) classifier was used to distinguish

each patch of collected imagery as either weed or non-

weed based on human-expert training examples provided

on collected data. Figure 2, right, illustrates the spraying

system installed on the helicopter in action. Due to the

hazards involved in handling herbicide, the spray system

was demonstrated using coloured dye. White paper targets

were placed into the environment as spray targets for the

helicopter, and the amount of dye transferred onto the paper

during spraying was used as a measure of the spraying

accuracy.

III. LANDSCAPE MAPPING AND CLASSIFICATION USING

A FIXED-WING UAV

This work focused on the development of a fixed-wing

UAV system (see Figure 1, left), sensor payload and data

processing algorithms for producing high resolution 3D maps

of the environment with classified object labels. The use of

the fixed-wing platform allowed for traversal over large scale

areas (with transects on the order of 2km long) but with a

spatial resolution of 3.5cm on the ground, an unprecedented

level of resolution when compared to manned aerial surveys.

This work was motivated by two applications, the first

which involved the mapping of woody weed species in open

Fig. 3. 3D terrain mapping results using sensor data collected over the

Flinders Ranges, South Australia: Vision data is collected from a low-

altitude (100m above the ground) compared to manned aircraft, enabling

3D reconstruction of the landscape including the rough 3D shape of tree

canopies without the need for airborne radar or lidar.

agricultural grasslands, the second involved the mapping of

invasive cacti over inaccessible semi-arid rangelands. Woody

weeds such as Prickly Acacia (Acacia nilotica) and Mesquite

(Mesquite prosopis) are a huge problem in Australia, par-

ticularly on agricultural land where they outcompete native

vegetation, cause land access and cattle mustering issues and

use water resources in grassland and woodland habitats.

A. Overview of Robotic Data Collection

Sensor data was collected over target areas by flying a

trajectory of overlapping swaths from a fixed altitude above

the terrain. A flight path as developed such that subsequent

images captured by the on-board camera would present

points on the ground in at least 3 images while flying in

a straight line. Parallel swath trajectories were planned such

that sufficient overlap would be achieved across swaths as to

observe objects in the terrain for a variety of perspectives.

The fixed-wing UAV was fitted with an off-the-shelf autopilot

[9]; remote control flight with a pilot on the ground was used

during takeoff and landing of the UAV on an unprepared

runway (a dirt track) with control handed to the autopilot

when the UAV was in the air. The autopilot system allowed

for autonomous over-the-horizon operation of the system

where telemetry data was sent to a ground station operated

by a single person to monitor the progress of the mission

and ensure the UAV was operating safely.

B. Overview of Mapping and Classification Algorithms

Once the UAV had completed the mission, the collected

sensor data was downloaded from the aircraft and processed



Fig. 4. Classified map results of woody weed and native vegetation using sensor data collected over farmland in West Queensland, Australia: The coloured

points in the map represent different classes detected by the supervised classification approach and allow for the distinction of target weed species using

low-cost visual-band imagery.

at the site using a collection of laptop computers. The aim of

the data processing was to produce accurate, geo-referenced

3D maps of the terrain under the flight area and to detect

and classify the different species of vegetation present in the

map.

Mapping was performed in a multi-stage process. IMU and

GPS information were used to compute an initial estimate of

the position and orientation (full six degree of freedom pose)

trajectory along the flight using an Extended Kalman Filter

(EKF). Scale Invariant Feature Transform (SIFT) feature

points were extracted from the images with correspondences

found across both subsequent frames and overlapping swaths.

Triangulation of 3D feature points was performed using

extracted image coordinates and corresponding pose data

computed using the IMU/GPS EKF. A non-linear least

squares bundle adjustment phase was then used to optimise

both the trajectory and 3D feature point estimates using all of

the raw IMU, GPS and extracted vision feature data. The 3D

feature points and corresponding vision frames were finally

used to build a surface model of the terrain on which the

collected imagery was used to texture the surface.

In parallel to the map construction process, image-based

detection and classification was performed using the col-

lected image data. A tree detection algorithm was used to

segment regions in the image corresponding to tree crowns

and vegetation [2]. A feature descriptor composed of colour

and texture measures was then extracted from every detected

tree segment in the image data. A multi-class classifier was

then used to label each of the detected tree points and to

add this label to the constructed 3D map. The classifier

itself was created using a supervised learning approach in

which a human expert was provided with several examples

of vegetation from the aerial images and asked to label

these into one of several classes based on vegetation species.

The supervised learning approach allowed for the system

to be tailored for different applications involving different

environments and target species of vegetation.

C. Results
Figure 3 illustrates results of the 3D terrain mapping

algorithms applied over inaccessible semi-arid rangelands in

the Flinders Ranges, South Australia. The use of vision data

collected from a low-altitude (100m above the ground) en-

ables 3D reconstruction of the landscape including the rough

3D shape of tree canopies without the need for airborne

radar or lidar. Figure 4 shows an equivalent terrain map

with labelled vegetation points corresponding to different

classes of woody weed and native tree species in farmland

in West Queensland, Australia. The low-altitude flight of the

robotic aircraft allowed for very high spatial resolution in the

imagery which reduced the spectral mixing often present in

manned aircraft or satellite remote sensing data and allowed

for the discrimination of vegetation based on properties such

as canopy texture, which would otherwise not be resolvable

at a lower spatial resolution.

IV. AUTONOMOUS TRACKING OF AUSTRALIAN PLAGUE

LOCUSTS USING UAVS

This project focused on using UAVs for tracking and

quantifying the movements of migratory bands of Australian

plague locusts for the purposes of studying insect behaviour.

Locust swarms can have a devastating impact on agriculture

as locusts march along the ground, stripping and consuming

crops. The aim of the project was to thus use the unique

vantage point available to UAVs to track locust band move-

ments and swarm behaviours, and to use this data to build

models of locust swarm behaviour, which could later be used

for efficient and targeted delivery of aerial pesticides.

The project involved the development of a sensor payload

consisting of a high-shutter speed camera and flashing strobe

mounted to the UAV and the development of upwards-

looking micro-retro-reflectors that were attached to plague

locusts on the ground. The retro-reflectors were designed to

be small (2.5mm in diameter) and light weight such that

when glued to the back of an adult locust they would not

affect it’s behaviour or motion. Locusts tend to march and

migrate only during the day thus several locusts within a

swarm were to be captured and tagged the night before flight



Fig. 5. UAV-mounted Camera Strobe System Test Results: Left, normal
exposure colour image captured over the terrain. One end of a runway
can be seen in the image; the distance across the image corresponds
to approximately 120m on the ground. Right, strobe-synchronised short-
exposure image with detected retro-reflector returns and predicted image
locations of GPS-surveyed retro-reflectors on the ground. The offset between
the predicted and detected locations is due to small errors in sensor timing
and navigation system accuracy.

operations would be performed. The shutter speed of the
UAV-mounted camera was tuned and synchronised to the
on-board strobe such that the camera would return pinpoint
reflections of locusts on the ground.

A. Initial Results and Ongoing Work

To date, the system described above has been demon-
strated using retro-reflector targets at stationary points on the
ground to assess the feasibility of the sensing strategy. Figure
5 illustrates camera imagery collected from the fixed-wing
UAV system (see Figure 1, left) while flying over stationary
reflector targets. The left subfigure illustrates an ordinary
colour image taken with the camera using a shutter speed and
exposure suitable to image the terrain. The right subfigure
illustrates the high-shutter speed/strobe image over the same
area. Image processing was used to extract the high-intensity
responses corresponding to retro-reflector positions on the
ground. The results indicate that reflectors can be reliably
distinguished from background objects.

Future and ongoing work in the project is now focusing on
tracking retro-reflectors mounted to live locusts. Since each
reflector does not provide a unique return signal (compared
to other retro-reflectors), robust data-association and track-
ing algorithms are being developed to correspond reflector
measurements between captured frames and eventually track
the position and velocity of individual locusts across the
landscape.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented research into UAVs for envi-
ronmental monitoring in a number applications including
mapping, 3D landscape modelling, object detection, classi-
fication and tracking. The use of UAVs in environmental
monitoring is an exciting new research area with many recent
demonstrations, and has huge potential for future work. The
following sub-sections summarise important areas of future
research.

A. UAV Applications in Environmental Monitoring

Data collection in environmental monitoring has tradition-
ally been performed using remote sensing systems such as

satellite imagery, manned aerial photography and human vi-
sual observation from aircraft, watercraft or from the ground.
UAVs and other robotic platforms offer a new vantage point
from which to observe the natural world, and future work
should focus on communicating with scientists, ecologists,
land managers and decision makers to discover how some of
this data collection can be supplemented with or replaced by
robotic/autonomous platforms. UAVs provide the advantage
of cheap, low-altitude, persistent and high-time resolution
data collection and have been been identified in potential
applications such as atmospheric science [3] and archaeology
[10] amongst the other applications demonstrated in this
paper.

B. Autonomous and Intelligent Data Collection

Existing developments in real-time airborne data fusion
and mapping are currently limited to small areas, with much
recent work focused on real-time mapping from robotic
platforms in large 3D environments. Building maps online
during data collection will allow future UAV systems to adapt
operations from fixed and inflexible data collection plans,
to real-time informed data collection strategies based on the
information they collect during a mission. This is an exciting
future area for robotic monitoring of the environment that
will rely on advances in real-time data fusion, path planning
and research into relating high-level mission or science goals
into feasible data collection strategies such as focusing on
specific areas or phenomena of interest.

C. Multi-Platform Robotic Exploration of the Environment

Multi-platform, cooperative robotic systems would further
enable efficient data collection over large areas and enable
applications involving time-synchronous collection of data
over multiple sites or of one site from different spatial scales.
This area of future research also includes the fusion of data
collected from robotic systems with data collected by other
means such as satellite and manned-airborne remote sensing,
thus benefiting from the advantages that different platforms
offer.
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Abstract—Over the past decade, several image mosaicing meth-
ods have been proposed in robotic mapping and remote sensing
applications. Owing to the rapid developments on obtaining
optical data from areas beyond human reach, there is a high
demand from different scientists for creating large-area image
mosaics often using images as the only source of information.
One of the most important steps in the mosaicing process is
the motion estimation between overlapping images to obtain the
topology, i.e, the spatial relationships between images. In this
paper, we propose a generic framework for feature-based image
mosaicing capable of obtaining the topology with a reduced
number of matching attempts and to get the best possible
trajectory estimation. Innovative aspects include the use of a fast
image similarity criterion combined with a minimum spanning
tree (MST) solution, to obtain a tentative topology. This topology
is improved by attempting image matching over the pairs of
higher overlap evidence. Unlike previous approaches for large-
area mosaicing, our framework is able to naturally deal with
the cases where time consecutive images cannot be matched
successfully, such as completely unordered sets. We conclude
this paper by presenting an environmental application of this
mosaicing approach for monitoring coral reefs.

I. INTRODUCTION

Image mosaicing methods have been widely used for
panoramic imaging [1] and mapping [2]. Aerial and satellite
imagery of the Earth’s surface, merged with high-resolution
topographic models, have proven a key tool to understand
physical processes of our planet (geological, hydrological,
biological, etc.), to monitor environmental changes, whether
man-induced or natural, resource management, development
and infrastructure planning (public works, remediation plans,
land use, etc.). Robots are becoming more and more important
in gathering optical data from places where human cannot
reach. In robot mapping(i.e., aerial and/or underwater), when
a robot is surveying a large area using only a down-looking
camera, it is of interest to obtain a global view of the area.
To have a wide-area visual representation of the scene, it is
necessary to create large-area maps (mosaics). Mosaics enable
different applications such as geological [3], [4] and archaeo-
logical surveys [5], ecology studies [6], [7], [8], environmental
damage assesment [9], [10] and detection of temporal changes
in [11]. Therefore, there is a high demand from different
science communities for creating optical maps of areas where
human cannot reach.
When a robot is mapping an area in a scattering media [4],

illumination effects, noise, lack of image contrast and blurring
are phenomena that make image registration difficult. This
leads to inaccuracies in image registration that cause mis-
alignment when images are mapped onto the mosaic (global)
frame. To compose images into a mosaic form, several steps
are needed and one of the most important steps is image
registration. In the absence of any other information, most of
the existing methods try the exhaustive strategy of matching
all images against all. However, this approach is only feasible
for a small number of images. Since large-area surveys might
comprise of several hundreds to tens of thousands of im-
ages [4], [5], the all-against-all strategy becomes impractical.
To overcome this problem, we propose in this paper a

generic image mosaicing scheme aiming to get the com-
plete topology with minimum number of image matching
attempts while simultaneously obtaining a globally coherent
mosaic. The algorithm takes as input a set of images that has
been previously acquired. The time order is not taken into
account; therefore, the image set can be totally unordered.
Our technique first infers image similarity information us-
ing a fast method based on the Euclidean distance between
feature descriptors. Then, this similarity is used to create a
tentative topology with associated uncertainty. The estimated
uncertainty, although large at the beginning, is gradually
reduced by successive iterations of image matching and bundle
adjustment.

II. RELATED WORK

Quality constraints of image mosaics are usually very strict,
especially for mapping purposes, as the mosaic might be used
for global navigation [12], localization of interest areas [4]
and detection of temporal changes [11]. Several image mo-
saicing approaches for creating underwater mosaics have been
proposed over the last decade [13], [14], [15], [16]. Pizarro et
al. [13] proposed a mosaicing system that exploited navigation
and attitude information for bundle adjustment. Madjidi and
Negahdaripour [14], addressed the global alignment problem
for a submersible equipped with stereo cameras, using a
mixed adjustment model to recursively determine the pose of
the vehicle. Rzhanov et al. described in [15] a methodology
that exploited navigation data to build geo-referenced photo-
mosaics of the mid-ocean ridges at the East Pacific Rise. Ferrer
et al. [16] proposed a global alignment method for creating



Figure 1. Pipeline of the algorithm.

large-scale underwater photo-mosaics that combines image
registration information and 3D position estimates provided by
navigation sensors available in deep water surveys. Bulow et
al. [17] proposed an online mosaicing (image-to-mosaic regis-
tration) method for Unmanned Aerial Vehicles using an image
registration method based on Fourier-Mellin transformation.
As they have stated, the proposed method fails if there is not
enough overlapping area between time consecutive images.
None of the methods mentioned above have concentrated on
the challenge of finding the non-time consecutive matches
when only image information is available.

III. TOPOLOGY ESTIMATION
In this work, we assume that the optical axis of the camera is

kept perpendicular to the scene, which is approximately flat 1.
Each image has an associated planar transformation [18] with
4 degrees of freedom, MHi, detaied in Eq. (1), that relates the
image frame i to a common mosaic frame M (i.e., absolute
homography).

MHi =





ai −bi ci
bi ai di
0 0 1



 (1)

For simplicity, we consider the reference frame to be the
coordinate system of the first image, so that MH1 is equal
to identity, thus it is not part of the parameter vector to be
estimated.
Our scheme is composed of five different steps: (1) Ini-

tialization, (2) Generation of the list of potential overlapping
image pairs, (3) Image selection and matching, (4) Minimisa-
tion of the reprojection error and (5) Covariance propagation.
The pipeline of the proposed method is illustrated in Fig. 1
Initialization The initialization step aims at obtaining infor-
mation on the similarity between images and to establish
an initial link between them. This similarity information is
intended to be computed in a fast and approximate way. First,
Scale Invariant Features (SIFT) [19] are extracted. Then a
small subset of feature descriptors (between 100 and 200) are
randomly selected from each image, and compared against
the subsets of all other images. This comparison is performed
using the Euclidean distance between feature descriptors [19].
For a given pair of images, our similarity measure is propor-

tional to the number of descriptors that are associated using
the distance criterion. The computational cost of this similarity

1In this work, it is assumed that the navigation altitude of the vehicle is
large with respect to the 3D relief of the scene

measure is comparatively low, since it mainly involves com-
puting the angles between a small set of descriptor vectors. Our
multi-threaded C implementation allows for computing the
measure in 2.5 miliseconds on a standard desktop machine for
a pair of images with 200 descriptors each. In order to establish
the initial link between images, we use a MST where weights
of the edges are the inverted initial similarity values. MST of
a weighted graph is a subset of edges that form a tree whose
sum of weights of edges is minimum[20]. MST provides
a connected tree which is composed of the most similar
image pairs according to the similarity information. The initial
relative homographies between those image pairs that are in
the MST are treated as identity mappings with very large
uncertainty. Using these relative homographies, the absolute
homographies are computed along with its uncertainty which
is propagated using a first order approximation [21].
Finding Potential Overlapping Image Pairs This step aims
to find the overlapping image pairs given an estimate of the
absolute homographies and its uncertainty. We propose to use
an approach which employs two successive different tests. The
first test computes the distance between image centers by tak-
ing into account their uncertainties. If this distance is smaller
than a selected threshold (such as, size of the image diagonal)
then the second test is applied. The second test consists of
generating several noisy instances of homographies using the
propagated covariances and computing the overlapping area
between images. If the normalized average overlapping area
is above a given threshold (e.g., 30%), then the pair is added
to the list of potential overlapping image pairs.
Image Selection and Matching This step starts by selecting
a subset of image pairs from the potential overlapping pair
list. The main reason for this selection is that it is not feasible
to attempt to match the whole list since the list might contain
many non-overlapping pairs due to the high uncertainty and
drift on the current absolute homographies. We have used the
estimated overlapping area between potential overlapping pairs
as a ranking criterion. The size of the subset is determined
by a simple Computational Time criterion, where the total
matching time for the subset is approximately equal to the
computational time spent on all other steps in the iteration
(generation of list of potentially overlapping pairs, bundle
adjustment and covariance propagation). For image matching,
features are detected and matched using SIFT [19], followed
by outlier rejection and motion estimation [18].
Minimizing the Reprojection Error The error terms resulting
from image registration are measured in the image reference
frames. We have employed a standard Bundle Adjustment
(BA) approach [12] which minimizes the weighted reprojec-
tion error over homographies. Reprojection error is expressed
as follows:

ε =
∑

k

∑

t

n
∑

j=1

‖ kpj − MH−1

k · MHt · tpj ‖2 +

‖ tpj − MH−1

t · MHk · kpj ‖2

(2)

where k and t are a pair of images that were successfully



matched, n is the total number of correspondences between the
overlapping image pairs, (MHk,

MHt) are the absolute homo-
graphies for images k and t, respectively. kpj = (kxj ,

k yj, 1)
encodes the coordinates of the jth feature point in image
k, while tpj are the coordinates of the same scene point in
image t. The weight included cost function is given in Eq. (3),
which is the L2 norm of a stack of weighted residues. f is
minimized over θ, which contains the parameters for all image
homographies.

f = RT ·W · R (3)

where R =

[
∣

∣

∣

∣

irkj = ipk − iHj · jpk
jrki = jpk − jHi · ipk

∣

∣

∣

∣

stack

]

is a 4Npm×1

vector and W is a diagonal 4Npm × 4Npm matrix of weights
for each residue. Npm is the total number of correspondences.
Finally, iHj = iHM · MHj and jHi = jHM · MHi. The min-
imisation of the cost function in Eq. 3 was carried out using
the MATLABTM

lsqnonlin function for large-scale methods.
The optimization algorithm requires the computation of the
Jacobian matrix containing the derivatives of all residuals with
respect to all parameters. The Jacobian matrix has a clearly de-
fined block structure, and the sparsity pattern is constant [22],
[23]. In our implementation, analytic expressions were derived
and used for computing the Jacobian matrix.
Covariance Propagation We apply Haralick’s method [21]
to propagate the uncertainty of the resulting homography
estimations of BA. f in Eq. 3 is a function of parameter
vector θ and x containing all data affected by noise. After
optimization, the first order approximation to the uncertainty
in the parameters is given by [21]

Σθ =

(

∂g

∂θ

)

−1

·
∂g

∂x ·Σx ·
(

∂g

∂x

)T

·

(

∂g

∂θ

)

−1

(4)

where Σx is the covariance matrix of x and g is the jacobian
of f with respect to θ.

IV. EXPERIMENTAL RESULTS
The generic scheme described in the previous section was

tested on a general setup for image surveys using an un-
derwater robot equipped with a down-looking camera. We
have tested our scheme on a real data set in which some
time-consecutive images do not have overlapping areas. The
dataset was extracted from an underwater image sequence
acquired by a Phantom 500 ROV during a survey in Andros,
the Bahamas [7]. This data set is composed of two horizontal
and three vertical transects. The total number of images is
112. In addition, we have changed the order of the images to
have more non-overlapping consecutive pairs between ordered
images. The initial similarity matrix is depicted in Fig. 2.
The resulting final trajectory and uncertainty can be seen in
Fig. 3 while the resulting mosaic is depicted in Fig. 4 and
Table I summarises the results. The first column of the table
corresponds to the tested method. The second column shows
the total number of successfully matched image pairs that have
least 20 inliers. The third column contains the total number of
image pairs that were not successfully matched (unsuccessful

Figure 2. Initial Similarity Matrix of the dataset. This matrix was computed
using a maximum of 200 feature points. Values are scaled to [0, 1].

observations). The percentage of the total number of image
matching attempts with respect to all-against-all image match-
ing attempts is given in the fourth column. The last column
corresponds to the average reprojection error calculated using
all the correspondences with the resulting set of homographies
for each tested strategy.
As there are some broken links between the time-

consecutive images, the traditional iterative topology estima-
tion method proposed in [12] cannot be applied. It can be

Table I
SUMMARY OF RESULTS.

Strategy Successful Unsuccessful % of attempts wrt Avg. Error Std. Dev.
Obs. Obs. all-against-all in pixels in pixels

1. Proposed Scheme 278 1, 201 23.79 5.12 3.67
2. Similarity Matrix 294 5, 900 99.65 4.86 3.61
3. All Against All 294 5, 922 100.00 4.86 3.61

observed in Table I that our scheme was able to get 94% of the
total overlapping pairs with a considerably smaller number of
image matching attempts. The second line shows the results for
matching all the pairs for which the similarity matrix provides
at least 20 descriptor associations to attempt RANSAC [18].
The third line is for the all-against-all strategy. Initial similarity
matrix almost suggests all-against-all matching.
In order to show that the proposed scheme is not dependent

on the image order in the dataset. We have also tested our
scheme on a small dataset that is composed of approximately
two transects having a few overlapping pairs between them.
We have changed the image order fully in random manner only
keeping the first image same. This is mainly to represent the
topology in common global frame. Then, we reorganize the
initial similarity matrix by taking into account this randomly
generated new image order. The initial similarity matrices are
depicted in Fig. 5. We have run our scheme on both original
captured order and the randomly generated order of images.
Results are summarized in Table II.
From the results, it can be seen that our scheme can work

with fully unordered datasets as it uses similarity matrix
obtained from images. Final trajectory and uncertainties on
image centers are given in Fig.6 Final trajectory for the
randomly ordered images is given in Fig.7.



(a) (b)
Figure 3. Axes are in pixels and approximately 200 pixels per meter. (a) Final trajectory obtained by the proposed method. Red lines are links between time
consecutive overlapping images while the black ones are between the non-time consecutive. Blue lines show the non-overlapping time consecutive images.
(b) Uncertainty on the final trajectory. Uncertainty ellipses are drawn with 95% confidence level.

Figure 5. Initial Similarity Matrices of the second dataset. These matrices
were computed using a maximum of 100 feature points.

Table II
SUMMARY OF RESULTS.

Strategy Successful Unsuccessful % of attempts wrt Avg. Error Std. Dev.
Obs. Obs. all-against-all in pixels in pixels

1. Captured Order of images 62 30 22.66 7.05 4.20
1. Random Order of images 62 31 22.90 7.03 4.20
2. Similarity Matrix 64 342 100.00 6.63 4.17
3. All Against All 64 342 100.00 6.63 4.17

V. ENVIRONMENTAL APPLICATION OF MOSAICS ON CORAL
REEFS

Recent declines in coral reefs across the globe underscore
the need for new scientific tools to better understand ecological
patterns and rates of change. Given that multiple factors are
typically responsible for changes within reef ecosystems, the
monitoring of reef health must be carried out at multiple spatial

and temporal scales, rather than relying on measuring only
a few parameters. Comprehensive assessment of coral reef
resources demands a hierarchical mapping strategy involving
micro-scale to macroscale measurements. Image-based mo-
saics of the seabed enable observations on a mesoscale of
10’s to 100’s of m, with mm-scale resolution.
Underwater image-based mosaics address several limita-

tions of traditional, diver-based, coral reef monitoring tech-
niques. First, mosaics provide a landscape view of coral reefs
that has previously been unobtainable [7]. Second, mosaics
are efficient tools for tracking patterns of change over time
[25]. Third, mosaics have high spatial accuracy at both the
scale of an individual coral colony [7] and at the scale of the
entire mosaic [10].
The potential use of mesoscale, or ”landscape,” mosaics has

been investigated for several coral reef-related applications,
including: documenting hurricane damage at both the colony
and reef-framework scale [9], mapping mesophotic [26], [27]
and deep-water [28] coral ecosystems, quantifying the area
damaged by a ship that had run aground [10], and tracking
individual colonies through time [9], [25]. Of these, the ship
grounding and individual monitoring take particular advantage
of the new scale of observation enabled by landscape mosaics.
Accurately documenting patterns of physical damage (and

subsequent recovery patterns) to benthic habitats can be espe-
cially challenging when the spatial extent of injuries exceeds
tens of square meters. Such injuries are often too large and



Figure 4. Resulting final mosaic image. After global alignment, the final mosaic was blended using graph cut algorithms [24]

difficult to measure in situ by divers and too small or costly
to be quantified effectively using aerial and satellite remote
sensing tools. Documenting the extent of damage caused by
physical disturbance is one of the main challenges of post-
damage surveys in coral reef habitats. In the case of vessel
groundings, the effective and accurate assessment of the extent
of the damage caused is a crucial first step in the Habitat
Equivalency Analysis (HEA) required to determine the amount
of compensatory restoration required [29], [30]. Grounding
scars are commonly measured in situ by divers using flexible
tapes following the “fishbone” method described by [31]. In
addition, the boundaries of the damaged areas or the positions
of objects of interest (e.g., injured corals) are surveyed using
surface-deployed GPS units positioned over specific locations,

and the extent of the damage is later calculated from the
polygon delineated by the GPS locations.

Landscape mosaics are advantageous for assessment of
damage and recovery operations because they permit simulta-
neous mapping of both the scale of the entire injury as well as
the fine scale appropriate to assess individual colony damage.
Lirman et al. [10] showed that an estimate of the damaged area
derived from a landscape mosaic agreed within 2% with an
estimate produced by a diver using differential GPS. Gleason
et al. [32] mapped a large scar (>3, 000m2) in Puerto Rico
by assembling multiple individual landscape mosaics acquired
by divers. Despite the huge area, the Puerto Rico mosaic was
rendered at 1 cm spatial resolution, allowing the assessment
of individual coral colonies (Fig. 8).



(a) (b)
Figure 6. Axes are in pixels and approximately 200 pixels per meter. (a) Final trajectory obtained by the proposed method. Red lines are links between time
consecutive overlapping images while the black ones are between the non-time consecutive. Blue lines show the non-overlapping time consecutive images.
(b) Uncertainty on the final trajectory. Uncertainty ellipses are drawn with 95% confidence level.

Figure 7. Axes are in pixels and approximately 200 pixels per meter. Final trajectory obtained by the proposed scheme using randomly ordered images in
the dataset.

Monitoring individual coral colonies requires establishing
a permanent site and periodically measuring the size and
condition of each colony within that site. Currently, state-of-
the-art assessment techniques rely on divers to measure colony
sizes using tape measures or meter sticks, and to estimate
colony condition visually. The drawbacks of this technique
are, first, that the divers must tag each colony so the specific
coral can be identified in the future, and, second, that the divers
must have the relevant biological/ecological training to identify
corals and assess their condition in the field. This diver-based

tagging method is the state-of-the-art method used to establish
new permanent plots today.
Landscape mosaics have two key advantages relative to

the diver-based method that improve colony-based monitoring.
First, tags are not necessary because repeat mosaics taken over
the same area can be registered to one another. Removing the
reliance on tags eliminates the need for physical contact with
corals, thereby greatly reducing the potential for inadvertent
damage and the amount of gear that must be permanently
attached to the seafloor (e.g., nails, tags, markers). Tagging is



Figure 8. Landscape mosaic of a ship-grounding scar in Puerto Rico. The dimensions of the mosaiced area are 117× 67 m, covering over 4,700 m2 with
1× 1 cm pixels. The entire mosaic is presented here at <5% of its full resolution, but the insets show portions of the mosaic at full resolution to give an idea
of the level of detail in comparison with oblique images acquired by divers. Note the pulverized rock within the area of maximum damage (red insets), the
condition of the unaffected area surrounding the scar (green insets), and the coral fragments ready to be adhered to the substrate as part of the remediation
process (blue insets).

labor intensive both during the initial establishment of the plot
and during re-location of colonies through time. Furthermore,
tags can get lost due to burial, failure of the attachment
mechanism, biofouling, or simply diver error, and lost tags
represent lost data as colonies can no-longer be identified.
Second, divers who collect the data do not necessarily have to
have extensive training in coral reef biology.

VI. CONCLUSIONS
We have presented a generic scheme for creating large-

area mosaics with application to environmental mapping over
areas where only image information is available. Our scheme
aims at obtaining the topology with minimum number of
image matching attempts as well as obtaining the best possible
trajectory estimation. The proposed approach is able to deal
with the cases where time consecutive images do not have
overlapping areas.
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Abstract—Underwater robots are appearing in the last few
years as necessary exploration tools which provide scientists
with valuable data and samples, allowing the implementation
of experiments to monitor natural processes occurring on the
seafloor. In this paper a video processing pipeline is proposed for
high-resolution 3D mapping of an underwater area of interest
at 1,700m depth along the Mid-Atlantic Ridge axis. First, the
robot trajectory is estimated using Structure from Motion (SFM).
Then, based on the estimated camera trajectory, a dense 3D point
cloud is obtained. Next, this cloud of points is used to create a
mesh of triangles defining the shape of the mapped structure.
Finally, the estimated camera trajectory and surface mesh are
used to automatically obtain the best texture information for
each of the triangles forming the model. The texture mapping
of the surface is key to enable the monitoring of environmental
changes through repeated surveys in time. This surface model is
suitable not only for visualization purposes, but also for scientific
interpretation. Furthermore, the proposed method is generic,
allowing for the mapping of arbitrary surfaces with no a priori
constraints about the needed structure, as was the case for 2.5-
D acoustic bathymetric maps commonly used in underwater
mapping. This allows the imaging of complex structures with
concavities, whose characterization is precluded for traditional
acoustic imaging systems.

I. INTRODUCTION

The complexity of natural environments presents numerous
challenges for surveying with robots. However, with more reli-
able and intelligent systems as a result of technology advances,
robotic platforms are now necessary exploration tools to gain
an understanding of the processes that operate and shape the
Earth and other planets. In the mostly unexplored deep-sea,
underwater robots are providing scientists with valuable data
and samples, and allow the implementation of experiments
to monitor natural processes occurring on the seafloor. As
a result, they have been adopted as a necessary tool in
marine and environmental research. A key aspect of these
studies is the understanding of active geological, biological,
and oceanographic processes, and the links that exist between
them. To help unravel these interdependencies, we propose
imagery-based tools that allow us to use robots so as to
characterize the seafloor at fine scales, allowing scientists to
detect changes over time.

Underwater 3D surveying has gained considerable relevance
in the later years using acoustic multi-beam systems, often
combined with side-scan sonar imagery. However, the inherent

limitations of these tools, including the insonification geometry
and their vocation to characterize relatively large areas of
the seafloor, strongly restrict the resolution of the recovered
maps. In particular, these systems are configured –and the
data processed– so as to obtain a 2.5-D terrain model having
the form h(x, y) = z. Thus, complex three-dimensional
geometries are not characterized, or are poorly represented.
These 3D terrain models also have a limited spatial resolution
(tens of cm for near-bottom robot surveys). Hence traditional
sonar surveys provide data at a resolution that is at least order
of magnitude lower than that of the optical imagery which
can be acquired by Remotely-Operated Vehicles (ROVs) or
Autonomous Underwater Vehicles (AUVs) near the seafloor.

We present in this paper a processing pipeline to model the
terrain of an underwater area of interest using solely a video
camera as a mapping sensor. This method bridges the gap that
exists between acoustical and optical systems in resolution
and capability to obtain accurate 3D models of the seafloor.
Furthermore, the implementation of this technique can be
widespread and become routine, as cameras are standard
sensors equipping underwater robots, and video imagery can
be continuously acquired with no additional cost. Furthermore,
the proposed method is generic, allowing for the mapping of
arbitrary surfaces with no a priori constraints about the needed
structure, as was the case for 2.5-D. This allows the imaging
of complex structures with concavities, whose characterization
is precluded for traditional acoustic imaging systems.

On the other hand, as we are using optical images, the
result is a 3D reconstruction of the surveyed site in the
form of a textured surface model, thus adding the richness
of imagery that cannot be obtained using multibeam systems.
The proposed pipeline works as follows. The camera trajec-
tory is first estimated using a Structure from Motion (SFM)
method. Then, a dense 3D reconstruction is computed, based
on the estimated camera positions from the previous step,
thus obtaining a highly sampled model through a 3D point
cloud. This point cloud is then used as input for a surface
reconstruction method to obtain a mesh of triangles defining
the shape of the object. This model is suitable for visualization
purposes, and for scientific interpretation. Finally, the known
camera positions and surface mesh are used to automatically
obtain the best texture information for each of the triangles



Fig. 1. VICTOR6000 ROV being deployed at the Mid-Atlantic Ridge during
one of the deep-sea surveys. Copyright: CNRS/IFREMER.

forming the model. The texture mapping of the surface is key
to enable the monitoring of environmental changes through
repeated surveys in time.

In this paper we first provide a brief overview of the mo-
saicing system structure and functionality. Next, the proposed
framework is validated and demonstrated on a video survey
of a deep-sea hydrothermal vent in section III. Then, some
experiments are reported, illustrating the obtained results.
Finally, the conclusions are presented, along with further work.

II. SEAFLOOR MODELLING

The datasets presented below were collected at 1,700m
depth in the Mid-Atlantic Ridge, using the IFREMER robot
VICTOR6000 [1] equipped with a forward-looking color
camera (see Fig. 1). Beyond its specificity, the methodology
described in this section can be applied to any sequence of
natural images. The only pre-requisite is the calibration of
the intrinsic camera parameters (here performed underwater
using a calibration pattern) [2]. The proposed video processing
pipeline is based on a series of successive steps detailed in
the following subsections, namely: trajectory estimation; dense
reconstruction; surface reconstruction; and texture mapping.
Since this pipeline relies only in the information of a single
camera, the reconstructed model is affected by an unknown
scale factor [3]. A discussion on scale recovery of the model
is therefore presented below.

A. Estimation of the Camera trajectory

First, the trajectory of the camera (pose at each frame)
is estimated by a Structure From Motion (SFM) procedure
similar to the one described in [4]. This algorithm performs
an incremental reconstruction based on directly registering
the cameras to the already reconstructed points, and consists
of two main steps: first, an initial model is obtained using
a standard motion estimation technique, and then this initial
model is used to directly register new cameras.

The model is initialized by fixing an image (normally the
first one in the sequence) as the reference frame. Then, another
image is selected so as to maximize the baseline. Normally,
SFM algorithms use the fundamental matrix for the camera
motion estimation, and this is the correct approach when
the scene has high 3D relief or the sequence has noticeable
parallax. However, when the scene is nearly planar or there
is low parallax in the sequence the fundamental matrix can
be ill-conditioned, as pointed out in [3]. In this latter case, a
more robust approach consists in modelling this motion using a
homography. This SFM algorithm uses a dual approach, and
selects one model or the other depending on the observed
scene.

The fundamental matrix F is computed from correspon-
dences between images using a least-squares procedure inside
a RANSAC method, and then decomposed into a rotation
and a translation using SVD decomposition. Four solutions
are provided when decomposing F (2 rotations and 2 trans-
lations), but the correct one is that following the cheirality
constraints, i.e., the reconstructed points must lay in front
of the camera [5]. In the case of the homography H , it is
also obtained from correspondences using a RANSAC method,
and decomposed through SVD into a rotation and translation
matrix. At this point, two possible solutions for the motion
have been computed, and the best one has to be chosen. The
transformation that minimizes the reprojection error is the one
selected.

Once an initial model has been built, poses of new cameras
can be computed by finding correspondences between imaged
2D points and reconstructed 3D points. To perform this match-
ing between 3D and 2D features, each 3D point preserves
a description vector, which is the mean of the different
descriptors of each of the 2D points that have generated it
(e.g., using SIFT [6] this descriptor vector has 128 elements).
By having the correspondences between 2D and 3D points, the
procedure to compute the pose follows also a dual approach to
use a projection matrix or a homography based on the planarity
of the scene. In this case, the RANSAC algorithm tries to
find a consistent model that minimizes reprojection error by
selecting at each iteration a random subset of the matched 3D
points, fitting a plane to them, and computing a homography
or a projection matrix by looking at the distances between the
computed plane and the rest of 3D points. If all the points lie
close (according to a threshold) to the plane, the homography
model is used, otherwise a projection matrix is computed
using the DLT algorithm [3]. Once the RANSAC method has
estimated the corresponding homography/projection matrix,
it is decomposed into a rotation and a translation, and this
absolute pose is further refined through Bundle Adjustment [7]
to further minimize the reprojection error.

B. Dense reconstruction
The processing step described in the previous section gen-

erates a set of sparse 3D points, providing an up-to-scale
3D representation of the mapped object/structure. Since this
is a sparse point cloud, it does not allow for a detailed



representation of the appearance of the object. For this reason,
and once we have solved the full geometry of the system
(spatial relations from world to camera pose and from camera
pose to image plane), we can focus on a more relaxed solution
of the correspondence problem. In this step we do not focus
on finding matches across the most distinctive features in the
images, like in the SFM procedure. Instead, the goal is to
obtain as many correspondences as possible by relaxing this
distinctiveness measure on the features.

For this purpose, we use the method described in [8], which
aims to find a dense reconstruction of the object. In this
approach small planar patches –instead of single points– are
reconstructed. A planar patch is represented by a small planar
square, a center, and a normal vector pointed towards the
cameras that observe it. Furthermore, each patch keeps track
of two sets of images, one containing those where it is visible,
and the other containing the ones where it should be visible. A
patch should be visible in an image if it is visible according to
geometric constraints, but it is not photometrically consistent
across images. Starting with a set of sparse reconstructed
patches, the method tries to expand the number of patches
by looking at those patches nearby the ones that have already
been reconstructed. At the same time, it filters out outliers by
using photoconsistency and visibility constraints.

The algorithm consists of three main steps: matching, ex-
pansion and filtering. The matching step tries to find a set of
initial sparse matches using Harris and Difference of Gaussians
feature detectors, and matches them across the images using
epipolar constraints to restrict the correspondences search. The
photoconsistency metric used in matching is the Normalized
Cross Correlation score. Once the set of correspondences
has been set, the computation of the patch is performed by
fixing its position to be along a line of sight of a reference
image, and then finding the position and orientation parameters
of the patch by minimizing the photometric consistency of
its projection across images. Once the matching step has
been performed, the expansion and filtering steps are iterated.
The expansion step aims to extend the matches near patches
that have been already reconstructed, while the filtering step
accounts for visibility consistency of the recovered patches,
i.e., it removes outliers taking into account self-occlusions
among patches in 3D.

C. Surface reconstruction
Since, a priori, the 3D points in natural environments do

not follow a regular structure, the points are said to be
“unorganized”. Therefore, so as to obtain a 3D reconstruction,
our processing requires a method capable of dealing with an
unorganized set of points. The most widely used method for
surface reconstruction from a set of unorganized points is the
Poisson method of Kazhdan et al. [9], which by nature is
expected to yield the best and most robust results for our
problem.

The method starts by discretizing in a regular voxel grid the
working space where the points are located. The surface will
be then represented in this space implicitly, being f(vi) =

0 if the voxel vi = (xi, yi, zi) is located inside the object,
and f(vi) = 1 if it is located outside. From this indicator
function, the triangle mesh representation is obtained by means
of an isosurface extractor method such as the marching cubes
algorithm by Lorensen and Cline [10].

The points obtained from section II-B, along with their
normal vectors, are used as samples of the gradient of the
indicator function described above. The problem is then to find
the inverse of this gradient, i.e., to find the indicator function
whose gradient best approximates the vector field !V defined
by the samples: min

∥∥∥∇X − !V
∥∥∥.

To solve this problem, we perform Gaussian splatting and
propagation of the points and their normals into the voxel
grid, obtaining a discretized field !V defined throughout our
space. Then, applying the divergence operator, this problem
is transformed into a Poisson problem to find the scalar
function X whose Laplacian (divergence of gradients) equals
the divergence of the vector field !V : ∆X ≡ ∇∇X = ∆!V .

However, this approach searches for a closed surface,
without boundaries. Despite having a scene with boundaries,
the surface recovered by this method will remain closed.
To solve this problem, we modify [9] by adopting a simple
filtering procedure based on eliminating triangles having an
edge length greater than a threshold. This post-processing is
motivated by the fact that false closing parts are formed by
large triangles. Furthermore, this reconstruction results in a
smooth surface, which is desirable so as to compensate for
the possible measurement errors of the input 3D points.

D. Texture mapping
Using optical images instead of multi-beam sonar provides

the means not only to obtain higher resolution maps of interest
sites (see Fig. 6), but also to add texture information to the
obtained mesh surface. Thus, as images are the source of
texture information, we take profit of the derived geometry
of the cameras to automatically obtain a texture map for the
constructed model. Given the camera positions and the mesh
of triangles representing the object, we back-project the three
vertices of each triangle into one of the compatible views to
get its texture.

The surface mesh obtained in section II-C is not formed by
the input points obtained in section II-B. This means that the
notion of visibility for each point (i.e., which images see this
point) is lost and, thus, we need to process the visibility of
the triangles.

For each triangle, its compatible views are selected by
following a set of filtering steps. First the projections of the
triangle are checked to verify whether they fall within the
image plane of the view. Then, normals of the triangle are
checked to be compatible (using the dot product) with the
line of sight, which is the segment joining the center of the
triangle with the camera center. Views passing these tests
are checked against the most computationally expensive test,
which determines whether the triangle is occluded by other
parts of the surface. For a view to pass this test, lines of
sight from the view center to each of the vertices forming the



triangle must not intersect any other triangle in the surface.
Since using a brute force search approach is computationally
expensive, we describe the surface using an Axis Aligned
Bounding Boxes (AABB) tree structure. This data structure
consists of a tree hierarchy of bounding boxes whose faces
are aligned with the reference axis. The leaf nodes of the tree
correspond to the set of triangles. Intersection tests are then
reduced to run down the tree by testing the intersection of the
line with each node, i.e., with an AABB. AABB intersection
checks are simpler, and reduce computational cost, as the real
intersection point with the triangle is computed only when
we are in the leaf node of the tree; in our case, a unique
intersection test is sufficient.

From the previous filtering steps, we obtain a set of valid
views or images from which this triangle can be seen. Given
these views, the triangle is projected onto the selected valid
images. Then, we finally choose the view that covers the
largest area inside that triangle. It is noteworthy that this
simple approach implicitly takes the texture from a view that
is both close and quite orthogonal to the 3D triangle. Since
light is strongly attenuated in water, we favor the selection of
texture from images that are closer to the reconstructed object
or scene, so as to preserve color information.

E. Scale recovery
It is well-known that reconstructing a scene with a monoc-

ular camera is subject to arbitrary scaling and that this scale
factor cannot be recovered only from the images themselves.
Therefore, additional information needs to be provided to
estimate the unknown overall scale factor.

In photogrammetry, scale is typically obtained by exploiting
the information about true lengths in the scene, i.e., using a
known object for which we can fix the distance between two
points belonging to the object. By taking an image where
the known points are located, we can manually select the
two image positions corresponding to those points. Then, the
intersection between the rays formed by the camera position
and those image projections can be tested for intersection
with the reconstructed model (we can use the previously built
AABB structure to speed up the process). Once the distance
between the two points in the 3D model has been measured,
the scale factor can be extracted. For monitoring purposes, the
Tour Eiffel hydrothermal chimney is equipped with cylindrical
temperature probes installed at fluid outflows, that have a
diameter of 150mm (yellow object in Fig. 4b). However, we
discarded this option since the probes are small relative to
the size of the chimney (150mm vs. >15m), and thus a large
uncertainty in the obtained scale is expected.

On the other hand, other sources of information can be
exploited to extract this scale by fixing any other single length
associated with the motion of the camera. In our case, the
acoustic navigation system suite of the robot allows us to
associate each image with its corresponding depth below the
seafloor. By using this information, it is also possible to
retrieve the scale factor. Obviously, the reference frames of
the world and of the cameras are not aligned, thus there is an
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Fig. 2. Relationship between the world coordinate system {W}, correspond-
ing to the UTM coordinates, and map coordinate system {C}, corresponding
to the reference frame of the first image of the sequence. WRC is the rotation
between the first image of the sequence and the world.

unknown rotation, translation and scaling between them. If we
neglect the translation (which will be obtained later from the
robot’s acoustic navigation system), the transformation that we
need is the one that aligns the z axis of the world reference
frame {W}, with the y axis of the coordinate system belonging
to the first image of the sequence {C}:
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where WRC is a 3× 3 rotation matrix between the coordinate
system of the first image {C} and the world coordinate system



(a) Multibeam bathymetric map (from Ondréas et al. [11]), and robot trajectory from acoustic
navigation (blue line).

(b) 3D high-resolution map obtained by the proposed approach, with scale in meters, and recovered camera trajectory.

Fig. 3. Comparison of multibeam bathymetry vs. terrain reconstruction of the Tour Eiffel chimney from the proposed approach. Note the higher resolution
obtained with the proposed method.

{W}; s corresponds to the unknown scale factor. It should
be noted that the world’s z coordinate is negative, since we
are below the sea level taking depth measurements. Leading
superscript in the equation stands for the frame in which every
vector is expressed.

We then just need to find the rotation and scaling (we
can neglect translation) that minimize the differences in depth
associated to any pair of camera positions of the sequence.
Those camera positions that have the largest depth distances
provide better constraints to fix the scale, image pairs with
small translational motion are avoided. Thus, we finally es-
timate the scale factor and the 3 rotation angles through a
Levenberg-Marquardt optimization [12] in which we consider
several pairs of images acquired at different depths along the
z axis of the world coordinate system (see Fig. 2).

III. 3D MAPPING FOR ENVIRONMENTAL MONITORING

The video survey of the Tour Eiffel hydrothermal vent
(Lucky Strike hydrothermal field along the Mid-Atlantic
Ridge [13]) was carried out with VICTOR6000 [1] oper-
ated from the oceanographic vessel PourQuoi Pas? (IFRE-
MER, France) during the Bathyluck09 oceanographic cruise.
Hydrothermal activity in the oceanic crust facilitates heat,
chemical and mass exchanges between the deep earth and the
overlying fluid envelopes (ocean), sustaining rich ecosystems.
This hydrothermal activity displays focused fluid discharge
zones, massive and complex chimneys develop through min-
eral precipitation, and whose surfaces sustain macrobial and
microbial ecosystems. The Tour Eiffel vent is more than 15 m
high, and is the target of geological, chemical and biological
studies, and of its monitoring for the last decade. During the
survey, the robot was teleoperated from the research vessel,



(a)

(b)
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Fig. 4. Example input data, from a set of 928 images. It should be noted
that color information is affected by the differences in distance between the
scene and the camera. Temperature probes (yellow) are visible in (b).

and position estimates were obtained by means of a ultra-short
baseline system (USBL) and the onboard navigation system,
which includes a Doppler Velocity Log (DVL) and a fibre-
optic gyrocompass. The ROV circled twice the vent, and did
four vertical up and down transects at closer range (see Fig. 3).

IV. RESULTS

We present below the results obtained for the case of
study of section III. Fig. 4 shows three sample input images.
The obtained reconstruction of the Tour Eiffel hydrothermal
vent is illustrated in Figs. 3 and 6. Images acquired closer
to the imaged object contain richer color information and
details, while images taken from afar are mostly bluish (see
Fig. 4). Intermediate results of our processing pipeline are

shown on Fig. 5. In Fig. 5(a) the set of points resulting
from the SFM method is very sparse and contains outliers.
This step is only needed to get the camera positions, from
which we apply the dense reconstruction method, yielding
results with far better quality and quantity of the 3D points,
as in Fig. 5(b). The surface obtained from the Poisson surface
reconstruction method is shown in 5(c). Finally, three views
of the textured surface are presented in Fig. 6. It should
be noted that the recovered geometry is quite complex, and
cannot be described using a 2.5-D height map, as obtained
from acoustic mapping systems. These 3D textured surfaces
allow an accurate location of samples (geological, biological,
fluids) and instrumentation (e.g., temperature sensors), while
providing a context for accurate interpretation. Imagery also
allows the mapping of biological communities, defining their
complexity and eventually their temporal evolution. Finally,
these data also allow careful planning and installation of
instrumentation and observations (e.g., instrumented sites for
monitoring). Repeated surveys would also allow scientists
to both characterize the geometry of such structures (e.g.,
volume), as well as its temporal evolution (e.g., growth),
providing information on the dynamics of the processes at
their origin (submarine hydrothermal activity in this case).

V. CONCLUSIONS

This paper described a generic framework for the explo-
ration and mapping of deep-sea complex underwater environ-
ments, obtaining highly detailed 3-D models of underwater
interest areas. It constitutes the initial step in the development
of tools intended to be used by marine scientists in benthic
mapping applications. The processing pipeline does not as-
sume any kind of a priori geometry on the mapped structure,
allowing reconstruction of structures with complex shapes.
This approach relies on the estimation of the robot trajectory
using a Structure from Motion algorithm, which is then used to
compute a dense cloud of 3D points. Next, a meshing approach
allows the procurement of a mesh of triangles from the point
cloud. This mesh is later textured-mapped, and the scale of the
whole model is finally fixed based on the depth measurements
of the underwater robot.

The proposed framework has been tested to reconstruct
a deep-sea hydrothermal vent, the Tour Eiffel, at the Mid-
Atlantic Ridge. This area in general –and the Tour Eiffel vent
in particular– is of special interest, as it has been the object
of geological, hydrothermal, chemical and biological studies
for more than 15 years. Within this context, our approach is
well-suited for conducting temporal studies through repeated
surveys of the same area, enabling the detection of changes in
these extreme environments.
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Escartin. CNRS and IFREMER (France) financed the Bathy-
luck’09 cruise where the deep-sea data were acquired. This is
IPGP contribution n. 3195.

REFERENCES

[1] V. Rigaud, J. Opderbecke, P. Siméoni, and C. Pitout, “Real time
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(a) Front view (b) Top view

(c) Right view

Fig. 6. Three views of the texture-mapped surface of the Tour Eiffel hydrothermal vent, after applying our processing pipeline. The structure is ∼15m high.
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Abstract— This paper presents Autonomous Underwater
Vehicle (AUV) survey methodologies to track and sample
an advecting patch of water. Current AUV-based sampling
techniques rely primarily on geographic waypoint track-
line surveys that are suitable for static or slowly chang-
ing features. We briefly1 describe extensions to existing
oceanographic sampling methodologies to sample within
the context of an advecting2 feature of interest. We use
GPS-tracked Lagrangian drifters to tag a patch of interest,
and utilize its periodic position updates to make an AUV
perform surveys around the drifter as it gets advected by
ocean currents. We present results from a five-day offshore
experiment carried out in September 2010.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have al-
lowed oceanographers to collect data over temporal
and spatial scales that would be logistically impossible
or prohibitively expensive using traditional ship-based
measurement techniques. Currently, AUV-based surveys
rely primarily on geographic waypoint track-line surveys
(Fig. 3b) that are suitable for static or slowly changing
features such as bathymetry 3, magnetism, and aquatic
environments characterized by weak circulation. When
studying dynamic, rapidly evolving oceanographic fea-
tures (e.g. phytoplankton blooms shown in Fig. 2),
such methods at best introduce error through insufficient
spatial and temporal resolution, and at worst completely
miss the spatial and temporal domain of interest. Our
work is situated in the context of a multi-year inter-
disciplinary field program, the Controlled, Agile and
Novel Observing Network (CANON) [3]. This program
focuses on understanding rapidly changing coastal ocean
processes that have significant impact on local ecosys-
tems. Our objective is to develop methodologies to
track and sample bloom patches as they are advected
within coastal waterways. We do so by sampling in
the Lagrangian frame of reference, that is, the frame of
reference moving with the feature of interest [4]. Drifters
(Fig. 1) are often used as proxies for advection to study
marine transport [5]. This work describes Lagrangian

1Preliminary treatment appears in ISER 2010 [1] and a full treatment
is in review with IJRR [2].

2The horizontal transport of a patch of water.
3The study of the floor of water bodies, resulting in a depth contour

map.

Fig. 1: Illustration of a Lagrangian drifter being tracked on
shore and at sea. The drifter has a float section affected mostly
by wind and a drogue section which is dragged by the currents.
Drifter locations are transmitted via satellite.

survey experiments where an AUV performs surveys
relative to a GPS-tracked drifter used to track a patch
of interest. In this coordinated sampling task, a survey
template is repeatedly undertaken by an AUV in two
modes a) by repeating static-plan surveys to stay with
the moving patch and b) transformed surveys carried
out in the frame of reference of an advecting patch. We
present a brief description of our approach, followed
by the results from a five day field trial carried out in
September 2010.

II. TECHNICAL APPROACH

Existing AUV sampling methodologies use survey
patterns designed in the Earth frame. Hence, by design,
these static-plan surveys are suitable for features that
do not move out of the survey’s region of coverage.
The scientific goal of this work is to extend existing
oceanographic sampling methodologies to sample within
the context of an advecting feature of interest. We
approach this problem in two parts a) track a patch using
GPS-tracked Lagrangian drifters and b) sample within
the context of the drifter-tagged advecting patch by
extending existing oceanographic survey patterns. Ad-
ditionally, we define an enclosure criterion that ensures
that the AUV encapsulates and characterizes the survey
volume, by enforcing the constraint that the patch center
marked by the drifter always stays within the perimeter
of the survey.



Fig. 2: Dynamics of phytoplankton bloom over a period of 20 days

(a) The box survey pattern

(b) A lawnmower survey pattern showing

Chlorophyll fluorescence within vertical yo-

yo profiles.

Fig. 3: Box and Lawnmower AUV survey patterns.

Two ways of approaching our goal to perform La-

grangian observation studies are a) repeated static-plan

surveys and b) transformed surveys. In repeated static-

plan surveys (Fig. 5), we perform existing oceanographic

surveys repetitively, repositioning the AUV to the latest

location of the drifter once a survey or iteration is

complete. In case of transformed surveys, we design the

survey pattern to be implemented in the drifter frame
and transform it back to the Earth frame to obtain the

survey plan to command the AUV. For repeated static-

plan surveys the enclosure criterion can be satisfied

either only in the drifter frame, or both in Earth and

drifter frames (Fig. 4). On analysis [2], we find that

over multiple iterations, the AUV converges to a fixed

trailing distance
4 u∗

, dependent solely on the drifter

speed, and independent of the trailing distance at the

4
The distance the AUV lags or trails behind its survey start location

for the next iteration.

(a) Enclosure-criterion satisfied in Earth frame

(b) Enclosure-criterin satisfied in drifter frame

Fig. 4: The goal of our study is to implement surveys such

that a drifter that represents a patch of water stays within the

boundary of the survey. n represents the starting point of the

drifter and o its termination within a single survey pattern.

beginning of the experiment. For a nominal AUV speed

of 1.5m/s, AUV pitch angle ∼ 22o, the allowable

drifter speed to satisfy the enclosure criterion is given

by sd < 0.146m/s for enclosure in Earth frame, and

sd < 0.364m/s enclosure in the drifter frame. From

simulation on historical drifter data, we found that

repeated static-plan surveys do not satisfy the enclosure

criterion for 30% of observed drifter speeds [2]. To

address this issue, we design the surveys in the drifter

frame of reference. Fig. 6 illustrates this concept by the

projection of a box survey template to the Earth frame

which defines the goal waypoints for commanding the

AUV.

III. FIELD TRIALS

A five-day field experiment was carried out in

September 2010, 160 Kms off the California coast.

MBARI’s 4 m long propelled AUV, Dorado (Fig. 8)

carried out Lagrangian surveys around a specialized ad-

vecting drifter that contained an onboard genomic sensor



(a) Illustration of repeated static-plan survey.

(b) AUV and survey parameters

Fig. 5: Repeated static-plan surveys and AUV and survey
parameters.

Fig. 6: Box survey pattern in drifter frame and its projection
onto an Earth frame.

Fig. 7: Illustration of AUV navigation between two waypoints
of the box pattern using constant speed in Earth frame.

Fig. 8: The Dorado AUV being loaded on the R/V Zephyr for
the five day drifter tracking experiment in September 2010.

allowing in-situ identification of micro-organisms. The
experiment had multiple goals spread across crews on
two support vessels, the R/V Western Flyer and the R/V
Zephyr. The Flyer visited the drifter every four hours to
carry out a series of ship-based sampling experiments
and lab analysis on water samples to ground-truth the
genomic sensor data. The Zephyr was meanwhile fo-
cused entirely on Lagrangian observation studies with
the AUV. The goal for this experiment was to monitor
the nutrient budget at the perimeter of a 1km X 1km
water patch around the advecting drifter while the AUV
was used to perform a transformed box pattern (Fig. 3a
around the drifter. A number of logistical issues were
kept in mind while designing and executing the experi-
ment. Each iteration began with the latest drifter update
(position and velocity) received from the drifter through
an Iridium satellite link. This was transmitted to the
AUV for in-situ adaptation. With this input, the AUV’s
onboard hybrid plan-execution controller, T-REX [6],
[7], [8] computed the waypoints for a box pattern using
a formulation where the AUV travels at constant velocity
in Earth frame [2]. Waypoints were computed once at the
beginning of the survey with the AUV surfacing once at
every waypoint with each survey lasting ∼1 to 1.5 hrs.
In total, 60 iterations were attempted over the course of
five days, out of which 45 were completed successfully
(some iterations had to be canceled midway or restarted
due to operational reasons). Fig. 10 shows the overall
track lines of the drifter and the perambulating AUV for
all five days. Fig. 9 shows the AUV path in the drifter
frame for Day 4 of the experiment.

IV. ANALYSIS

We analyzed the contribution of different sources of
error to the quality of surveys during the September
field trial (Fig. 11). We defined the survey quality using
two metrics a) the mean surfacing error in the drifter-
frame (MSE-DF), and b) the survey offset error in the
drifter frame [2]. The MSE-DF correlates most with
mean surfacing error in Earth-frame (MSE-EF), with a
correlation coefficient R = 0.62, and with the mean
timing error5 with R = 0.56. A detailed discussion on
the sources of error is available in Das et al. [2].
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Fig. 9: Iterations from Day 4 of the September trial
illustrating the drifter-frame views

Fig. 10: AUV and drifter paths during the September
2010 five-day field trial

Fig. 11: Scatter plots for error-pairs, along with the correlation
coefficient R.

REFERENCES

[1] J. Das, F. Py, T. Maughan, T. O’Reilly, M. Messi, J. Ryan, K. Ra-
jan, and G. S. Sukhatme, “Simultaneous tracking and sampling of
dynamic oceanographic features with auvs and drifters,” in 12th

International Symposium on Experimental Robotics, 2010, Dec
2010.

[2] J. Das, F. Py, T. Maughan, T. O’Reilly, M. Messi, J. Ryan,
G. Sukhatme, and K. Rajan, “Simultaneous tracking and sam-
pling of dynamic oceanographic features with auvs and drifters,”
International Journal of Robotics Research, Submitted.

[3] “CANON: Controlled, Agile and Novel Observing Network,”
2010. [Online]. Available: http://www.mbari.org/canon/

[4] R. E. Davis, “Lagrangian Ocean Studies,” Annual Review of Fluid

Mechanics, vol. 23, no. 1, pp. 43–64, 1991.
[5] R. Lumpkin and M. Pazos, “Measuring surface currents with

surface velocity program drifters: the instruments, its data and
some recent results,” Lagrangian Analysis and Prediction of

Coastal and Ocean Dynamics. Cambridge University Press, 2007.
[6] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and

R. McEwen, “A Deliberative Architecture for AUV Control,” in
IEEE Intnl. Conf. on Robotics and Automation, Pasadena, CA,
May 2008.

[7] C. McGann, F. Py, K. Rajan, J. P. Ryan, and R. Henthorn,
“Adaptive Control for Autonomous Underwater Vehicles,” in Proc.

Assoc. for the Adv. of AI, Chicago, IL, 2008.
[8] F. Py, K. Rajan, and C. McGann, “A Systematic Agent Framework

for Situated Autonomous Systems,” in 9th International Conf. on

Autonomous Agents and Multiagent Systems, Toronto, Canada,
May 2010.



Pseudoseeds: Investigating Long-Distance, Ocean Seed Dispersal with
Wireless Sensors

Ryan N. Smith, Peter Prentis, Koen Langendoen and Peter Corke

Abstract— Recent theoretical research has shown that ocean
currents and wind interact to disperse seeds over long distances
among isolated landmasses. Dispersal of seeds among isolated
oceanic islands, by birds, oceans and man, is a well-known
phenomenon, and many widespread island plants have traits
that facilitate this process. Crucially, however, there have been
no mechanistic vector-based models of long-distance dispersal
for seeds among isolated oceanic islands based on empirical
data. Here, we propose a plan to develop seed analogues, or
pseudoseeds, fitted with wireless sensor technology that will
enable high-fidelity tracking as they disperse across the ocean.
The pseudoseeds will be precisely designed to mimic actual
seed buoyancy and morphology enabling realistic and accurate,
vector-based dispersal models of ocean seed dispersal over vast
geographic scales.

I. INTRODUCTION
The seminal book The Dispersal of Plants Throughout

the World was published by Ridley [14] over 80 years ago,
yet we still know remarkably little about patterns of long-
distance seed dispersal among isolated oceanic islands [12].
Dispersal of seeds among isolated oceanic islands, by birds,
oceans and man, is a well-known phenomenon [11] and
many widespread island plants have traits that facilitate this
process. For example, ocean dispersal is responsible for over
78% of plant colonists arriving on the volcanic island of
Surtsey [8], highlighting the importance of this vector for
island colonization. Although we know that buoyant seeds
of many coastal plants have dispersed long distances to
colonize isolated islands, remarkably little is known about
long-distance seed dispersal in oceanic environments [12].

Recent theoretical research has shown that ocean currents
and wind interact to disperse seeds over long distances
among isolated landmasses. Crucially, however, there have
been no mechanistic vector-based models of long-distance
dispersal (LDD) for seeds among isolated oceanic islands
based on empirical data. Currently, it is only hypothesised
that LDD in the ocean can be represented as a fat tailed
dispersal kernel as shown in Fig. 1. Note that the a significant
number (> 80%) do not disperse a distance of more than 10
m, implying that only a small percentage of dropped seeds
make it off the beach. Further, the ”fat tail” of the dispersal
may only comprise 1% of the total dropped seeds, but
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Fig. 1. A stylized representation of a fat tailed dispersal kernel for seeds
of coastal plants that remain buoyant for long time periods immersed in
seawater. The vectors that displace seeds in the ocean are surface currents
and wind.

this percentage remains constant after a threshold distance.
Such data is difficult to obtain because 1) LDD is rare and
stochastic in nature [3], and 2) reconstructing past patterns of
LDD is difficult in most organisms [6]. Drift bottles and drift
cards have been used to study ocean currents as analogues
for plant dispersal in oceanic environments, but suffer from
a number of major limitations [7]. These limitations include
a lack of information on which specific dispersal route a
seed took, as only the points of release and stranding are
known. A second limitation is that drift cards and bottles
need to be found to provide data on where they strand,
an unlikely situation if they wash up on isolated coastlines.
The third major limitation is that drift bottles and cards are
very different from seeds, both in terms of morphology and
buoyancy as well as how they are released into the ocean.
Here, we propose a way to circumvent these limitations and
directly estimate a mechanistic vector-based model of seed
dispersal in ocean waters.

We plan to develop seed analogues, or pseudoseeds, fitted
with wireless sensor technology that will enable high-fidelity
tracking as they disperse across the ocean. The pseudoseeds
will be precisely designed to mimic actual seed buoyancy
and morphology enabling realistic and accurate, vector-based
dispersal models of ocean seed dispersal over vast geographic
scales.

In the remainder of this paper, we will first outline the
dispersal experiment in Section II. Then, we will discuss the
WSN technology available for building pseudoseeds (Sec-
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Fig. 2. The geographic location of Fiji relative to Australia, and the scale

of the proposed seed tracking experiment. The primary landing location for

the seeds is along the north-east coast of Australia.

tion III) and their use in monitoring the dispersal by ocean

currents and wind (Section IV). We conclude in Section VI

with a brief discussion of the feasibility of the WSN-based

approach versus the use of standard satellite-based tracking

devices.

II. PROBLEM FORMULATION

Despite recent progress towards understanding patterns

of long distance seed dispersal in terrestrial environments,

relatively little headway has been made in estimating patterns

of long distance seed dispersal in marine environments.

Tracking seeds over vast spatial and temporal scales between

their source and where they are finally deposited is the

major logistical problem that has impaired progress toward

developing realistic models of seed dispersal in oceanic

environments. In order to overcome this challenge a multidis-

ciplinary approach is required to develop ways to track seeds

or biologically realistic pseudoseeds in seawater over long

time periods ( 12 months) and large distances (> 3000 km).

The ability to track seeds from initiation to termination of

dispersal will enable the estimation of a general mechanistic

model of seed dispersal by ocean currents.

A. Geographic Location
This project will focus on seed dispersal in the south west

region of the Pacific Ocean. Primarily, we are interested in

the transport of seeds between Fiji and Australia. Figure 2

shows the relative locations of Fiji and Australia, and pro-

vides the spatial scale of the proposed tracking experiment.

The aim of this project is to release the pseudoseeds in Fiji

during the appropriate time, and track them, hopefully along

with other real seeds, across the south west Pacific to the

shores of Australia. This will be the first such demonstration

of ocean seed dispersal tracking.

B. Seed Specifics
The coconut palm, Cocos nucifera, will be used as a model

to develop pseudoseeds. The coconut is a range expanding

species commonly found throughout the Pacific and Indian

oceans. Seeds of the coconut palm remain positively buoyant

and viable in seawater for extended time periods and com-

monly disperse to the Australian east coast, and Great Barrier

Reef islands from the south west Pacific. The coconut palm

TABLE I

MAIN OCEAN SEED PARAMETERS.

weight 1.5 kg

size

- length 30 cm

- max diameter 12.5 cm

dispersal speed 0.1 - 0.4 m/s

seed was also chosen as the pseudoseed model to allow for

maximum size and payload capacity of a realistic seed to be

tracked through the ocean. The details of an average coconut

palm seed are presented in Table I. In particular, the large size

provides adequate space for the electronics, and the weight

allowance allows for a reasonable size battery to extend the

deployment life for as long as possible. Depending on the

exact route, currents, and wind speed, the pseudoseeds could

take from four months to over a year to travel from Fiji to

Australia.

III. PSEUDOSEED CONCEPT

The ongoing trend in miniaturization of digital circuitry

has opened up the possibilities for in situ sensing at high

temporal and spatial resolution by means of deploying cheap,

autonomous sensor nodes configured in a wireless ad-hoc

network. Once a fantasy (Smart Dust [9]), now a reality

with ever-more successful deployments of Wireless Sensor

Networks (WSNs) [2], [5], [13]. We plan to capitalize on this

development by utilizing pseudoseeds equipped with WSN

technology, such that we can track their whereabouts for

up to a year. In particular we will include the following

components:

• Battery To keep the design of the pseudoseeds as

simple as possible, they will be powered by means of

a battery; the alternative of using solar power would

include additional charging circuitry as well as battery,

and introduce uncertainties as the energy harvesting

may be compromised by befoulment.

• GPS A GPS unit will be used to record the actual

location of the pseudoseed during its time out on the

ocean. As GPS is a notorious consumer of energy, we

will drive it to only take one reading per day.

• Low-power radio At some point the logged GPS

data must be off loaded, and doing so wirelessly is

convenient. It also allows for remote data collection,

for example by a UAV, avoiding the need for physical

recovery and offers the possibility for online tracking.

As for the GPS, the radio must be duty cycled to avoid

draining the batteries, a well researched topic with the

WSN community [1], [10].

• Accelerometer Wireless communication goes best with

a direct line of sight between sender and receiver.

Since pseudoseeds travel on the ocean surface, it pays

off to exchange messages when being on top of a

wave, something which can easily be derived from

accelerometer data.

• Satellite modem Although expensive, the Iridium satel-

lite network provides true global coverage and is the
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only option for pseudoseeds to report their trajectory
while far out on the ocean. The form factor (20 cm3) and
power consumption (300 mA) make modern satellite
modems a viable option, but raises the unit and opera-
tion costs considerably (cf. Section IV). Alternatively
small low-power Argos tags could be used that are
tracked by the Argos satellite network, and can addition-
ally upload short messages. However the cost of these
tags is high (c.f. 2000 USD) as is the communications
cost (c.f. 1500 USD per year).

• Processor A simple microcontroller is required to or-
chestrate the periodic logging of GPS positions and
communication with the outside world. As most time
will be spent doing nothing, it is important that the
processor can be put in a deep sleep consuming near-
zero power.

These components will be fitted in a waterproof enclosure,
roughly the shape and size of a coconut. The weight of
a pseudoseed needs to be carefully set to get the right
buoyancy, and basically determines the size of the battery
pack that can be included. Following the parameters provided
in Table I we can expect a pseudoseed to carry a payload
of about 500 grams, of which about half (250 g) can be
reserved for the battery. Using plain alkaline batteries that
weight translates into a 30 Ah energy storage capacity, or
roughly 80 mAh a day when targeting a lifetime of one year.

GPS units can take anywhere from a second to a minute to
acquire a position, depending on the number of satellites in
view and the movement of the device since the last reading.
As pseudoseeds travel about 10 - 30 km a day, and we only
take one reading a day it is highly likely that the GPS will
go through a cold start every day consuming about 1 mAh
(= 60 s × 50 mA). Note that this cost is insignificant to the
complete daily budget, that is, GPS consumes only about 1%
of the total available energy budget, indicating that basically
all energy can be spent on the communication part of the
pseudoseeds, which is the key to successful operation as
explained below.

IV. PROPOSED SOLUTION

As an alternative to the readily available satellite tag tech-
nologies we propose a solution to monitoring of ocean seed
dispersal that uses both wireless sensor network (WSN) and
robot technologies. A number of WSN-based pseudoseeds,
set to log their position once a day, will be dropped off
the coast of Fiji at the start of the experiment. Some of
these will be deployed to the ocean, but the vast majority
will quickly return to shore. These pseudoseeds must be
located and collected as to provide empirical data about
the bulk of the dispersal distribution, i.e. the left part of
the curve in Figure 1. After physically recovering these
short-lived pseudoseeds, they can be redeployed and the
experiment repeated. This will provide rich statistical data
about the probability of the seeds leaving the coast, based
on a sample size that is some multiple of the actual number of
pseudoseeds that are built. The devices that leave the coastal
region and drift out to sea will eventually reach landfall at a
time and position that must be determined.

Fig. 3. Aerial reconnaissance of pseudoseeds

A key part of the recovery strategy is that the pseudoseeds
(or nodes in WSN speak) broadcast their GPS location, either
periodically or in response to a challenge that is detected
by a duty-cycled radio receiver. Modern, popular 802.15.4
transceivers such as the CC2430 have identical power con-
sumption for receiving and transmitting (27 mA), so the
simplest solution is to periodically broadcast location, rather
than periodically enabling the receiver and broadcasting posi-
tion in response to a challenge. Link level acknowledgement
would be used to ensure that the node knows that its message
has been received. A GPS measurement comprises 8 bytes
of data (timestamp + position), so an 802.15.4 payload of
127 bytes can easily hold 14 GPS readings (from the most
recent two weeks) plus device status information.

Communicating the location of the pseudoseed facilitates
recovering those that return to shore and also in tracking
those that drift out to sea. The shore recovery problem
is easiest since it involves searching a bounded strip of
coastline either side of the release point. Nodes would detect
that they have been beached through the absence of motion
detected by their accelerometers, and include this status in
their broadcast messages. Beached nodes may increase their
broadcast interval since energy considerations do not apply
– they could have new batteries fitted before redeployment.
A spectrum of beach recovery options are possible. The
simplest is to drive along the beach, listening for messages
from stranded nodes and using a GPS navigation system to
drive toward the node. Alternatively an aircraft (manned or
UAV) could fly along the beach and collect location data [16]
from beached nodes, and this would be used to plan an
efficient and targeted ground recovery mission.

Determining the eventual landfall for the pseudoseeds that
drift to sea is a very difficult problem since the potential
search area is massive. However they need to be found
quickly after landfall since they will slowly become buried
and unable to communicate. The most feasible way to solve
this problem is to track the pseudoseeds while they drift in
the ocean away from the release point. Continuous tracking
will provide additional rich information about the paths taken
by seeds, rather than just their start and end point. Predictive
models of ocean currents do exist, but they are not perfect,
and the seeds are also heavily influenced by wind and waves.
Over time the uncertainty of the pseudoseeds will grow, so
we need to periodically localize the devices and update the
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drift models. The actual position can be determined by aerial
survey using manned aircraft or UAV (see Figure 3). For
the purposes of this exercise we consider a UAV in a class
similar to the in situ Scan Eagle, which has a cruise speed
of 75 knots (40 m/s) and an endurance of 20 hours, which
would allow it to cover a total distance of 2800 km in a
single mission. A UAV flying at 2000 m should be able to
communicate with nodes lying in a circular region of radius
4500 m and an area of 64 sq.km. If the aircraft spent half
its mission time flying to and from the search zone, that
zone could be 700 km from shore and the searched area
would be 12,600 sq.km. If the nodes emitted their GPS data
once per minute the aircraft would hear a minimum of two
broadcasts while the node was in the reception footprint. The
UAV has a much greater power budget than the pseudoseed
and would be able to carry a more sensitive receiver (higher
weight and power consumption) than a normal node. The
radio environment over the ocean is also electromagnetically
quieter than on land. Since the accuracy of the drift models
in predicting seed movement is currently unknown it would
be appropriate to initially track the devices fairly frequently
and this is while they are still relatively close to the release
point. As the efficacy of the model is determined, a trade-off
can be made between the search interval and the area to be
searched subject to the operational constraints of the aircraft.

V. ADDITIONAL OUTCOMES
A. Ocean Current Modelling

In recent years, many large-scale, regional ocean models
have been developed to help deepen our understanding of the
complex and dynamic ocean. Model outputs are currently
used to study and predict physical and biological phe-
nomena [4], and to guide autonomous underwater vehicles
for increased navigation and tracking features of interest
[15]. Here, we plan to utilise ocean model predictions for
preliminary simulations of the release of the pseudoseeds,
and for a general knowledge of the regional currents to assist
in tracking the pseudoseeds after they have been released.

A concern with any model is the accuracy of its pre-
dictions. Specifically, we are concerned with the spatial
structure of the predicted surface current velocities. Existing
ocean models assimilate surface velocities from and com-
pare predictions to high-frequency radar data measurements.
However, these data are generally only available near ur-
banized coastal regions; not in isolated island chains or the
open ocean. To assist in improving the performance, quality
and utility of ocean models forecasts, we plan to compare
our pseudoseed trajectories with trajectories predicted by an
ocean model. This will provide a fine-scale analysis of the
surface currents in regions where measurements are difficult
to obtain and ground truth.

VI. CONCLUSIONS
We have proposed a solution to the problem of monitoring

ocean dispersed seeds that uses both wireless sensor network
(WSN) and robot technologies. We propose the use of
low-cost WSN technology, and by using well known duty-
cycling techniques we can easily achieve daily GPS fixes and

frequent position broadcast, which facilitates recovery and
tracking at sea. The overall cost advantage of this approach
over the traditional satellite approach depends critically on
the number of nodes and the cost of the aerial monitoring.
The cost of the satellite uplink approach is linear in the
number of nodes being tracked, while the proposed WSN-
approach has an almost constant search cost. The cost of
aerial monitoring however has two factors. The first is the
operating cost per hour, and while UAVs have theoretically
lower operational cost than manned aircraft reliable $/hour
figures are very difficult to obtain. The second factor is the
number of hours that need to be flown, and this depends
on the rate of growth of uncertainty. If this rate is low
then flights can be less frequent, but at this stage this is
a significant unknown.
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Abstract— In this work geostatistics is used to model and
map the spatial distribution of temperature and salinity mea-
surements gathered by an Autonomous Underwater Vehicle in
a monitoring campaign to Foz do Arelho outfall, with the
aim of distinguishing the effluent plume from the receiving
waters, characterizing its spatial variability in the vicinity of
the discharge and estimating dilution. The results demonstrate
that this methodology provides good estimates of the dispersion
of effluent and it is therefore very valuable in assessing the
environmental impact and managing sea outfalls.

I. INTRODUCTION

A. MARES AUV

Autonomous Underwater Vehicles (AUVs) have been used
efficiently in a wide range of applications. They were first
developed with military applications in mind, for example for
mine hunting missions. Later on, scientists realized their true
potential and started to use them as mobile sensors, taking
measurements in difficult scenarios and at a reasonable cost
([1][2]). MARES (Modular Autonomous Robot for Environ-
ment Sampling) AUV has been successfully used to monitor
sea outfalls discharges ([3]) (see Fig. 1). MARES is 1.5 m
long, has a diameter of 8-inch and weighs about 40 kg in air.
It features a plastic hull with a dry mid body (for electronics
and batteries) and additional rings to accommodate sensors
and actuators. Its modular structure simplifies the system’s
development (the case of adding sensors, for example). It
is propelled by two horizontal thrusters located at the rear
and two vertical thrusters, one at the front and the other
at the rear. This configuration allows for small operational
speeds and high maneuverability, including pure vertical
motions. It is equipped with an omnidirectional acoustic
transducer and an electronic system that allows for long base-
line navigation. The vehicle can be programmed to follow
predefined trajectories while collecting relevant data using
the onboard sensors. A Sea-Bird Electronics 49 FastCAT
CTD had already been installed onboard the MARES AUV
to measure conductivity, temperature and depth. MARES’
missions for environmental monitoring of wastewater dis-
charges are conducted using a GUI software that fully
automates the operational procedures of the campaign ([4]).
By providing visual and audio information, this software
guides the user through a series of steps which include: (1)

Fig. 1. MARES AUV.

real time data acquisition from CTD and ADCP sensors,
(2) effluent plume parameter modeling using the CTD and
ADCP data collected, (3) automatic path creation using the
plume model parameters, (4) acoustic buoys and vehicle
deployment, (5) automatic acoustic network setup and (6)
real time tracking of the AUV mission.

B. Data processing

Data processing is the last step of a sewage outfall
discharge monitoring campaign. This processing involves the
ability to extrapolate from monitoring samples to unsampled
locations. Although very chaotic due to turbulent diffusion,
the effluent’s dispersion process tends to a natural variability
mode when the plume stops rising and the intensity of
turbulent fluctuations approaches to zero ([5]). It is likely
that after this point the pollutant substances are spatially
correlated. In this case, geostatistics appears to be an ap-
propriate technique to model the spatial distribution of the
effluent. In fact, geostatistics has been used with success
to analyze and characterize the spatial variability of soil
properties, to obtain information for assessing water and
wind resources, to design sampling strategies for monitor-
ing estuarine sediments, to study the thickness of effluent-
affected sediment in the vicinity of wastewater discharges, to
obtain information about the spatial distribution of sewage
pollution in coastal sediments, among others. As well as
giving the estimated values, geostatistics provides a measure
of the accuracy of the estimate in the form of the kriging



variance. This is one of the advantages of geostatistics over
traditional methods of assessing pollution. In this work,
universal kriging method [6] is used to model and map the
spatial distribution of temperature and salinity measurements
gathered by an AUV on a Portuguese sea outfall monitoring
campaign. The aim is to distinguish the effluent plume from
the receiving waters, characterize its spatial variability in the
vicinity of the discharge and estimate dilution.

II. GEOSTATISTICAL ANALYSIS
A. Study site

Foz do Arelho outfall is located off the Portuguese west
coast near Óbidos lagoon. In operation since June 2005, is
presently discharging about 0.11 m3/s of mainly domestic
wastewater from the WWTPs of Óbidos, Carregal, Caldas
da Rainha, Gaeiras, Charneca and Foz do Arelho, but it
can discharge up to 0.35 m3/s. The total length of the
outfall, including the diffuser, is 2150 m. The outfall pipe,
made of HDPE, has a diameter of 710 mm. The diffuser,
which consists of 10 ports spaced 8 or 12 meters apart, is
93.5 m long. The ports, nominally 0.175 m in diameter,
are discharging upwards at an angle of 90◦ to the pipe
horizontal axis; the port height is about 1 m. The outfall
direction is southeast-northwest (315.5◦ true bearing) and
is discharging at a depth of about 31 m. In that area the
coastline itself runs at about a 225◦ angle with respect
to true north and the isobaths are oriented parallel to the
coastline. A seawater quality monitoring program for the
outfall has already started in May 2006. Its main purposes
are to evaluate the background seawater quality both in
offshore and nearshore locations around the vicinity of the
sea outfall and to follow the impacts of wastewater discharge
in the area. During the campaign the discharge remained
fairly constant with an average flowrate of approximately
0.11 m3/s. The operation area specification was based on
the outputs of a plume prediction model [5] which include
mixing zone length, spreading width, maximum rise height
and thickness. The model inputs are, besides the diffuser
physical characteristics, the water column stratification, the
current velocity and direction, and the discharge flowrate.
Information on density stratification was obtained from a
vertical profile of temperature and salinity acquired in the
vicinity of the diffuser two weeks before the campaign.
The water column was weakly stratified due to both low-
temperature and salinity variations. The total difference in
density over the water column was about 0.13 σ -unit. The
current direction of 110◦ was estimated based on predictions
of wind speed and direction of the day of the campaign. A
current velocity of 0.12 m/s was estimated based on historic
data. The effluent flowrate consider for the plume behavior
simulation was 0.11 m3/s. According to the predictions of
the model, the plume was spreading 1 m from the surface,
detached from the bottom and forming a two-layer flow. The
end of the mixing zone length was predicted to be 141 m
downstream from the diffuser. The AUV operation area
(specified according to the model predictions) was mainly
in the northeast direction from the diffuser, covering about

20000 m2. The vehicle collected CTD data at 1.5 m and 3 m
depth, in accordance to the plume minimum dilution height
prediction. During the mission transited at a fairly constant
velocity of 1 m/s (2 knots) recording data at a rate of 16 Hz.
Maximum vertical oscillations of the AUV in performing the
horizontal trajectories were less than 0.5 m (up and down).

B. Exploratory analysis

In order to obtain elementary knowledge about the temper-
ature and salinity data sets, conventional statistical analysis
was conducted. At the depth of 1.5 m the temperature
ranged from 15.359oC to 15.562oC and at the depth of 3 m
the temperature ranged from 15.393oC to 15.536oC. The
mean value of the data sets was 15.463oC and 15.469oC,
respectively at the depths of 1.5 m and 3 m, which was very
close to the median value that was respectively 15.466oC
and 15.472oC. The coefficient of skewness is relatively low
(-0.309) for the 1.5 m data set and not very high (-0.696)
for the 3 m data set, indicating that in the first case the
distribution is approximately symmetric and in the second
case that distribution is only slightly asymmetric. The very
low values of the coefficient of variation (0.002 and 0.001)
reflect the fact that the distributions do not have a tail of
high values. At the depth of 1.5 m the salinity ranged from
35.957 psu to 36.003 psu and at the depth of 3 m the salinity
ranged from 35.973 psu to 36.008 psu. The mean value of
the data sets was 35.991 psu and 35.996 psu, respectively at
the depths of 1.5 m and 3 m, which was very close to the
median value that was respectively 35.990 and 35.998 psu.
The coefficient of skewness is not to much high in both data
sets (-0.63 and -1.1) indicating that distributions are only
slightly asymmetric. The very low values of the coefficient
of variation (0.0002 and 0.0001) reflect the fact that the
distributions do not have a tail of high values. Fig. 2 shows
the temperature measurements at depth of 1.5 m (top) and
3 m (bottom) versus distance to the middle point of the
diffuser fitted by a linear model. A similar behavior was
found for the salinity measurements. These figures show that
although some variability there is a certain relation between
the measurements and the distance between its location and
the middle point of the diffuser. For this reason, universal
kriging method was applied.

C. Variogram modeling

For the purpose of this analysis, the temperature and
the salinity measurements were divided into a modeling
set (comprising 90% of the samples) and a validation set
(comprising 10% of the samples). Modeling and validation
sets were then compared, using Student’s-t test, to check
that they provided unbiased sub-sets of the original data.
Furthermore, sample variograms for the residuals of the mo-
deling sets were constructed using the Matheron’s method-
of-moments estimator (MME) and the Cressie and Hawkins
estimator (CRE) [6]. The CRE estimator was chosen to deal
with outliers and enhance the variogram’s spatial continuity.
An estimation of semivariance was carried out using a lag
distance of 2 m. Table I and Table II show the parameters
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Fig. 2. Temperature measurements at depth of 1.5 m (top) and 3 m (bottom)
versus distance to the middle point of the diffuser fitted by a linear model.

of the fitted models to the omnidirectional sample vari-
ograms constructed using MME and CRE estimators (for
salinity measured at depths of 1.5 m the sample variogram
constructed using CRE could not be fitted by any model).
All the variograms were best fitted to Matern models.
The range value (in meters) is an indicator of extension
where autocorrelation exists. The autocorrelation distances
are always larger for the CRE estimator (with the exception
to temperature at depth of 1.5 m) which may demonstrate
the enhancement of the variogram’s spatial continuity. All
variograms have very low nugget values which indicates
that local variations could be captured probably due to the
high sampling rate and due to the fact that the variables
under study have strong spatial dependence. Anisotropy was
investigated by calculating directional variograms. However,
no anisotropy effect could be shown.

D. Cross-Validation
The block kriging method was preferred since it produced

smaller prediction errors and smoother maps than the point

TABLE I
PARAMETERS OF THE FITTED VARIOGRAM MODELS FOR TEMPERATURE

MEASURED AT DEPTHS OF 1.5 AND 3.0 M.

Depth
Variogram
Estimator Model Nugget Sill Range

1.5
MME Matern (ν = 0.2) 0.000 0.001 453.7
CRE Matern (ν = 0.3) 0.000 0.001 130.3

3.0
MME Matern (ν = 0.3) 0.000 0.0001 18.0
CRE Matern (ν = 0.3) 0.000 0.00015 83.3

TABLE II
PARAMETERS OF THE FITTED VARIOGRAM MODELS FOR SALINITY

MEASURED AT DEPTHS OF 1.5 AND 3 M.

Depth
Variogram
Estimator Model Nugget Sill Range

1.5 MME Matern (ν = 0.2) 0.000 3.086 95.9

3.0
MME Matern (ν = 0.2) 0.000 1.522 35.2
CRE Matern (ν = 0.3) 0.000 1.459 70.7

kriging. Using the 90% modeling sets of the two depths,
a two-dimensional universal block kriging, with blocks of
10 × 10 m2, was applied to estimate temperature at the
locations of the 10% validation sets. The validation results
for both parameters measured at depths of 1.5 m and 3 m
depths are shown in Table III and Table IV. At both depths
temperature was best estimated by the variogram constructed
using CRE. Salinity at the depth of 3 m was also best
estimated using CRE. The difference in performance between
the two estimators: universal block kriging using the MME
estimator (MUBK) or universal block kriging using the CRE
estimator (CUBK) is not substantial.

TABLE III
CROSS-VALIDATION RESULTS FOR THE TEMPERATURE MAPS AT

DEPTHS OF 1.5 AND 3 M.

Depth Method R2 ME MSE RMSE

1.5
MUBK 0.9134 1.1910e-4 8.5402e-5 9.2413e-3
CUBKa 0.9167 1.1348e-4 8.2147e-5 9.0635e-3

3.0
MUBK 0.8753 0.8940e-4 3.6141e-5 6.0117e-3
CUBKa 0.8757 0.8868e-4 3.6045e-5 6.0038e-3

a The preferred model.

TABLE IV
CROSS-VALIDATION RESULTS FOR THE SALINITY MAPS AT DEPTHS OF

1.5 AND 3 M.

Depth Method R2 ME MSE RMSE
1.5 MUBKa 0.9423 4.5058e-5 3.2216e-6 1.7949e-3

3.0
MUBK 0.8931 -6.8442e-5 4.1108e-6 2.0275e-3
CUBKa 0.8973 -6.6000e-5 3.9511e-6 1.9877e-3

a The preferred model.



III. RESULTS

A. Mapping

Fig. 3 shows the block kriged maps of temperature on a
2×2 m2 grid using the preferred models. Fig. 4 shows the
block kriged maps of salinity on a 2×2 m2 grid using the
preferred models. In the 1.5 m kriged map the temperature
ranges between 15.382oC and 15.525oC and the average
value is 15.469oC (measured range 15.359oC–15.562oC and
average 15.463oC). In the 3 m kriged map the temperature
ranges between 15.432oC and 15.502oC and the average
value is 15.466oC (measured range 15.393oC–15.536oC and
average 15.469oC). We may say that estimated values are in
accordance with the measurements since their distributions
are similar (identical average values, medians, and quartiles).
The difference in the ranges width is due to only 5.0% of
the samples in the 1.5 m depth map (2.5% on each side
of the distribution) and only 5.3% of the samples in the
3.0 m depth map (3.1% on the left side and 2.2% on the
rigth side of the distribution). These samples should then be
identified as outliers not representing the behaviour of the
plume in the established area. In the 1.5 m kriged map the
salinity ranges between 35.965 psu and 36.004 psu and the
average value is 35.992 psu, which is in accordance with
the measurements (range 35.957psu–36.003psu and average
35.991 psu). In the 3 m kriged map the salinity ranges
between 35.984 psu and 36.004 psu and the average value is
35.996 psu, which is in accordance with the measurements
(range 35.973psu–36.008psu and average 35.996 psu). As
predicted by the plume prediction model, the effluent was
found dispersing close to the surface. From the temperature
and salinity kriged maps it is possible to distinguish the
effluent plume from the background waters. It appears as
a region of lower temperature and lower salinity when
compared to the surrounding ocean waters at the same depth.
At the depth of 1.5 m the major difference in temperature
compared to the surrounding waters is about -0.116oC while
at the depth of 3 m this difference is about -0.073oC. At the
depth of 1.5 m the major difference in salinity compared to
the surrounding waters is about -0.044 psu while at the depth
of 3 m this difference is about -0.027 psu. It is important to
note that these very small differences in temperature and
salinity were detected due to the high resolution of the CTD
sensor. [7] observed temperature and salinity anomalies in
the plume in the order, respectively of -0.3oC and -0.1 psu,
when compared with the surrounding waters within the same
depth range. The small plume-related anomalies observed
in the maps are evidence of the rapid mixing process.
Due to the large differences in density between the rising
effluent plume and ambient ocean waters, entrainment and
mixing processes are vigorous and the properties within the
plume change rapidly [7][8]. The effluent plume was found
northeast from the diffuser beginning, spreading downstream
in the direction of current. Using the navigation data, we
could later estimate current velocity and direction and the
values found were, respectively, 0.4 m/s and 70oC, which is
in accordance with the location of the plume. Fig. 5 shows
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Fig. 3. Prediction map of temperature distribution at depths of 1.5 m (top)
and 3 m (bottom).

the variance of the estimation error (kriging variance) for the
maps of temperature distribution at depths of 1.5 m and 3 m.
The standard deviation of the estimation error is less than
0.03404oC at the depth of 1.5 m and less than 0.00028oC at
the depth of 3 m. It’s interesting to observe that, as expected,
the variance of the estimation error is less the closer is the
prediction from the trajectory of the vehicle. The dark blue
regions correspond to the trajectory of MARES AUV.

B. Dilution estimation

Using salinity distribution at depths of 1.5 m and 3 m
dilution was estimated according to [9] (see the contour maps
in Fig. 6). The minimum dilution estimated at the depth of
1.5 m was 778 and at the depth of 3.0 m was 1503 which is
in accordance with Portuguese legislation that suggests that
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outfalls should be designed to assure a minimum dilution
of 50 when the plume reaches surface [10]. (Since dilution
increases with the plume rising we should expect that the
minimum values would be greater if the plume reached
surface [5]).

IV. CONCLUSIONS
Through geostatistical analysis of temperature and salinity

obtained by an AUV at depths of 1.5 m and 3 m in an
ocean outfall monitoring campaign it was possible to produce
kriged maps of the sewage dispersion in the field. The Math-
eron’s classical estimator and Cressie and Hawkins’ robust
estimator were then used to compute the omnidirectional
variograms that were fitted to Matern models. The perfor-
mance of each competing model was compared using a split-
sample approach. In the case of temperature, the validation
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results, using a two-dimensional universal block kriging,
suggested the Matern model (ν = 0.3−1.5 m and 3.0 m) with
semivariance estimated by CRE. In the case of salinity, the
validation results, using a two-dimensional universal block
kriging, suggested the Matern model (ν = 0.2− 1.5 m and
ν = 0.3−3.0 m) with semivariance estimated by MME, for
the depth of 1.5 m, and with semivariance estimated by CRE,
for the depth of 3 m. The difference in performance between
the two estimators was not substantial. Block kriged maps of
temperature and salinity at depths of 1.5 m and 3 m show the
spatial variation of these parameters in the area studied and
from them it is possible to identify the effluent plume that
appears as a region of lower temperature and lower salinity
when compared to the surrounding waters, northeast from the
diffuser beginning, spreading downstream in the direction of



current. Using salinity distribution at depths of 1.5 m and 3
m we estimated dilution at those depths. The values found
are in accordance with Portuguese legislation. The results
presented demonstrate that geostatistical methodology can
provide good estimates of the dispersion of effluent that
are very valuable in assessing the environmental impact and
managing sea outfalls.
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Technologies for ASV and AUV Cooperation

R. Martins, P.S. Dias, Jose Pinto and J.B. Sousa

Abstract— Multiple AUVs can be deployed to quickly ac-

complish large scale ocean exploration missions. Due to lack

of acoustic communication bandwidth and ranges, the AUVs

have to depend on wifi to deliver/receive information. Often, the

information is collected at the end of the mission which reduces

mission situational awareness. In order to enable consistent

situational awareness for long missions with frequent informa-

tion updates, we present a cooperative framework where an

autonomous surface vehicle (ASV) visits the AUVs and collects

the information which it then transfers to the base station. Due

to delay in transferring information from the vehicles to the

base station and sending information from the base station to

the vehicles, we have included a delay-tolerant network (DTN)

capability into the system for smooth information collection

and delivery. The proof of concept and initial experiments

are presented to show that such a system will provide several

benefits for ocean missions.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are used for
many maritime applications ranging from civilian to military
domains. Usually, these missions are of high endurance
where, a set of way-points are generated by the human
operators. These way-points are uploaded onto the AUVs and
they perform the mission. Once, the mission is completed the
base station which is a marine vehicle, then travels to the final
way-point of the mission, picks up the vehicle, downloads
and analyzes the data. In these missions, if the sensors are
faulty or biased, or the human operators need to reassess data
from a particular region, then the mission has to carried out
again. Though, this problem is of low interest for small and
low cost exploratory regions, it becomes highly expensive
and tedious for missions like counter mine exploratory
missions, deep sea exploration missions, etc, that cover tens
of kilometers. This problem can be mitigated by intermediate
interaction of the AUVs with the base station. However,
the AUVs do not have the required acoustic communication
bandwidth to interact.

Another approach is to allow AUV to surface periodically
and interact with the base station using a wireless network.
To communicate, either the AUVs have to travel towards
the base station or the marine vessel has to travel close
to the AUV location. In the former case, the AUVs spend
significant amount of time traveling towards the vessel, while
in the later case, the AUVs spend most of the time at the
surface waiting for the vessel to arrive.

Department of Electrical and Computer Engineering, University
of Porto, Portugal, 4200-465. rasmartins@gmail.com,
{pdias,zepinto,jtasso}@fe.up.pt

Also, one can deploy moored bouys that can act as
communication gateways. Even in this case, the AUVs need
to travel close to the bouys for data transfer. Moreover, these
bouys are static by nature and this transfers to one of the
above problems. If we use drifting bouys then determining
the location of the bouy becomes an issue in itself.

Designing a mechanism using any of the above approaches
will not increase mission performance, where performance is
measured in terms of the time taken to explore the complete
region. To increase the mission performance while allowing
the AUV to surface for shorter periods, we deploy a ASV
that performs sorties periodically and meets the AUV at a
predefined time and place. The ASV collects the data from
the AUV, commands a new mission leg and returns to the
base station. Thus, a coordination between ASV and AUV
emerges from such a system. This system supports human-
in-loop behavior to over see the operations with consistent
situational awareness obtained through this coordination.
Using ASV for coordinated missions is gaining popularity as
a static data mule[1], [2]. We are interested in increasing the
autonomy of ASV such that it increase mission performance.

The tools and technologies required to perform such
cooperative missions need to be advanced at three stages.
Primarily, the command and control system must be able to
plan for multiple vehicles and provide situational awareness
of the mission as and when the information arrives. Secondly,
the network connectivity is intermittent, so the commu-
nication protocols must take this limitation into account.
Thirdly, the cooperative algorithm that tasks the AUVs and
the ASV taking communication delays and uncertainty of
the mission into account. In this paper, we present the tools
and technologies that are necessary to conduct cooperative
mission for marine vehicles consisting of ASV and AUVs.

II. RELATED WORK

Achieving coordination between various types of un-
manned vehicles have been addressed previously in the multi
robot literature. However, most of the research is focused on
developing theoretical and experimental frameworks for a
single class of vehicles. For instance, cooperation between
multiple unmanned ground vehicles [3], [4], [5], multiple
aerial vehicles [6], [7], [8], and multiple underwater vehicles
[9], [10], [11]. Research on cooperation between heteroge-
nous class of vehicles has been limited to ground vehicles
and aerial vehicles. Healey et al. [12] develop an algorithm
for a stealth mission using a single UAV and ASV. This paper



Fig. 1. Network for the operator with ASV and the AUVs

highlights that cooperation between aeria vehicle and marine

vehicle is possible.

There is no adequate literature that uses a combination of

ASV and AUVs for marine applications [2]. Initial research

on using ASV and AUVs with priliminary cooperative mis-

sion capability support was developed by Martins et al. [13].

In this paper, the tools and technologies advance the exisiting

mode of vehicle operation to achieve more autonomous

operations with persistent situational awareness compared to

that in [13].

III. SYSTEM COMPONENTS

A. Command and control center

One of the main components for autonomous missions

using unmanned vehicles is the design of command and

control center. We have designed a command and control

center called as Neptus, that enables the operators to super-

vise and control the multi-vehicle network behavior. Neptus

supports different phases of unmanned vehicle operation:

planning, simulation, execution, revision and dissemination

[14]. Neptus provides a plug-in architecture through which

vehicle configurations (comprising appearance, networking

settings and feasible behaviors), vehicle maneuvers, console

widgets, plan generators and post-mission visualizations can

be added. A snapshot of the Neptus is shown in Figure 2.

For Neptus, a plan is a graph whose nodes are maneuvers

with respective parameters and edges are transitions with

respective conditional guards and actions (as shown in Figure

3). This allows an easier access to generate sequential plans

(transitions are taken when previous maneuver is complete)

or also create more advanced plans with multiple conditional

paths and actions that can encode behavior to be carried

out by other vehicles, etc. These plans can either be edited

manually by operators (with the aid of a planning widget

that shows predicted behavior on a map) or can be generated

automatically by plan generation plugins.

Plan generation plugins input a selection of vehicles and

plugin-specific parameters and in return output one or more

plans to be sent to the selected vehicles. We use this facility

to automatically divide survey areas between available vehi-

Fig. 2. Neptus - command and control center for multi vehicle deployments

Fig. 3. Plan description

cles, to optimally generate plans to visit a set of points using

one or more vehicles and also to generate standardized plans

(following a certain pattern). There exists already several

different plugins of this type:

1) Templates – A plugin that will generate a plan from

a pattern encoded as a script. This script may specify

parameters that will be selected by the user prior to

generation and also use any variables reported through

the network (as vehicle positions, environmental sensor

data, etc).

2) MVTSP – A plugin that, given a set of locations to

be visited, will generate a list of plans for visiting all

the points in minimal time, taking into consideration

varying vehicle speeds.

3) MVCoverage – A plugin that inputs a geo-referenced

polygon with an area to be surveyed by a set of

vehicles and outputs a set of plans that divide this area

by the selected vehicles according to a lawn-mowing

algorithm.

Using the plan generation plugins and multi-vehicle con-

trol provided by Neptus, it is possible to automatically

generate plans that encode cooperative behavior. Neptus

allows real-time monitoring and control of multiple vehicles.

One or more operator consoles can be connected to the

network, visualize gathered data and re-plan vehicle behavior

according to operator needs.



B. Intermittent communications

Since multi vehicle systems may be spread across large
areas using limited communication means, we cannot rely
on continuous communication. The underwater vehicles are
disconnected from the base station and other vehicles for
most part of their operation and have communication only
when at surface. During information transfer, there can be
disruption and also delay in information delivery and pro-
curement at different vehicle locations. To facilitate smooth
data processing and transfer between vehicles, we have
included DTN capabilities. With DTN capabilities, vehicles
can be used as data-carrying devices (or data mules) for
control and monitoring of other systems even in disconnected
networks.

C. Sub-system communications

The DTN is used for information gathering and deliv-
ery between vehicles. For communication between different
sub-systems inside the vehicle, we developed Inter-Module
Communication (IMC) protocol. It defines a modular and
layered approach for control and sensing. The IMC protocol
comprises of different logical message groups. Figure 4
illustrates the use of IMC within an underwater vehicle
system. The message flow corresponds to the several control
and sensing layers within IMC:

1) Mission control messages define the specification of a
mission and it’s life-cycle, for the interface between
a CCU (Command and Control Unit) such as a Nep-
tus [14] console and a mission supervisor module.

2) Vehicle control messages are used to interface the
vehicle from an external source, typically to Neptus
or a mission supervisor module

3) Maneuver messages are used to define maneuvers,
associated commands and execution state. Some ma-
neuver are related to waypoint tracking - encoded
through a Goto message - or loitering patterns - Loiter,
etc.

4) Guidance messages are related to the guidance law
used for autonomous maneuvering. A guidance com-
mand generates new reference measures for the vehicle
heading, depth, and velocity, in the form of a Desired
Guidance message.

5) Navigation messages define the interface for report-
ing a vehicles navigation state. The Estimated State
message defines a vehicles navigational state by the
SNAME convention [15].

6) Sensor messages are used to report sensor readings by
the respective hardware controllers. Sensor messages
are related to sensor readings which can be from
IMU, GPS, LBL (Long Base Line) acoustic positioning
system, etc.

7) Actuator messages specify the interface with hardware
actuator controllers. The actuators that impact in the
LAUV guidance are the fins and the thruster, interfaced

Fig. 4. IMC message flow for AUV.

through the Set Fin Position and Set Thruster Actuation
messages respectively.

This layered control and sensing infrastructure is in line
with typical control infrastructure for autonomous vehicles,
and enables modular development of applications. Software
components can run in logical isolation, interfacing with
other modules merely through the exchange of IMC mes-
sages. The control infrastructure for autonomous vehicles is
implemented on-board using the DUNE framework [16], that
enables message exchange using a message bus abstraction,
and provides transport mechanisms for external communica-
tions. Vehicles can be monitored and controlled externally
using Neptus consoles.

Networking of vehicles and consoles, is enabled through
traditional IP-based communication-mechanisms, like raw
UDP or TCP sockets, or by other means, such as the Real-
Time Publish-Subscribe protocol, or underwater acoustic
modems [17]. The drifting and static buoys being used are
able to communicate data over long periods of time either by
short distance multi-hop networking [18], by using ubiqui-
tous GSM/GPRS communications, or also by communicating
large bursts of stored data when a communication link can
be established.

IV. COOPERATIVE ALGORITHMS

Consider the scenario as shown in Figure 5 where two
AUVs are deployed to carry out an ocean exploration mis-
sion. The AUVs have limited sensor range, limited commu-
nication range and low bandwidth. In order to carry out the
mission efficiently a ASV is deployed that acts like a data
mule between AUVs and the host. The mission is carried
out in the following way: The AUVs are deployed with an
initial path and surface time. Based on this information, the
ASV will schedule a route to visit the AUVs. The ASV will
collect the information from the AUVs and assigns a new
path with an associated surface time to the AUV. The AUV
will use the new path to explore. The ASV performs this
sequence of actions to all the AUVs and then visit the base
station to deliver the information within a prescribed time
limit called as Sortie time (T ).



The global objective of the mission is to minimize the

total time taken in exploring the region taking human situa-

tional awareness into account. The mission completion time

depends of two quantities (i) surface time and (ii) exploration

time. The objective (i) emphasizes the fact that minimizing

the surface time of the AUVs will allow them to explore

for longer periods, thus enhancing the search performance.

While objective (ii) ensures that the paths generated by the

ASV are such that the AUVs spend their search effort on

exploring the unknown regions than on explored regions.

These two objectives aim at achieving the mission quickly

and efficiently. Assume that the surface time of the AUV

Ai for the jth sortie is represented as Si
j and similarly γi

j

represents the exploration time for the jth sortie. Then the

objective and constraints for the mission can be written as:

Objective : min
�M

j=1

�N
i=1 S

i
j (1)

max
�M

j=1

�N
i=1 γ

i
j (2)

Constraints : Tj ≤ L, ∀j (3)

γi
j ≥ ∆ (4)

where Tj is the time taken to perform the jth sortie visiting

all the AUVs, L represents the sortie time limit and ∆
represents the minimal exploration time that each AUV has

to perform. The constraint given in Eq (3) forces the ASV to

meet all the AUVs and visit the host within the Sortie time,

thus updating the SA at the host vessel. The constraint given

in Eq. (4) ensures that all the AUVs perform the exploration

for a minimal exploration time and are not idle thus aiding

the objective 2.

Sometimes the AUVs may not be able to complete the

assigned task, in which case, they will surface. Hence, the

ASV has to take this uncertainty into account during route

planning stage otherwise, the ASV may not be able to

generate a route satisfying the sortie time constraint.

A. Approach

To achieve the objective of minimizing mission time,

we need to minimize the surface time and maximize the

exploration time of the AUVs. To minimize the AUV surface

time, we need to determine a solution to the ASV route

planning problem meeting the constraints (3) and (4). While

we need to design strategies for the AUVs that maximizes

the exploration region to realize the second objective.

We assume that N AUVs are deployed in a region that

have limited communication (rc) and sensor ranges (rs). We

also assume that the AUVs are equipped with autopilots that

enable the AUVs to autonomously navigate towards a desired

way-point and surface when they reach the assigned way-

point. The kinematic equations of the AUVs are:

ẋi = vi cosψi

ẏi = vi sinψi

ψ̇i = k(ψd
i − ψi) (5)

!!"#

!!"#

$%&'#

Fig. 5. Search region split into lanes with 2 AUVs performing exploration.

where vi and ψi represent the velocity and the heading of

the ith AUV. The change in heading angle is constrained as:

−ωmax ≤ ψ̇i ≤ ωmax (6)

The velocity of the AUVs varies between 0 and vi. When the

AUVs are in motion, their velocity is fixed to vi, while the

vehicle velocity is 0 when it surfaces. We assume that the

autopilots present in the vehicles can handle the transitions

and the depth controller that maintains the desired depth

during the mission.

The ASV has kinematics similar to the AUV. However, it

can travel at higher velocity than the AUV. The ASV also

has limited communication range and it is assumed that the

ASV is equipped with autopilot that navigates the ASV to

the desired way-points generated by the AUV locations. We

assume that the ASV has sufficient fuel to accomplish the

mission.

B. Environment model

We model the environment of the exploration mission

taking the AUV and ASV constraints into account. The

AUVs have to explore the region using their sensor (sonar).

The desired pattern for exploration missions using AUVs is

the lawn moving pattern. We consider a rectangular search

region B of width W meters and length L meters. We

generate lanes on the search region B for the agents based

on their sensor range rc as shown in Figure 5. These lanes

form the line of reference for the AUVs. Since the AUVs

have same sensor range rc, the number of lanes in the search

space can be given as: Nl =
L
2rc

. Each lane is represented

as ln, where n = {1, . . . , Nl} .

C. Planning mechanism

The ASV has to visit all the AUVs and return to the base

station within the sortie time T . When ASV meets Ai during



the jth sortie, then the ASV has to supply a path for the
j + 1th sortie. After visiting the AUVs, the ASV returns
to the base station. The path assigned to the AUV must be
such that the ASV can meet Ai anywhere along the path
without violating the sortie time constraint for the j + 1th

sortie. Since, the ASV does not know the precise location
of the other AUVs, it will estimate the possible locations
that the other AUVs may have to travel from their initial
and final way-points for at least ∆ time units. Taking these
constraints, the ASV generates a route that does not violate
the sortie constraints given in equations 3 and 4.

The length of the path given to the AUV by the ASV
can differ based on the locations of the other AUVs and the
sortie time constraints. However, the minimum path length is
of 1 time units. When the AUV completes the assigned lanes,
the ASV takes the current state of the lanes and determines
those lanes that need to be visited and assigns the AUV to
the nearest unexplored lane.

V. INITIAL EXPERIMENTS

Previously, we conducted an experiment in river Douro,
Portugal, as a proof of concept for enabling networked ma-
rine vehicles to function as team. The experiment consisted
of two AUVs and a single ASV as shown in Figure V. The
ASV visited the AUVs and delivered the data/commands
from the command and control center.

The river width is small and all the vehicles were able to
communicate with each other. However, to enable the system
to work when communication range limitations are present,
the information was routed through the ASV. Although,
Neptus could communicate to the AUV directly, due to
the restriction, it was communicating through the ASV.
The operator tasked the AUV through ASV to perform a
lawn moving pattern. Then the operator received continuous
updates on the movement of the vehicle through the ASV.

This proof of concept did not have advanced technolo-
gies like the DTN for easier transformation of information
without losing any data packets and the implementation of
cooperative algorithms. Currently, the DTN technology has
been implemented into the networked system and the present
focus is to develop cooperative algorithm that can efficiently
achieve a mission.

Currently, we have demonstrated the developed technolo-
gies that are necessary for multi-vehicle systems. Although,
we have theoretically developed cooperative algorithms, we
have not experimentally demonstrated the performance of
the algorithm. We are currently, pursuing to implement the
cooperative algorithms on our AUVs and ASV. The plan is
to implement the setup on a 4 Sq. Km region at Porto Harbor
in Portugal. We will report further develops and results of
this experiment.

Fig. 6. Initial field experiment for coordination between heterogeneous
vehicles

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have presented the a cooperative system
design for networked marine vehicles to achieve large scale
missions. We have tested an initial system design for net-
working and with DTN. However, the cooperative algorithms
have not been experimentally tested. We are in the process of
deploying the algorithms. Also, new cooperative algorithms
need to be developed for various other applications.
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Shallow water Lagrangian floats as versatile sensing and imaging
platforms

Chris Roman, Gabrielle Inglis, Connor Tennant

Abstract—This paper presents results from recent work
using a shallow water Lagrangian float for sea floor imaging
and water column profiling. The float is a flexible platform that
is able to carry a suite of sensors and position itself at any point
in the water column using ballast control. The low cost of the
float and minimal peripheral requirements for personnel and
handling gear make it an attractive monitoring platform. Initial
results are shown for a sea floor classification study using the
float to collect detailed camera images close to the bottom and
a routine phytoplankton study demonstrating flexible profiling
and adaptive sampling in coastal waters.
Introduction: The float (Fig. 1) is a low cost environmental

monitoring tool designed to work near shore [1], [2]. It has
a set of capabilities distinct from the more common open
ocean float designs [3], and other small [4] and bottom
stationing [5] shallow water platforms. It is optimized to
operate on time scales of days rather than years, and depths
to 100 meters rather than the 2000 meters typical of open
ocean Argo floats. The float’s displacement is controlled by a
fast acting 450 mL piston type volume changing system. A
motor, lead screw and piston change the float’s buoyancy
to actively move it up and down in the water column.
The control system is based on a feedback linearization
approach which compensates for the quadratic velocity of
the drag force acting on the float when in motion. Shaped
inputs are also used to generate depth reference signals the
float is capable of following. A 200 kHz Airmar acoustic
altimeter is used to measure the distance to the bottom at all
times and has a working range of approximately 100 meters.
This allows the float to perform constant depth or altitude
drifting, and several profiling functions while controlling its
vertical position in the water column. In regions of varying
bathymetry the altimeter is required to keep the float from
hitting the bottom and allows it to drift at a constant altitude
off the bottom even as the total water depth changes. At the
completion of a mission the float can drop a one kilogram
expendable weight to gain more buoyancy on the surface.
The weight will also be dropped during a mission by a
dead man timer should the microcontoller have a fault or
an excessive internal humidity threshold is detected. A GPS
and Iridium system is used to record GPS when the float
is on the surface and then report that position back via a
satellite phone data message.
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G. Inglis and C. Tennant are students in the Department of
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Fig. 1. (a) CAD drawing of the shallow water float showing the major
systems. (b) Photo of the float showing the CTD near the top and the stereo
camera system.

The float is able to carry a suite of scientific sensors,
including a Neil Brown Ocean Sensors Inc (NBOSI) flow
through CTD, Aanderaa optical dissolved oxygen sensor,
WET Labs ECO-Puck multi-wavelength fluorometer and
custom packaged stereo cameras. The nominal performance
of the float consumes between 10 and 40 watts of power,
depending on the depth, while actively following the bottom
or profiling. The float can run for approximately two days
by itself and roughly 8 hours with the camera system taking
images. The floats is single person deployable from nearly
any boat and requires minimal handle gear. Programming and
mission planning are done through a mission script of basic
behaviors and parameters similar to most all autonomous
underwater vehicle (AUV) mission interfaces.
Seafloor imaging: There are numerous methods for col-

lecting visual images of the sea floor and related biota for



TABLE I
PLATFORM AND SURVEY SUMMARY

Ship Personnel Depth Navigational Data Total
requirements requirements limit accuracy Quality cost

SCUBA Low/dedicated Moderate/operational Shallow Low/tracking Low Moderate
Drop cams Moderate/dedicated Low/operational Moderate Moderate/tracking Low Moderate
Tow sleds Moderate/dedicated Moderate/technical Moderate Moderate/survey Moderate Moderate
ROVs High/dedicated High/technical Deep High/survey High High
Manned subs High/dedicated High/technical Deep High/survey High High
AUVs Moderate/dedicated High/technical Deep High/survey High High
Lagrangian Floats Low/standby Low/technical Deep Moderate/tracking High Low

A summary of the typical requirements and costs associated with common survey methods for collecting sea floor images. The
Lagrangian float has an attractive set of low cost and high quality attributes that are distinct from the others. The ship requirements
categorized as dedicated either require special handling gear or full time tending to the operation. A standby vessel would be free
to complete other tasks during operations and have minimal handling requirements. The personnel are classified as generally lower
cost field operational or as higher cost technical persons with more specialized skill sets. The navigation is considered as tracking
when it is applied mostly after the fact and survey when it is used in real time to offer more precision in the data collection.

benthic habitat studies and fisheries independent stock as-
sessment. SCUBA divers, drop cameras, ship towed camera
systems, manned subs, remotely operated vehicles (ROVs)
and specialized autonomous underwater vehicles (AUVs) are
able to collect near bottom images with varying levels of
quality and precision (Table I). Each method also has specific
costs in terms of personnel requirements, equipment expense,
ship support and overall operational risk. Lagrangian imag-
ing, which uses the float drifting at a constant controlled
altitude while taking pictures of the sea floor (Fig. 2), fills a
gap in current capabilities. Used in this manner the float is
able to collect high resolution images, of comparable quality
to those produced by AUVs, at a much lower price and effort
point.

Desired altitude

1/8” line

Float & RF beacon

Acoustic pinger

Sea floor
Not to scale

Directional hydrophone

Directional RF antenna

Fig. 2. Diagram of the basic float operation during our Lagrangian imaging
tests. The float executes a constant altitude drift at a desired imaging distance
from the seafloor using the acoustic altimeter for reference. The float is
tracked with a tethered surface buoy, RF tracking and an acoustic locator.
This will generally allow the support boat to work within several kilometers
of the float during a dive and maintain tracking. When at the surface the float
has a second RF beacon and a GPS/Iridium antenna for absolute positioning
and communications.

The idea for Lagrangian imaging comes from the obser-

vation that data collection with current methods, particularly
AUVs, can be broken apart into two essentially independent
problems: (1) Getting from location A to location B and (2)
knowing where locations A and B are. The first demands
a vessel or vehicle capable of locomotion and the ability
to travel between way points while maintaining a desirable
imaging altitude. The second is the broader problem of
underwater navigation, that requires generating an accurate
estimate of the platform’s location in real time or after
the fact using some combination of local and external sen-
sors. The Lagrangian imaging concept essentially removes
the need for self propulsion while maintaining the same
navigational requirements typical of any underwater vehicle
platform. Forsaking propulsion allows the overall vehicle
complexity and power requirements to be greatly reduced.
This generates a significant cost saving in both the platform
and the personnel required to support it. The options for
navigation and tracking remain the same for any of the
systems described above. The issue is determining the price
the end user is willing to pay for the location information
and what value it adds to the data. For some applications
the value of the images will be completely contingent on
the quality of the navigation, but in others it is not a
significant factor worthy of the expense. For reconnaissance
surveys, broad habitat assessment, and large area coverage
there is a minimal need to either visit a specific square
meter of the sea floor or identically cover a prior track
line. In these cases images taken with the float using semi-
structured drift surveys, planned from prior drifts or with the
aid of circulation and tidal models, would suffice to cover
the survey area of interest for far less cost.
Sample constant altitude drifts from imaging surveys are

shown in Fig. 3. In calm seas the float can nominally track
a depth or altitude reference to within 5 cm. In rougher
seas (Fig. 3(b)), where the pressure oscillations from surface
waves are observable by the depth sensor and the surface
tether tied to a marker buoy is tugging, the float typically
stays within 30 cm of the reference. The reference altitude
can be as close as 80 cm from the bottom, enabling detailed
photos in moderately turbid conditions. This low altitude
capability also lets the float image closer to the sea floor



than torpedo style AUVs will comfortably operate due to
the risk of bottom collisions. Altitudes less than 80 cm can
generate erroneous altimeter data and corrupt the reference
trajectory.

9 10 11 12 13 14 15 16 17 18
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Time (min)

D
ep

th
 (m

)

Drift survey depth plot

 

 

Float depth
Bottom depth

(a)

20 30 40 50 60 70

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Time (min)

D
ep

th
 (m

)

Drift survey depth plot

 

 
Float depth
Bottom depth

(b)
Fig. 3. Sample constant altitude missions. (a) The constant altitude sections
of a test mission in perfectly calm seas with no wind. The reference altitude
switched from 2.0 meters to 1.8 meters at 10.5 minutes. (b) A sample
depth plot for an altitude drift at 1.5 meters from the sea floor. The surface
conditions, with waves up to one meter and 10-15 knot winds, affected the
tethered float and contributing to the depth oscillations.

The stereo camera system consists of one black & white
and one color camera made by Prosilica. Each have 12-
bit 1360× 1024 resolution with fixed focus 9mm lens. The
cameras are separated by 12 cm and have a nominally 30×40

degree field of view each. The strobe is a standard Vivitar
flash placed in a small glass sphere. The cameras and strobe
are controlled by a Linux PC-104 computer in the camera
housing. They can be run independently of the float and
set to take images at a fixed rate, typically 3 to 5 seconds
per image, or in a timed sequence with alternating rates.
Due to the varying turbidity and ambient lighting in shallow
coastal waters we use the auto exposure feature of the
cameras to provide a level of robustness and improve image
consistency. The camera housing also has an OceanServer
OS5000 compass to orient the images to north and estimate
the rotation rate of the float as it is drifting.
The stereo images can be used to create texture mapped

bathymetry, allowing us to resolve objects 3 cm and larger
in size (Fig. 4). Here we take a simple sparse approach
that triangulates pairs of Scale Invariant Feature Transform

(SIFT) points [6] automatically extracted and matched from
the paired images. The triangulated 3D points, ∼5000 per
image pair, can then be displayed as a connected mesh (Fig.
4(a)) or as a texture mapped image (Fig. 4(b)). The resulting
data products portray shape characteristics of the sea floor
and can be used to estimate rugosity and roughness [7].

(a) Bathymetry

(b) Texture mapped image
Fig. 4. Sample image results. (a) Bathymetric section constructed from a
stereo image pair. (b) Texture mapped image over the surface bathymetry.

Overlapping images can also be merged together into
single strip photomosaics (Fig. 5). The mosaics can be
oriented using the collected compass data and georeferenced
using the surface GPS locations or any other additional
underwater tracking data. An approximate scale for each
image, or the entire photomosaic, can be set using the stereo
reconstructions or more simply by the camera field of view
and the altimeter data.
Additional estimates of the drift speed and direction are

derived using visual odometry. Such near bottom current
estimates provide a useful additional piece of information
from the drift survey and are otherwise hard to obtain
without more expensive instrumentation, such as a bottom
tracking Doppler. We have implemented a simple least
squares estimate of the drift motion using the movement
of corresponding feature points between temporally adjacent
image pairs overlapping approximately 30% or more (Fig.
6(a)). To help insure adequate overlap to perform visual



Fig. 5. Sample 12 image mosaic along a drift track. The images were taken at 1.3 meters altitude. The skate egg case, likely Leucoraja sp., in the
highlighted section is approximately 8 cm in length.

odometry we use an alternating image timing sequence (Fig.
6(b)). The sequence considers one frame rate for general
survey images and periodic bursts of images at a faster rate
for odometry. The period between burst sequences can be set
by the operator depending how often current estimates are
desired. The burst images are taken at the reflesh limit of the
strobe, which is about 2 seconds for our current system.
Future work for the Lagrangian imaging concept will

utilize in-situ image processing to improve the operational
efficiency of the float surveys and produce more consistent
results. Real time image processing for visual odometry will
provide a measure of the float’s actual drift speed during
the survey. This could then be used to automatically set the
camera frame rate to achieve a desired image coverage or
image spacing on the sea floor. The user would then be able
to set the image spacing that best fits their monitoring needs
rather than setting the frame rate based on initial estimates
of the current speed.
We have also begun work on automated image bottom

detection that is able analyze images to determine if they
are of sufficient detail in the presence of turbidity. In coastal
regions the water quality can vary significant from place to
place. This algorithm can verify that the images collected
at the specified height above the sea floor are not contrast
or clarity limited. If the image quality is poor the float
would then be able to lower its altitude, within an acceptable
range, to the acquire better images. Such a capability would
also contribute greatly to survey efficiency and provide more
consistent results.
For greater overall flexibility we would also like to include

a higher rate LED strobe. At such low altitudes the current
strobe rate, between 3 and 5 seconds, can be a limiting factor
in obtaining sufficient image overlap in currents better than
a knot. The LED strobe would offer higher rates and more
overlap with reduced power consumption.
Water column profiling: The float has also been used for

water column profiling with its suite of environmental sen-
sors. The float is able to execute controlled vertical profiles
at speeds ranging from zero to 10 m/min. The profiles are

smooth, decoupled from ship heave that would adversely
affect wire hung sensors and reactive to changing bottom
contours. A short sample profile mission from Narragansett
Bay Rhode Island is shown in Fig. 7. The float is currently
being used on a weekly plankton survey at a station in the
bay as part of a 50 year long time series [8], [9]. The survey,
which involves net tows and water sampling, takes just 20
minutes to complete each week. During the survey the float is
quickly deployed and executes several profiles in the shallow
water. Figure 7(b) shows the presence of a phytoplankton
layer [10], [11] in the fluorometer signal across multiple
profiles. Using the surface buoy with a thin spectra tether
allows the float to be recovered quickly at the end of the
survey. In total the float adds minimal additional time to the
survey while providing a complimentary data set of profiles.

The float has also been used on Georges Bank to sample
the North Atlantic spring plankton bloom. In this case the
float was deployed several days in a row for between six and
eight hours each day. During the dives the float was followed
by the RV Endeavor. Following the float as it profiled allowed
the ship to track a tidally driven water mass moving along the
edge of the bank. Shipboard CTDs and water samples were
periodically taken and compared to the float profile data.
The float data have been compared to both the ship CTD
data and collected water samples to calibrate the fluorometer
measurements.

Our most recent work with the float has focused on
adaptive profiling for features of interest in the water column,
such as the thermocline, a halocline or a thin plankton
layer. This capability is broken into three basic phases.
First, the float completes a series, typically four to eight,
vertical profiles through the whole water column or between
two specified depths. During the profiles the float records
the sensor data and computes running averages for the
parameters in depth bins (Fig. 8). Due to the position of the
sensors on the top of the float, only the data from upward
profiles is used for the averages. Downward profiles tend
to be biased by water being pulled down with the wake
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Fig. 6. An example of visual odometry. (a) Three left and three right
images showing feature correspondences between successive overlapping
image pairs. The correspondences can be used to calculate the float velocity
and drift track for in-situ current estimates. (b) Illustration of the alternating
survey-odometry timing sequence. Periodic bursts of high overlap images
can be used for current estimation by visual odometry.
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Fig. 7. A sample float mission. (a) Sample depth profile from a weekly
plankton survey in Narragansett Bay. (b) Vertical profile speed showing no
heave reversals. The start and end of the plot show the float on the surface
moving in the waves. (c) The piston volume change during the profiles,
with zero indicating all water expelled from the cylinder (d) Chlorophyll
signal measured during the profiles showing a layer of plankton.
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Fig. 8. Running averages of chlorophyll calculated for 50 cm depth bins
during a sample mission in Narragansett Bay.

created by the bottom of the float. During upward profiles the
sensors are in undisturbed flow. The bins are user specified
and typically between 20 and 50 cm thick. The lower limit
on the bin thickness is related to the sensor sample rates
and the vertical profile speed of the float. Using profile
speeds between 3 and 5 m/s the 5 Hz CTD and the 1
Hz fluorometer collect 10’s to 100’s of readings per bin
during the initial full water column profiles. Next, using
the bin averages the gradient of any parameters, such as
temperature or conductivity, are calculated with simple finite
difference. Using this information and conditions set by the
user for identifying a feature of interest, such as the peak
fluorescence or peak temperature gradient, a new desired
depth is determined. Lastly, the float then moves to this
depth and completes either a constant depth drift or smaller
“narrow banded” profiles in the region of the water column
feature. This cycle can then repeat at a prescribed time
interval, allowing the float to continually position itself for
finer sampling in a dynamic feature of interest. A sample
mission to determine a layer of peak chlorophyll fluorescence
is shown in Figure 9.
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Fig. 9. An adaptive profiling mission looking for a peak in Chl-a
fluorescence. The float performs a series of full water profiles, a short
drift at the depth showing the peak average Chl-a signal and then smaller
profiles about this depth. The cycle then repeats starting a second sequence
of full water depth profiles in deeper water. The full profiles were set for
the shallower depth of either 15 m or 1.5 m from the bottom.

Conclusion: The presented data confirm the utility of the
shallow water float for collecting high quality sea floor im-
ages and executing water column profiling. The low cost and

ease of deployment makes the float an attractive alternative
to other platforms in many applications. Given the demand in
application areas such as marine fisheries stock assessment,
routine monitoring of marine protected areas and general
coastal water quality there is a significant need for such a
platform.
For sea floor imaging we envision using the float in

conjunction with other survey tools such as towed side scan
sonar systems and survey capable AUVs. These systems,
which can be used for large scale and structured surveys
to produce baseline maps prior to the float surveys. The low
cost and flexibility of the float then makes it a cost effective
platform for ground truthing areas of interest and performing
routine monitoring to assess changes that would motivate
additional detailed survey work. In this way the total cost of
repeated monitoring with large scale surveys with expensive
platforms can be reduced.
For water column profiling and adaptive surveys we are

currently improving the capabilities of the system and tuning
the parameters for specific survey goals. Settings for the
profile rate, depth bins, the duration of profiles and the
specific adaptive behaviors can all be related to the dynamics
of the processes of interest. We have successfully used the
system in Narragansett Bay during the summer months,
where the thermocline between 3 and 6 meters depth is
generally persistent and related to the vertical structure of
phytoplankton. Future work will use the float year round in
the Narragansett Bay and again on Georges Bank.
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Abstract—Making use of publicly available real-time sensor
data from other organisations allows an autonomous vehicle
to significantly augment its situation awareness at low cost.
We demonstrate how an autonomous catamaran for monitoring
the marine environment can exploit the sensor web to help
differentiate between events and sensor faults in a static sensor
network, as well as plan more energy efficient paths.

I. INTRODUCTION

Many organisations may be providing real-time sensor data,
historical observations and model forecasts within our envi-
ronmental monitoring region of interest. Tapping into these
resources can allow autonomous vehicles to sense phenomena
far removed from its current location. This information can be
exploited for adaptive sensing, and efficient path planning.

The Tasmanian Marine Analysis Network (TasMAN)
project has an autonomous surface vehicle (ASV) and an
autonomous underwater vehicle (AUV) for monitoring the
waterways of South-East Tasmania (43◦S, 147◦E). Within
this same area, at the time of submission, there were real-
time observations from; marine sensors at 9 locations from
two different organisations, river flow observations at two
locations, 21 weather stations from three different organisa-
tions, and hydrodynamic physical model forecasts. All are
available in standardised sensor web services implemented to
enhance accessibility and interoperability. This paper describes
initial work that uses information from the sensor web to
help determine if anomalies in marine sensor readings are
due to equipment faults or actual environmental events. We
also investigate how wind direction and speed from weather
stations may help to plan energy efficient paths.

There are many organisations who do not have the budgets
to perform large-scale monitoring, but may want to place their
own specific sensing needs into a larger context. Cooperative
sensing can increase the knowledge of environmental systems
for all involved parties. By augmenting the situation awareness
of a marine vehicle we are able to look beyond what is possible
on board the device itself. This kind of functionality is often
achieved by using multiple marine vehicles. However these
vehicles can be expensive to purchase and deploy. By making
use of observations that are already available we can achieve
greater situation awareness at much lower cost. This also
allows us to include observations from external parties, which
means we are not responsible for the purchase of hardware and
maintenance of all the sensor platforms. Static marine sensor

nodes can be very expensive to maintain, because of bio-
fouling, so there is great benefit in sharing this load between
multiple organisations. We can also make use of data that lays
outside of our organisation’s skill set, for example the model
forecasts.

Although there is not currently adequate indexing to sensor
information to perform true sensor discovery, the purpose of
this work is to demonstrate what can already be achieved when
multiple organisations adhere to sensor web standards. We
are also interested in how we can use the augmented sensor
capabilities of a sensor web enabled autonomous vehicle.

A. The Sensor Web

Advances in sensor technology and distributed computing,
coupled with the development of open standards that facilitate
sensor/sensor network interoperability, are contributing to the
emergence of a phenomenon known as the ’Sensor Web’[11].
This phenomenon can be described as an advanced Spatial
Data Infrastructure (SDI) for [near] real-time situation aware-
ness.

Sensor Web Enablement (SWE) is an Open Geospatial
Consortium (OGC) initiative that extends the OGC open web
services framework [3] by providing additional services and
encodings for integrating web-connected sensors and sensor
systems. SWE services are designed to enable discovery
of sensor assets and capabilities, access to these resources
through data retrieval and subscription to alerts, and tasking
of sensors to control observations [3]. SWE enables interoper-
ability between heterogeneous sensors, simulation models and
decision support systems.

The SWE initiative has developed specifications for mod-
elling sensors and sensor systems (SensorML), observations
from such systems (Observations and Measurements) and
processing chains to process observations (SensorML) [2], [5].
The SWE specifications provide semantics for constructing
machine-readable descriptions of data, encodings and values,
and are designed to improve prospects for plug and play sen-
sors, data fusion, common data processing engines, automated
discovery of sensors, and utilisation of sensor data. SWE cur-
rently provides four types of web services: Sensor Observation
Service (SOS), Sensor Alert Service (SAS), Sensor Planning
Service (SPS) and Web Notification Service (WNS) [20], [12],
[18], [19].



The SOS provides a standard interface that allows users to
retrieve raw or processed observations from different sensors,
sensor systems and observation archives. The SAS provides
a mechanism for posting raw or processed observations from
sensors, process chains or other data providers (including a
SOS) based on user-specified alert/filter conditions.

When subscribing to a SAS, users not only define the alert
conditions but also the communication protocol for disseminat-
ing alerts via the WNS. The WNS provides a standard interface
to allow asynchronous communication between users and
services and between different services. A WNS is typically
used to receive messages from a SAS and to send/receive
messages to and from a SPS. The SPS provides a standard
interface to sensors and sensor systems and is used to co-
ordinate the collection, processing, archiving and distribution
of sensor observations. Users can submit a specification of
an observation requirement via the SPS. This specification
is encoded using SensorML. Application logic sitting behind
the SPS interface translates the specification into a set of
instructions mission planning software can understand, assess
the feasibility thereof, and then execute.

B. Related Work
Sensor web enabled systems have been used to exchange

sensor data and increase autonomy in a distributed set of
sensing devices on land, water and air [25]. However, these
vehicles used data from within one project rather than attempt-
ing to use whatever relevant data could be found. Projects
such as GeoCens [10] will soon provide a search engine for
sensor observations; crawling the web for sensor web enabled
data sources. It will then be even easier to discover relevant
information about your monitoring area.

Tenorth et al. describe a method for extracting relevant tex-
tual information from the web in order to perform household
tasks [23]. The system transfers the text into reasoning steps
and actions for the robot. Waibel et al. use linked data and
semantic web standards so that robots can create, share and
reuse knowledge [26].

II. ROBOT PLATFORM

For these initial experiments our ASV is the preferred
platform as it gives us continuous communications, as well
as the ability to carry more powerful computing, and heavier
sensor payloads.

Our ASV ’StrayCat’ is a 5.5m Hobiecat catamaran. The
rigging has been removed and two independently controllable
80 lb thrust MinnKota electric thrusters have been fitted to
the rudders allowing directional thrust to be applied using an
electric tiller. Power is supplied through deep cycle lead-acid
batteries. An embedded microprocessor implements a closed
loop controller for the tiller position, interfaces to a R/C unit,
and serves as the interface for the three actuators. The sensors
included on the platform include an IMU, Laser scanner, and
a suite of Raymarine sensors consisting of wind speed and
direction, water depth and temperature, GPS, compass, and
speed through the water. The platform also includes multiple

I/O connectors that provide power and communications for sci-
entific payloads as required. Previous missions have included
sensors for salinity, pH, turbidity, pressure, and fluorescence.
These I/O connectors have been standardised and are also
provided on the TasMAN project’s Starbug AUV ’Searise’ [6].

The control system is running on a low power dual core
embedded Advantech PC. A 3G modem has been fitted to al-
low remote monitoring and communication with web services
from external parties. A local Wi-Fi network is established
for real-time visualisation and near by supervision. The ROS
software architecture [15] is used, with the mission and low
level controllers loosely based on the Limnobotics catamaran
at the University of Zurich [14].

Fig. 1. Straycat: our autonomous surface vehicle

Straycat has so far been used to validate biogeochemical
models from the same area using an on-board fluorometer to
sense chlorophyll levels as well as turbidity.

III. DATA SOURCES

Figure 2 shows the relevant environmental data sources we
discovered available in South East Tasmania at this stage of
the experiments. These sources provide additional real-time
sensing information to the catamaran.

Fig. 2. Sensor Web services in South East Tasmania (42◦S, 147◦E): Green
markers = TasMAN, white markers = CMAR, blue markers = BOM, pink
markers = DPIPWE, yellow marker = NRS, cyan markers = Forestry, colour
scale = hydrodynamic model forecast for sea surface temperature. Distance
scale is in bottom left = 49km



A. CSIRO

The TasMAN low-cost sensor nodes are equipped with
temperature, conductivity, and pressure sensors at different
depths in the water column. The node may carry optional
dissolved oxygen and fluorometer sensors. They are solar
powered and communicate via 3G modems and do not require
sink nodes or gateways [8]. We have chosen to use existing
telecommunication networks because of the sparse nature of
the network, as well as exploiting the advantages of using
carrier grade telemetry. For a 10 metre sensor string with
conductivity and temperature sensors at every metre and a
pressure sensor at the bottom, the approximate costs are
USD$2500 for a buoy-based node and USD$1500 for a node
attached to existing infrastructure. The real-time data is made
publicly available through web and mobile applications for
science, government and industry; including nodes that are no
longer deployed [22].

CSIRO Marine and Atmospheric Research (CMAR) operate
two weather stations in South East Tasmania with sensing
for air temperature, air pressure, rainfall, wind speed and
direction.

We also have access to the historical time series for the
sensor nodes. If we detect an anomalous reading then we
can search for similar patterns using data mining techniques.
In this case we have implemented Dynamic Time Warping
[16]. If this pattern has occurred before then it provides more
evidence that this is a marine event rather than a sensor fault.

B. Bureau of Meteorology

We also extract data from a service under trial by the
Australian Bureau of Meteorology (BOM) [4], which provides
14 weather stations in South East Tasmania with observations
for air temperature, air pressure, relative humidity, rainfall,
wind speed and direction.

C. Water Resources Observation Network

CSIRO’s Water for a Healthy Country flagship is investi-
gating how emerging standards for Sensor Web Enablement
(SWE) being developed by the Open Geospatial Consortium
(OGC) can contribute to enhanced situation awareness of
surface water flows in river catchments. This includes devel-
oping a prototype real-time water information system covering
a regional river catchment that is made up of two linked
sub-systems working in parallel: a continuous flow forecast
system, based on emerging SWE standards, and a provenance
management system that provides information on how flow
forecasts are produced.

The continuous flow forecast system integrates hydro-
meterolological sensor data from five different agencies. The
sensor data is accessed via SOS interfaces and drives a hydro-
logical model that generates flow predictions at key monitoring
points in the river catchment. Flow predictions are published to
the world-wide web via a SOS interface. This allows current
and predicted observations to be visualised using a generic
client that understands the SOS interface specification.

In this demonstrator, we use weather stations from Forestry
Tasmania and measurements of river flow from the Tasmanian
Department of Primary Industry, Parks, Water and Environ-
ment (DPIPWE).

D. Hydrodynamic Model

The hydrodynamic model is based on Herzfeld’s general
purpose model for estuaries to regional ocean domains [7].
It provides three-dimensional distributions of temperature,
salinity, current velocity, density, passive tracers, mixing co-
efficients and sea level. From inputs such as wind, pressure,
surface heat and tides, the model calculates momentum, con-
tinuity, and conservation of heat and salt. Unfortunately, there
is not currently three-dimensional data available for forecasts,
but they could potentially be requested for future experiments.
In the meantime, the system uses the surface forecasts.

IV. QUALITY ASSURANCE/QUALITY CONTROL

One of the issues with automated quality assurance/quality
control (QA/QC) techniques is that it is difficult to distinguish
between sensor errors and unusual events. This is particularly
the case in the TasMAN project, where the concern is that,
given the relatively sparse distribution of sensors, unusual
events may be flagged as bad data.

In the case of environmental monitoring, it is often these
unusual events that we are particularly interested in, as they
may have negative effects on the region. Therefore, although
QA/QC can build confidence in the data we provide, we also
want to be sure that interesting events are not ignored, or
filtered out. An autonomous vehicle combined with our real-
time data from external parties can assist us to differentiate.

[24] have developed an automated QA/QC system using
fuzzy membership functions based on domain knowledge. This
approach has since been extended to use Bayesian networks
derived from historical data [21]. The system produces error
bars so that users of the data can evaluate the uncertainty of the
measurement. An example of visualisation of the uncertainty
can be seen in Figure 6. A data quality flag is also output:

1) Good data
2) Probably good data
3) Bad data or possible event

The contributing parameters to the quality assessment in-
clude:

• Time in water
• Time since calibration
• Rate of change
• Comparison with same phenomenon, same sensor node,

different depths
• Comparison with different phenomenon, same sensor

node, same depth
• Comparison with same phenomenon, different sensor

node, depth



V. ADAPTIVE MARINE MONITORING

Figure 3 describes the basic algorithm for making use of
data from the sensor web for adaptive marine monitoring. The
first step is to identify the geographic context in which the
robot will be operating. For some applications, for example
a very localised phenomena, we would only be interested in
observations from a limited area. In others, we may require a
minimum number of data sources, requiring us to augment the
geographic context, in which case context establishment would
occur after the second stage of finding sensing sources. Ideally
this second stage would allow us to use a real-time sensor
search engine based on phenomena of interest and/or identify
the spatial boundaries. Unfortunately data sources available
in our area do not subscribe to such a service. Therefore a
database of data sources was created based on the URL.

Fig. 3. High level sensor web enabled adaptive algorithm

The sensor discovery relies on standard web services as
described by the OGC [13]. The services can be queried
with GET or POST requests via HTTP (Hyper Text Transfer
Protocol). The web services return an XML schema which
may be parsed to extract the readings. These web services
provide a query that allows you to find out what sensors
are available in what locations, and how observations can be
accessed. This request is usually of the form GetCapabilities

and in most cases we can provide a spatial bounding box to
search within. The results of these queries can be filtered to
store only relevant phenomena.

Once we have a list of data sources we can then request
the latest observations at any time. The requests are usually
of the form GetFeature, GetFeatureInfo or GetObservations.
In the case of this demonstrator, we use the observations to
find our own sensors with suspicious data quality, plus unusual
atmospheric conditions.

If it is decided that a TasMAN sensor node has poor quality
data and there is little evidence to support that it might be
an actual event, then the ASV will visit the node. ESRI
(Economic and Social Research Institute) shape files of the
South East Tasmanian coast line are used to automatically plan
a safe path through the water from the current location.

As the ASV navigates the path it continues to request
observations for potential use in creating a more energy
efficient path; based on factors such as currents and wind. The
context will need to be updated as we reach the boundaries
of our current context, which may require new data sources
to be discovered. The vehicle will only be able to sense from
its current location, but it cannot sense the conditions at its
destination, or between the two points. The vehicle may be
currently in a slow current area or sheltered from the wind,
but strong currents and winds may exist along the shortest
path.

VI. RESULTS

Field tests were conducted on the 27th of June 2011 launch-
ing at a boat ramp close to our laboratory at -42.896, 147.34.
At 12:20 the system evaluated the TasMAN sensor nodes. It
discovered poor quality data from the conductivity sensor at
-42.886, 147.338; the CSIRO wharf node. The context was
selected based on the location of the sensor node. On querying
the readings available on the sensor web in close proximity,
the air temperatures were above the average high for the time
of year (12◦C), so this was recorded for later analysis. The
water flow was low for the time of year and there was no
rainfall recorded for that day, Table I.

Provider Location Air Temp Water flow Rain
BOM -42.89,147.33 1.7◦C - 0 mm
BOM -42.9,147.24 13.4◦C - 0 mm
BOM -42.71,146.9 14.3◦C - 0 mm
CMAR -42.89,147.33 14.4◦C - -
DPIPWE -42.75,147.44 - 1.65 cumecs -
DPIPWE -42.67,147.17 - 1.16 cumecs -

TABLE I
REAL-TIME SENSOR INFORMATION USED FOR EVENT EVIDENCE AT

12:20PM ON THE 27TH OF JUNE 2011

The next step was to compare with the hydrodynamic model
forecast. Figure 4 compares the salinity of the hydrodynamic
model as compared and the sensor node salinity, which has
been converted from conductivity. The two measurements are
similar up until around 1:00am. Figure 6 shows how the
uncertainty grew during this time using the automated quality
control. If we compare the water temperature from the model
and the sensor for this time (Figure 5) we can see that the
model and sensor information is very similar. There are also
fewer spikes in the uncertainty. Through a rule-based approach
it was determined that there was not sufficient evidence of
an environmental event to explain the poor quality data and
the action to further investigate the CSIRO wharf node was
chosen.

A path was created to the sensor using the relevant coastal
shape file, Figure 7. As the catamaran travelled to the destina-
tion it continued to query real-time sensor data from the sensor
web. The context was expanded to include the current location.
Figure 8 shows the wind speeds and directions extracted from
nearby sensors, over the course of the experiments. Figure
9 shows the winds recorded on the catamaran itself at the



Fig. 4. Comparison of Salinity recorded at CSIRO wharf node and

hydrodynamic model for the 27th of June 2011. Black vertical line indicates

start time of mission.

Fig. 5. Comparison of Temperature recorded at CSIRO wharf node (including

uncertainty) and hydrodynamic model for the 27th of June 2011. Black vertical

line indicates start time of mission.

southernmost point in the path in Figure 7 and at visited static

sensor node.

On arrival at the CSIRO wharf node, Straycat took its

own sensor measurements. The difference in temperature with

the wharf node was just 0.5 of a degree. The difference

in conductivity, however, was over 20,000 microsiemens per

centimetre. As a result, it was recommended that the sensor

node be cleaned and calibrated.

VII. DISCUSSION

Standard names exist to facilitate discovery of specific

phenomena [9], however these are not always being delivered

by sensor web services. Useful data sources may be missed

if they are described in an unexpected way. For the purposes

of these experiments, the phenomena names were converted

to the climate standard names so they could be compared

and combined. We did not encounter issues with combining

different measurement units, but this is also something which

may well be encountered, especially on global scales.

The bounding box to search within for sensors or model

data is difficult to manage and may alter depending on the

phenomena. For example, the only real-time wave height

sensors that were discoverable in South East Tasmania were

approximately 80 kilometres from the nearest TasMAN sensor

node. Therefore, there needs to be some assessment about

whether it is worth increasing the size of the bounding box or

not.

Fig. 6. Uncertainty in conductivity measurements (microsiemens per cen-

timetre) from CSIRO wharf sensor node for the 27th of June 2011. Black

vertical line indicates start time of mission.

Fig. 7. Path planned from launch location to sensor node location using

coastal shape file.

Fig. 8. Wind speed and direction from nearby sensor web enabled devices

between 12:20 and 13:05 2/6/2011. Distance scale is in bottom left = 20km

The wind information appears to be appropriate for use in

energy efficient path planning. The wind direction from the

initial location was not consistent with the wind direction from

the weather stations close to the destination. Therefore, the

weather stations gave us a prediction of the wind conditions

at our destination as can be seen in Figure 9 (bottom). We

next intend to use the measurements from both the catamaran

and the sensor web to plan paths whilst out on the water.

The observations need to be combined with differing measures

of uncertainty based on a number of factors including the



Fig. 9. Wind speed and direction recorded on the catamaran at the
commencement of the mission (top) and at the destination (bottom)

distance, the sampling rate, and, ultimately, the reliability of
the sensor. There is further work required in this area.

SensorML is designed to be very flexible so that it can
be easily applied in a variety mission planning applications.
Unfortunately, this flexibility comes at a price of true inter-
operability, which requires stronger enforcement of encoding
rules and well-defined semantics. Though the W3C Semantic
Sensor Network Incubator Group (SSN-XG) have developed
a sensor ontology that can be used for semantic mark-up of
SensorML documents [1], SensorML is not grounded enough
for sensor discovery [17].

The CSIRO is promoting the development of a new sensor
mark-up language (dubbed Starfish Fungus Language or *FL).
*FL is used to describe sensor properties, capabilities, and
corresponding deployment aspects. Furthermore, *FL features
a clear separation between the physical device (Sensor), its
model specific composition (SensorCharacteristics), and the
specific procedures running on a physical device or subcom-
ponents respectively (SensingProcedure). By this, it follows its
main conceptual ancestor, the sensor ontology developed by
the W3C Semantic Sensor Network Incubator Group [1]. The
relative simplicity and structure of *FL, as well as its close
alignment with O&M, make *FL better suited for sensor dis-

covery. To this end, CSIRO is developing a prototype Sensor
Information Service (SIS) that provides a RESTful interface
to a sensor catalog. Service queries will return *FL sensor
descriptions encoded in either XML, JSON or RDF. The
RDF encoding will allow linking of sensor descriptions with
associated observation archives and other digital information
(and vice versa). The SIS is being designed to enable discovery
of sensors and observations fit-for purpose.

VIII. CONCLUSION

Exploiting observations publicly available via the sensor
web allows us to augment the situation awareness of an
environmental monitoring robot at limited additional cost. The
TasMAN (Tasmanian Marine Analysis Network) project has
multiple initiatives for reducing the costs of marine sensor
networks [8] including; sourcing sensors, sensor platforms,
sensor network design, information delivery and visualisation.
This is work is part of an attempt to reduce the costs of
operating autonomous marine vehicles.

Preliminary results suggest that interesting autonomous de-
cision making can be achieved by a marine vehicle using
currently available technologies. This paper describes how the
sensor web might be used to identify marine events, but similar
techniques could be applied to many other environmental
monitoring challenges.

In addition to the benefits we can envisage for marine
monitoring, the development of this system has also high-
lighted areas for improvement in the delivery of our own real-
time sensor data within the Tasmanian ICT Centre, and our
initiatives in the area of linked sensor data.
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Abstract—We report on the use robotic assets in the investi-
gation of subsea hydrocarbon plumes caused by the blowout,
on 20 April 2010, and subsequent sinking of the Deepwater
Horizon drilling platform in the Gulf of Mexico. We employed
conventional oceanographic sampling techniques along with the
Sentry autonomous underwater vehicle (AUV) to confirm the
existence of a coherent subsea hydrocarbon plume, then to map
the plume’s spatial extent out to 35 km down-current from the
well head, and finally to collect targeted water samples from
within the plume itself for later laboratory analysis. In this
paper we focus on the techniques used to coordinate sampling
activities between the AUV and conventional instrumentation:
geo-referenced navigation of all data, integrative visualization
of multi-modal and multi-platform data, real-time telemetry,
visualization, and analysis of data, and the real-time adaptation
of vehicle trajectory in response. Our results demonstrate that
when initial characterization is poor, limited human interaction
and feedback can accelerate the study, and improve the analysis,
of evolving environmental phenomena. We discuss several lessons
learned, particularly as they apply to the future development of
limited-interaction autonomy in subsea robotics. Using real data
collected during the Deepwater Horizon expedition, we present
simulations of semi-automated data interpretation and sampling
plan adaptation comparable to the real-time actions taken by us
during the expedition itself.

I. INTRODUCTION
On 20 April 2010, the Deepwater Horizon drilling rig

suffered a blowout that resulted in the eventual sinking of
the rig and the death of 11 personnel on board. Prior to the
successful capping on 15 July 2010, oil from the damaged
well head was leaking at a rate whose quantification remains
contentious but undoubtedly represents one of the largest acci-
dental releases of oil on record. The environmental impact of
the oil spill depends on a number of incompletely understood
characteristics of the spill including composition of the oil,
its chemical evolution in the environment, the rate and total
volume of oil released, and the dynamics of its spread.
Since shortly after the explosion various sources have

reported the presence of subsurface plumes of oil [1], [2].
Contrary to the elementary notion that oil and water do not

Fig. 1. The Woods Hole Oceanographic Institution AUV Sentry on the
deck of the R/V Endeavor between deployments. Drilling platforms and other
equipment working at the Deepwater Horizon blowout site are visible in
the background. The closest to the site that the vehicle was deployed was
3 nautical miles (5 km). Photo by D. Yoerger.

mix, the mixture emanating from the well head is a complex
multi-phase mixture of oil and gases that interacts with the sur-
rounding water column as it rises. Both controlled experiments
[3] and historical evidence [4] suggest that some constituents
of the effluent and/or minute droplets of oil will enter the water
column forming a subsurface plume with little or no residual
buoyancy. The composition of any subsurface plumes and the
fraction of the total oil released that they represent could play
a significant role in the ultimate environmental and economic
impact of the spill.
In June 2010 the authors were part of a research cruise

to the Gulf of Mexico funded by the United States National
Science Foundation to identify and characterize any subsurface
plumes associated with the Deepwater Horizon spill. We



employed two principal sampling platforms, a conventional
cable-lowered oceanographic conductivity, temperature, and
depth (CTD) rosette augmented with a TETHYS in situ mass
spectrometer [5] as well as several sensors specifically selected
for the cruise; and the Woods Hole Oceanographic Institution’s
Sentry Autonomous Underwater Vehicle (AUV) also equipped
with a TETHYS instrument as well as various other water
column sensors (Fig. 1). The lowered CTD included the ability
to collect water samples — crucial to determining the exact
composition of the plume (Fig. 2).
This paper is organized as follows. Sec. II discusses the

techniques used to coordinate sampling activities between the
CTD and AUV for plume localization, plume characterization,
and targeted water sampling: geo-referenced navigation of
all data; integrative visualization of multi-modal and multi-
platform data, real-time telemetry, visualization, and analysis
of data, and the real-time adaptation of vehicle trajectory in
response. Sec. III proposes a method for conducting subsea
robotic survey that capitalizes on the increasing availability
and bandwidth of acoustic communications for real-time hu-
man interaction with subsea assets combined with modern
machine learning techniques for dimensionality reduction and
data pre-processing. The method aims to enable human op-
erators to focus on high-level data interpretation and mis-
sion objective formulation when adapting sampling plans. We
demonstrate the method on data collected during the Deep-
water Horizon expedition using a data-denial methodology to
simulate real-time vehicle trajectory adaptation and provide a
qualitative assessment of the results relative to actions taken
by us to adapt vehicle trajectory during the actual expedition.
We conclude with a discussion of lessons learned.

II. SUBSURFACE PLUME LOCALIZATION AT THE
Deepwater Horizon BLOWOUT SITE

Our ultimate objective was to collect targeted water samples
from within any subsurface plumes for later analysis in shore-
side laboratories. To accomplish this we first had to confirm
the existence of plumes by locating and mapping them. Our
approach capitalized on the strengths of our two sampling
platforms, while respecting the constraints imposed by the
sensors on board. The lowered CTD was used to initially locate
the plume and then to characterise its vertical structure. The
AUV provided a complementary horizontal perspective.
Fig. 3 shows the northeast corner of the Gulf of Mexico and

the location of the Deepwater Horizon site off the Louisiana
coast. With the exception of background water profile mea-
surements all subsurface operations during the 10 days we
spent on station took place within the area indicated. We con-
ducted 23 CTD lowerings including 3 extended deployments
in which the instrument package was towed slowly while un-
dulating within a prescribed depth interval (a procedure known
in the oceanographic community as a tow-yo). The CTD data
identified a deep subsurface plume tending to the WSW of the
Deepwater Horizon site and centered at a depth of 1100 m.
Sentry dived 3 times, covering approximately 240 kilometers
at depths between 1000 m and 1300 m. Two of these dives,

Fig. 2. CTD and rosette being deployed off the R/V Endeavor. Non-standard
instrumentation including the TETHYS in situ mass spectrometer and an
optode affixed to the cage on the bottom of the package. Photo by C. McIntyre,
WHOI

both to the WSW of the site (Fig. 5), encountered water
enriched with hydrocarbons significantly above background
levels. Together, the CTD and Sentry resulted in a detailed,
multimodal picture of a coherent subsurface plume extending
at least 35 km from the Deepwater Horizon site. The precise
nature of that plume, including constituents, their absolute
concentrations, and the fraction of oil confined to the plume
are discussed in the scientific literature [6].

A. Acoustic Telemetry

Seawater rapidly attenuates electromagnetic radiation, ren-
dering radio frequency signals of the type commonly employed
in terrestrial communications systems ineffective underwater.
Acoustic modem systems, e.g. [7], provide a relatively low-
bandwidth (40 km · kbps [8]) alternative that nevertheless
allows for the real-time downlink of a portion of data collected
subsea and for the transmittal of high-level control commands
to the vehicle. Sentry uses a commercial acoustic modem
integrated into the USBL navigation system.
This system enables commands to be sent to the vehicle and

data sent from the vehicle to the surface vessel. The amount
of data being obtained on the AUV far exceeds the available
bandwidth, so we employ a queuing system in which the user
sends a message to the vehicle requesting which information
should be transmitted back to the surface vessel for human in-
terpretation. In addition to sending information requests to the
vehicle, we can transmit mission re-specification commands
to achieve tasks such as changing vehicle depth and retasking
the vehicle on new trajectories. This architecture allows us

2http://mw1.google.com/mw-earth-vectordb/disaster/
gulf_oil_spill/kml/noaa/nesdis_anomaly_rs2.kml



Fig. 3. Work site location in the Gulf of Mexico off the Louisiana coast. All AUV and shipboard operations were carried out within the white bounds
indicated, an area about 50 nautical miles in length. For comparison, the light green outlines show the potential oiling footprint of the surface plume observed
by NOAA 2010-07-072. The Deepwater Horizon site is shown located at 28o 44.3071′ N, 88o21.9611′ W, based on ship’s radar while working near the
site.

to receive crucial sensor data and, based on the information
obtained, to retask the vehicle in response.

B. Real-time Visualization
Limited cruise duration, limited a priori information about

the plume, and the need to obtain precisely targeted water
samples from within a dynamic phenomenon required the
rapid analysis and visualization of data to devise appropriate
sampling strategies and use the available assets efficiently.
Leveraging previous work employing the Keyhole Markup
Language (KML) for the dissemination and visualization of
geo-referenced oceanographic data [9], [10], we provided
the science party with near real-time displays of integrated
chemical tracer data from all instruments on board the CTD
and selected ion peaks from the TETHYS mass spectrometer
on board Sentry. Fig. 4 shows a screenshot of our data
visualization part way through AUV dive sentry064, rendered
by Google Earth. The image shows aromatic hydrocarbon
fluorimetry from several CTD casts and one tow-yo, real-time
normalized methane concentration telemetered acoustically
from Sentry, and real-time water current profiles generated
by the ship’s acoustic Doppler current profiler (ADCP). This
visualization was instrumental in coordinating the sampling
strategies of the CTD and Sentry. It aided in site selection
and survey design, water sample location selection, real-time

survey modification, and provided the first visual confirmation
of a coherent subsea plume.

C. Sentry Dives 064 and 065 — Tracking a Subsurface Oil
Plume
The first challenge in assessing the extent of the subsurface

plume was initially locating it. A CTD tow-yo conducted
around the periphery of the Deepwater Horizon site registered
intense hydrocarbon anomalies at 1100 m depth to the west-
southwest of the well head and weaker anomalies at the same
depth to the northeast. Based on this and other supporting
data we planned a series of AUV surveys aimed at tracking
the plume down-current of the well head. The goal of these
surveys was to determine the horizontal extent of the plume
and provide the necessary reconnaissance for targeted water
sampling.
The Sentry AUV was deployed on two dives — sentry064

and sentry065 — during which the vehicle tracked the plume
over 30 km down-range from the origin of the plume at the
well head (Fig. 5). While both dives had identical goals, the
manner in which they were conducted differed, and the con-
trasting survey techniques used in either case each possessed
advantages and disadvantages. We planned and executed sen-
try064 in the conventional manner, with the vehicle following
a series of preplanned tracklines designed to repeatedly cross



(a) CTD and Sentry data rendered in Google Earth. (b) Co-chief scientist Dr. Reddy considering the data.

Fig. 4. Real-time data visualization: (a) Screenshot of Google Earth rendering taken during the cruise and showing both fluorometer data collected over
the preceding days using CTD casts and tow-yos as well as TETHYS mass spectrometer data being telemetered acoustically from the AUV in real time; (b)
inspecting the visualisation. Prompt, effective visualization improved the ability of the science party to coordinate sampling and survey activities as well as
to alter survey plans in real time, enhancing the efficiency and effectiveness of operations.

the plume at a constant depth. Real-time acoustic telemetry
from the vehicle was used to select the site for a CTD cast
that was then conducted during the dive and out of acoustic
range of the vehicle.
We designed sentry065 similarly but with the intention of

acoustically manipulating the mission plan in real time. We
planned to cut tracklines short after mass spectrometry data
received acoustically indicated a return to background values
following a transect of the plume. This strategy was designed
to increase the down-current extent of the survey and was em-
ployed successfully early during the dive. Plume intensity on
later tracklines exhibited an unexpected decrease in magnitude,
prompting us to dramatically alter Sentry’s mission plan, first
to reacquire the plume closer to the well head, and then later
to refine the survey depth before continuing with (a modified
version of) the original survey plan.
At 30 km from the well head the hydrocarbon anomaly

remained well above the detection threshold of the TETHYS
instrument on Sentry; however deteriorating weather con-
ditions prevented further AUV deployments and ultimately
forced an end to scientific operations altogether. In total, dives
64 and 65 spanned a total of 61 hours during which Sentry
spent 47.4 hours deployed and covered over 170 km.

III. SEMI-AUTONOMOUS SUBSEA ROBOTIC SURVEY
Our real-time interactions with Sentry yielded scientifically

more productive dives but also required us to engage in
low-level data processing and trajectory-level mission re-
specification. As subsea robots become more sophisticated and
the number of robots concurrently in the water increase, the
scope for low-level interactions will decrease commensurately.
Human oversight will remain valuable but must transition to
higher-level interaction. This will require enhanced autonomy
on the part of the robots themselves. In this section we discuss
the performance of a semi-autonomous method for subsea
robotic survey applied, via data-denial simulation, to dive
sentry064.
Our method applies the classical sense-plan-adapt (SPA)

approach to robotic decision making but with high-level

human input at each stage of the cycle. Our primary aim
is to reduce the cognitive load on human operators while
still leveraging human skill in high-level decision making.
This aim aligns well with the reality of limited bandwidth
acoustic communications—data pre-processing carried out au-
tonomously subsea can reduce the bandwidth required to
telemeter data to the surface; a robot capable of interpreting
high level objectives rather than direct trajectory specification
will also likely reduce the bandwidth required to transmit
control commands. The motivations behind our particular
implementation of each stage of the SPA cycle is discussed
subsequently.

a) Sense: Various authors have reported on the use of
AUVs to trace and/or map both synthetic and naturally occur-
ring turbulent plumes, e.g. [11]–[15]. A necessary component
of any of these methods is a mechanism for deciding what
sensor readings represent contaminated plume water versus
background water. Such mechanisms become more difficult
to construct when, as in our case, the signature of the plume
within data from the various sensors available was initially
unknown.
The sensor suite on board Sentry was chosen by scientists

based on expert knowledge of the likely chemical constituents
of a subsea hydrocarbon plume; nevertheless, significant un-
certainty remained concerning the presence, relative concen-
trations, and manifestation of these constituents in the sensor
data. Ultimately the methane measurement produced by the
TETHYS instrument provided the most reliable indication
of plume presence; however, this knowledge was unavailable
prior to human analysis of all sensor data streams.
Our approach to automated plume detection considers all 11

available scalar sensor data streams together as vector-valued
data, sorts these into statistically distinct classes, and relies on
human interpretation to provide a semantic label for each class
as either plume, background, or other. Parametrized statistical
models for each class are learned as part of the procedure,
meaning the robot can autonomously apply semantic labels to
subsequently acquired data.
The model used for classification in this paper is the



Fig. 5. Normalized Methane observed from the TETHYS mass spectrometer aboard the Sentry AUV during two dives, sentry064 and sentry065, to the west
of the Deepwater Horizon site. The Deepwater Horizon site and 5 km exclusion zone are indicated in the perspective view.

Bayesian, non-parametric, Variational Dirichlet Process model
(VDP) [16]. This model is a mean-field variational approxima-
tion of a Dirichlet Process Mixture Model (DPMM) [17], [18].
Important assumptions made in this paper are that observations
are distinctly multimodal, can be represented using a Gaussian
Mixture Model (GMM), and are independently and identically
distributed (i.i.d.) when conditioned on their class label. Its
principal feature, besides rapid execution, is that the method
automatically infers the number of classes present in the data.
Fig. 6 shows the classified output produced after semantic
labeling by a human. The algorithm appears to have implicitly
identified methane (mass-to-charge ratio m/z 15) and optical
backscatter (OBS) as indicative of a distinct cluster (labeled
plume and shown in red), and has also successfully identified
two periods of anomalous behavior in the OBS sensor as a
distinct cluster (labeled other and shown in green).
As yet our classification process exploits no notion of spatial

coherency in the environmental phenomena of interest. While
we have attained promising classification results despite this,
to adapt vehicle trajectory some mechanism for performing
inference over the spatial domain of the survey area is often
necessary.

b) Plan: Several spatial inference methods specific to
robotic plume mapping as applied especially to plume source
localisation exist [14], [19]–[22]. Like [19] our approach
employs a Mixture of Gaussian Processes (MGP) to model
the spatial coherence of the plume and background; however,
because our output space is 11-dimensional rather than a scalar
chemical concentration, we perform a logistic regression over
the scalar class labels to avoid learning the parameters of what

would otherwise become a multivariate MGP. This is known
as Gaussian Process Classification (GPC) [23].
Once the hyperparameters of the mixture components have

been learned GPC regression provides a way to extrapolate the
probability of observing each semantically labeled class to the
spatial domain of the survey (Fig. ??). On the basis of this
map, an agent can plan by evaluating the expected outcome
of future actions relative to a specified objective function, for
instance, [24] traded off information gain with traversal cost
to generate constrained maximum entropy sampling plans.
In practise, developing good objective functions in the

dynamic setting of a scientific expedition remains challenging.
On the other hand, scientists and operators try to design pre-
programmed AUV surveys in a way that encapsulates key
objectives, some of which, like coordination with other assets
and weather considerations, would be difficult to encode in
a useful objective function because they depend on external
circumstances not readily sensed by a deployed robot. We
propose that limiting the scope of autonomous planning to
modifications of the pre-planned mission can retain good
performance relative to these hard-to-codify objectives, and
if designed with autonomous adaptation in mind, also benefit
from autonomous decision making.

c) Act: Dive sentry064 (Fig 5) was designed to pro-
vide multiple down-current horizontal crossings through the
hydrocarbon plume, under the assumption that the current
would cause the plume to spread along isobaths to the WSW.
The increasing amplitude of the zigzag trajectory specified
in the mission plan reflected our uncertainty about plume
spreading rate and the precise direction of the current. The
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Fig. 6. All 11 scalar chemical sensor data streams interpolated onto the
timebase of the TETHYS instrument, normalized to span the range [0, 100],
and clustered into distinct components of a Gaussian Mixture Model. Semantic
labeling as three classes, plume (red), background (blue), and other (green),
was provided by a human.

large amplitude of the survey tracklines in relation to the
width of the plume encountered represents an inefficiency
that might have been mitigated by terminating tracklines
early, as was commanded by human operators via acoustic
link on sentry065. This might also have been accomplished
autonomously had an appropriate objective function and set
of admissible control actions been available.
To test this supposition, we simulated a heuristic that

allowed the robot to abandon the remaining portion of a
trackline and the corresponding fraction of the next trackline,
if, based on the output of the GPC, it was unlikely to encounter
plume water on the skipped portions of the survey. We split
tracklines into four segments to create four decision points

along each trackline. Each time the robot completed a segment,
it compared a fixed threshold (0.35) with the maximum
probability of plume presence from the GPC for test points
arranged along the trackline segments to be skipped. This
would enable the robot to trim off the tips of zigzags unlikely
to be productive, and consequently to be able to complete
more crossings of the plume before exhausting its batteries.
The approach is myopic in the sense that the GPC regression
is regarded as truth at each iteration.
A good manually-labeled GMM for classification and GPC

were attained after completion of the first four tracklines and
did not require relearning or relabeling until the anomalous
OBS data appeared later in the dive. During this training
phase the simulated robot was not allowed to consider skipping
trackline segments. Fig. 7 shows the simulation part way
through. The GPC has found hyperparameters suggesting long
correlation lengths. This enables the robot to correctly decide
to skip the remaining trackline segments in the current zigzag.
Fig. 8 shows the simulation at completion. A plume-like

structure is visible as a red band in the GPC-regression results.
However, the GPC results indicate a correlation length scale
shorter than in Fig. 7, and short relative to the length scale
imposed by inter-trackline spacing on the survey. This lack of
predictive certainty distant from existing data produced con-
servative behavior with respect to skipping trackline segments,
and no further segments were skipped.

IV. DISCUSSION AND CONCLUSIONS
Several aspects of this work bear directly the current and

future use of robotics for environmental monitoring:
1) The time and spatial scales associated with dynamic
features in an environment should drive sampling plan
design as well as the selection of appropriate instru-
mentation, including the use of autonomous platforms.
In our case an AUV offered maneuverability and speed
advantages over a cable-lowered CTD for reconnoitering
the horizontal extent of a subsurface hydrocarbon plume,
but was most effective in concert with the CTD.

2) Real-time transmission of data from autonomous plat-
forms can augment the effectiveness of these platforms
by enabling operators to deploy other assets before
conditions change. We used the real-time AUV data to
inform the sampling strategy of the CTD and to target
water samples.

3) Some environmental monitoring tasks are characterized
by relatively large swaths of uninteresting terrain. In
these circumstances, we stand to gain the most from
adaptive survey. In our case, we adapted the cruise plan
to data as it became available, and, on a finer scale, we
also adapted the AUV’s trajectory to more effectively
sample the feature of interest.

4) Human intervention may increase the scientific yield
of robotic surveys, but any increased value must be
traded off against the opportunity cost of demanding
a human’s attention. There is a pressing need to de-
velop autonomous and semi-autonomous data process-



Fig. 7. Data-denial simulation of semi-autonomous adaptive execution of sentry064 part way through the simulation. The robot’s path is shown in gray. The
colored circles represent data classified as plume (red) and background (blue). The entire domain of the survey is colored according to the GPC regression,
with black representing maximum ambiguity, that is an equal chance of either plume or background.

Fig. 8. Data-denial simulation of semi-autonomous adaptive execution of sentry064 at the conclusion of the simulation. Data points from a third class (green),
corresponding to the anomalous OBS data, is ignored during the GPC regression.



ing and adaptive survey methods that reflect the real
challenges of incompletely characterized environmental
phenomena, limited processing power and communica-
tions bandwidth, and limited endurance.

Based on these observations, we developed a semi-
supervised method for adaptive survey that conceivably could
have reduced the time spent by the AUV outside the plume
during dive sentry064 without requiring intensive operator
interaction. The comparison with sentry065 is instructive.
On sentry065 intensive human interaction was required to
reacquire the plume signal. Our approach to semi-autonomous
adaptive survey relies on a sensible pre-planned mission. Rad-
ical changes to the mission plan like that required in sentry065
would require a more complex 3-dimensional environmental
model, a far more complete set of admissible control actions,
and a consequently much more complex decision process.
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Abstract—With the recent increase of toxic algal blooms in
lakes, biologists are looking for new sampling methods to analyze
their spatiotemporal dynamics. In this paper, we present an
Autonomous Surface Vessel (ASV) capable of achieving long-
term sampling missions covering up to now a transect plane
(1.5 km wide and 20 m deep). The ASV is equipped with a
probe which can be lowered via a winch to measure critical
environmental parameters allowing more sophisticated prediction
models of toxic algal blooms. So far, 21 km of autonomous
sampling confirmed the system stability and produced enough
basin-wide biological data to gain biologists’ interest. We intend
to use this ASV as basis to further explore autonomous navigation
on inland waterbodies.

I. INTRODUCTION

A. Biological Background
The monitoring of water resources is of increasing im-

portance as Earth’s reservoirs of clean, potable water are
drained by the growing human population, rapid economic
growth, and environmental degradation [1]. One emerging
threat to freshwater ecosystems is the growing incidence of
mass proliferation (bloom) of toxic cyanobacteria (blue-green
algae) [2] caused by rising rates of anthropogenic nutrient
inputs [3]. The escalating occurrence of toxic blooms in
freshwaters will likely be intensified due to the global increase
of air temperatures [4].

For many lakes however, the basin-wide variability of these
toxic algae at a given season and/or throughout the year are
still poorly documented. Biologists are actively looking for
solutions to increase the spatial and temporal data acquisition
to improve the monitoring of those toxic algae, and to expand
their understanding of lake ecosystems in general.

B. Automated Data Acquisition
Automated sensing technologies are developing into an

increasingly important tool both for water quality monitoring
and for research in aquatic microbial ecology [5]. So far,
most systems for automated data acquisition in freshwaters are
stationary buoys that do not allow for the investigation of hor-
izontal heterogeneity in lakes. Academic institutions around
the world are actively developing and deploying Autonomous
Underwater Vehicles (AUV) and Autonomous Surface Vessels
(ASV), but these are devoted to extended observation networks
in coastal and marine environments [6]. So far, few studies
have applied this technology for limnological work (i.e. the
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study of inland waters), and none of these deployments aimed
for long-term missions on the order of months or years [7].

Even if oceanography has been leading researches in remote
sensing for many years, new technical approaches must be
developed to account for the specific needs of lake monitoring.
In this article, we present our ongoing development of an ASV
suited for limnological studies (see Fig. 1), recent observations
following field tests realized over the last year and, finally,
future research orientations for our lake platform.

Fig. 1: Lizhbeth, our limnological ASV, during a sampling
mission on Lake Zurich. The probe is in its parking position
out of the water.

II. STATE OF THE ART

The domain of field robotics has recently gained more
interest in AUV and ASV. The three most important uses of
these platforms are military applications, structure inspections
(particularly in the oil industry) and ecological studies. As
a result, many universities around the world have developed
or are developing their first prototypes. Whereas research in
the field of AUVs is more concerned about localization and
communication methods, surface vessels usually use GPS for
localization. Military and defense applications deploy ASVs to
patrol shorelines or harbors. Elkins et al. [8] have developed a
ASV that operates on relatively large motor boats and feature a
sophisticated set of sensors to detect obstacles or target boats,
which can then be followed.

Applications for environment monitoring usually feature
electrically driven ASVs, and aim for long-term autonomy
because environmental dynamics occur on monthly to yearly
time-scales. Some systems (e.g [9]) also employ solar panels



to extend their maximal range. Caccia et al. developed an ASV
called Sea Surface Autonomous Modular Unit (SESAMO)
[10] to analyze the water quality of coastal marine waters in
combination with atmospheric parameters. Other groups have
also developed ASV for marine environment monitoring ([11],
[7]), but the work by Dunbabin et al. [12] relates better to
ours since it also uses sensors to measure physicochemical
parameters of lakes. However, their equipment is designed for
sampling at maximal depths of 5 m only. The maximal depth
of 20 m can only be reached in stationary operation.

Given that toxic cyanobacteria can be found as deep as 25 m
[13], new technical approaches are needed.

III. SPECIFICATIONS

A. Environment

Planktothrix spp. are among the most important producers
of hepatotoxic microcystins in freshwaters [14], and Plank-

tothrix rubescens are commonly observed in numerous lakes
of the Northern Hemisphere [15]. For these reasons, our ASV
is mainly employed to study the spatial and temporal variations
of the toxic cyanobacterium P. rubescens populations in pre-
alpine lakes. Our principal experimental field is Lake Zurich,
which has an elongated shape of approximately 36 km long
and has a maximal width of 4 km. This large (66.8 km2)
and deep lake (136 m, mean depth = 49.9 m) is subject to
the typical seasonal dynamics seen in pre-alpine lakes, i.e. a
summer thermal stratification followed by an autumnal mixis.
Recurrent blooms of P. rubescens observed in Lake Zurich
usually occur between late summer and winter. Surface water
temperature varies from above 20 °C in summer to around 5 °C
in winter. Lake Zurich is a very popular recreational area and is
the major source of drinking water for the city of Zurich. The
region of interest is a transect of 1.5 km close to the deepest
point of the lake.

B. Goals and Objectives

The seasonal dynamics of P. rubescens in Lake Zurich
have been widely documented over the last decades [13], but
measurements have only been taken from vertical profiles at
a single point in this large lake. Even though this provides
a fair amount of information to describe dynamics with
respect to depth and time, it does not allow for conclusions
about the horizontal dynamics. Furthermore, the use of such
single-point sampling strategy implies that the cyanobacterial
population is evenly distributed over the entire lake. Our
preliminary observations of Lake Zurich physical parameters
suggest that this assumption might not hold.

The main objective of our work is to be able to collect
physicochemical data over the transect of interest from the
surface to at least 20 m deep. To gather relevant temporal in-
formation, especially during period of rapid biological changes
such as in the springtime, sampling transects need to be
executed once a week over a timespan in the order of months.
While sampling, the platform must sail safely in this busy

recreational lake that is also used for public transportation via
ferries.

C. The platform - LIZHBETH

The construction of a surface vehicle that is able to lower
a probe at different depths while navigating has been mainly
motivated by the simplification of the localization problem.
This solution also ensures the visibility of the platform at all
time during a mission. The vessel (Fig. 1) has been designed
especially for this project and has been optimized with respect
to efficiency in forward direction, as well as for pitch and
roll stability in the presence of waves. It was manufactured
according to these optimized design specifications using a
foam core layer strategy. The layers covering the foam core
were made from fiberglass to ensure mechanical stability while
keeping the weight of the boat as low as possible (130 kg
in total, including 40 kg of batteries and 14 kg of motors).
Lizhbeth has a catamaran configuration and is 2.5 m long and
1.8 m wide. Each hull is 0.6 m wide and hosts a commercial
electrical boat motor (Yamaha M12) at its center. This special
setup gives the ASV a differential drive configuration, which
allows for rotations on the spot. This is very convenient during
maneuvers in narrow passages mainly close to the shore. The
hulls contain the necessary electronic equipment and a lead
acid battery (12V, 70Ah) each. The option of solar panels has
been considered, however, it was calculated that the area that
could be used on the boat is not big enough to significantly
improve the range of the boat.

A GPS module (UBlox Development Kit) and a digital
compass device (HRM3200 from Honeywell) provide position
and heading information. The GPS module also provides speed
readings, which have proven to be reliable above approxi-
mately 0.3 m/s. Differential GPS is not required, as standard
GPS readings are precise enough for limnological purposes.
The boat features two computers. The Helios Development Kit
(by Diamond Systems) is deployed to run hardware drivers
as it features 4 RS232 ports, 4 USB ports and also provides
analog and digital input and output lines. A second board
(pITX-SP 2.5” SBC) featuring an Atom Z510 processor is
used for higher level computations. Both devices have low
power consumption (∼ 5 W each). Controlling the power
levels of the motors is achieved by a commercial motor
controller (AX1500 by RoboteQ), which provides an easy-
to-use serial interface.

In between the two hulls we installed a custom-designed
winch, which allows to lower the commercial limnological
sensor (YSI-6600, referred to as probe in this article). The
winch it mostly built from aluminum and is driven by an
electrical motor (Maxon RE40), which provides maximal force
of 15 Nm. The corresponding motor controller (Maxon EPOS
70/10) provides both position and velocity control. The cable
drum of the winch is designed to carry 130 m of cable. A
special probe cover (see Fig. 2) has been designed to diminish
its drag force in water. The tip of the probe is filled with steel
to shift the center of mass in front of the fixation point. This
shift, in combination with the wings, ensures that the probe is



aligned horizontally and thus minimizes the offset of the probe
from is desired position vertically below the boat. The wings
also stabilize the probe and prevent lateral movements during
navigation. The probe works on its own power, therefore the
cable is used only for data transmission. To prevent the probe
from hitting the ground in shallow regions, a single beam
sonar sensor (TMD-1 by CruzPro) is mounted on the boat
and provides measurements of the water depth. The range of
the sonar (0 - 140 m) covers the maximal length of the cable.

Additionally the boat features a positioning light and a
electrical horn. Despite the extensive system monitoring tools
from a laptop via the wireless connection, these tools proved
to be very useful during field tests for simple feedback to the
user. A series of short horn blows, for instance, is used to
report the successful completion of a task.

Fig. 2: CAD rendering of the probe supporting structure which
reduces its drag.

The software for the boat is based on ROS [16] and
features different control modes, such as staying at a given
position or following line segments [17] at constant speed.
Furthermore, the boat can be controlled remotely or can be
asked to follow predefined waypoints. The two main actuators
(the propulsion system and the winch) can be commanded
to perform tasks either independently or in a synchronized
manner. Synchronization is required to achieve the zigzag
sampling trajectory of the probe, which will be described in
detail below. In order to plan missions that define a sequence
of actions, we have developed a mission scripting environment
in Python, which enables to use convenient programming
techniques. Trajectories for mission paths can be generated in
Google Earth by simply drawing lines in order to be accessible
to biologists in a near future. Furthermore the boat provides
easy access to system monitoring information via a web server,
which can also be used to upload mission files. A mission
management system detects newly uploaded mission files and
executes them. During the execution of a mission the user
can pause it and use the remote control to override actuator
commands.

D. Sampling missions
The first sampling missions have been chosen to be carried

out along predefined straight lines (or transect) for reasons of
simplicity and repeatability. While the boat is traveling along
such a line with constant speed of 0.7 m/s the probe is being
lowered and pulled up between two predefined depth levels.
This generates a zigzag trajectory of the probe along which

measurements are taken at a constant frequency of 0.5 Hz.
The probe measures the following parameters: pressure, tem-
perature, relative fluorescence unit (RFU) of phycoerythrin (a
pigment of P. rubescens ), dissolved oxygen, conductivity,
photosynthetic available radiation and chlorophyll fluores-
cence. Fig. 3 depicts such a trajectory. In a post-processing
step, a 2-D interpolation procedure can be applied to the
data, as all measurements can be assumed to lie within a
vertical transect plane. To account for the different scales
in vertical and horizontal directions, an anisotropic distance
kernel function has been applied.

Fig. 3: Schematic representation of the resulting trajectory of
the probe during a sampling mission. The total length of the
path in horizontal direction is approximately 1.5 km. The map
was taken from Google Earth.

IV. RESULTS

A. System dynamics and control
The ASV possesses essential characteristics, as it has proven

to be very stable in the presence of waves. It also generates
very little drag in forward direction. Nonetheless, only very
small rotational speeds can be achieved, due to the fact
that the boat has two hulls. When rotating on the spot, the
maximal angular velocity has been measured at 4.2 °/s. The
line following controller has been applied in multiple test runs
and has shown to be reliable, even in the presence of currents
and strong winds. Over a distance of 1.5 km a lateral deviation
from the target line of 0.67 m in average with a standard
deviation of 0.66 m has been measured. Up to now the system
has been running in autonomous waypoint navigation mode
for more than 21 km in total and also a large total distance in
remote controlled mode. Its endurance was found to be around
3 hours of continuous motion. This corresponds to sampling
at 0.7 m/s over a distance of approximately 6 km.

B. Data collection
The interpolated plots in Fig. 4 show the temperature

distribution and the distribution of P. rubescens (assessed from
the RFU measurements) along the sampling line across Lake
Zurich. The horizontal axis indicates the traveled distance
along the sampling line, whereas the vertical axis depicts
depth. Besides the obvious and expected vertical temperature
gradient, these measurements also show that the temperature
is not equally distributed over the entire width of the lake.
While the lake is warmer on the north-eastern side (right-hand



side of the plot), the RFU values indicate that the density of
P. rubescens is higher on the opposing side (i.e. the colder
side) of the lake. To date, a total 21 km of measurements has
been recorded to test the stability of the hardware, software
and electronic components. To verify assumptions on the spa-
tiotemporal behavior of P. rubescens, measurements at higher
frequency have to be obtained over a fixed period. Nonetheless,
these preliminary results confirm the capabilities of the ASV,
and raise the biologists interest for more measurements to
solve this intriguing spatial heterogeneity in P. rubescens
distribution.

Fig. 4: Plots showing the results of a sampling mission after the application
of 2-D interpolation methods. The graphs show the temperature distribution
and the presence of Plankthotrix (in RFU) respectively.

V. OUTLOOK

The platform that we presented in this paper is ready to
be deployed and is capable of taking transect measurements
autonomously. We intend to deploy it frequently during sum-
mer months in order to generate a large data set. However
the system is still blind, i.e. it can not perceive its local
environment and can only localize itself with the help of
artificial landmarks (GPS references). Especially in summer,
Lake Zurich is a popular recreational area and is used both
by boats of different sizes and by swimmers. This justifies
the need for an obstacle detection and avoidance system.
Additionally, more sophisticated methods to collect data in
the lake could be applied. Some ideas that will be pursued
during the next month are presented in the following.

A. Obstacle detection

As our platform is designed for long-term sampling mis-
sions, an energy-efficient solution to detect obstacles should
be preferred. A vision-system consisting of a single pan-tilt
camera, multiple fixed cameras or an omni-directional camera
should be able to operate at low power consumption and to

cover a large field of view. This will allow to cover small,
close objects (such as buoys or even swimmers) as well as
larger boats at distances of several hundred meters. Detecting
obstacles on a lake reliably is very difficult to achieve, because
weather and lighting conditions can change fast and the water
surface can act as a moving mirror. However, it is crucial to
improve the ASV’s autonomy on Lake Zurich, as it can be
dangerous to swimmers.

B. Visual Homing
Preliminary tests have been conducted to test visual homing

methods to home the boat into a boat house, where pure GPS
localization is not precise enough. Reliably matching previ-
ously recorded features is difficult since a camera mounted
on the boat is subject to pitch and roll motion. Furthermore,
changes in lighting can significantly alter featured distributions
and thus, have a negative effect on successful homing proce-
dure. The idea to use normal cameras to apply visual servoing
methods is similar.

C. Dynamic sampling
In the first phase of the project, only transect sampling

missions will be conducted to gain basic knowledge on the
dynamics of the different environmental parameters. After-
wards, dynamic sampling missions can significantly improve
the information density of the data representation one mission.
By analyzing the measured data in an on-line manner the boat
could explore areas of high interest or search for local maxima
or minima of certain parameters. The biologists could then be
notified about such places of interest. This would allow them
to also take water samples from these regions.

In another scenario, the boat could follow a isocline in the
parameter space, i.e. try to control the position of the probe
such that one parameter remains constant.

D. Bathymetry
Additionally to its primary purpose of sampling for biolog-

ical research, we would like to deploy our ASV to record
bathymetric information. To achieve this we plan to use a
multi-beam sonar sensor. In order to fuse the scans of the
sonar, we intend to use an IMU in order to retrieve roll and
pitch information of the boat. Based on the quality of the
scans, we would like to explore the possibility of applying
Simultaneous Localization and Mapping Methods (SLAM),
which could improve the boats navigation capabilities in
narrow regions (such as harbors) where GPS might not provide
the required precision. SLAM in combination with bathymetric
measurements has been investigated in AUV applications [18]
but could be of great support for ASV navigation also.

VI. CONCLUSION

In this paper we presented a new ASV system and the
progress on deploying the platform to execute sampling mis-
sion for limnological monitoring tasks. The boat was designed
and manufactured to the specifications of these algal bloom
monitoring tasks and therefore it is mainly intended to be



used on lakes. However, due to its relatively small size (2.5 m
by 1.8 m) and its light weight, it is simple to transport it to
different testing sites. Also marine environments are possible
testing areas, the only limitation is imposed by the strength
of external forces (wind and waves) which might exceed
the maximal thrust force that the motors can provide. Apart
from such hardware related limitations the system is very
versatile and has proven to operate in a robust manner in
autonomous waypoint navigation. The platform was deployed
in several data collection missions during which it covered a
total distance of 21 km in autonomous mode. With its ability
to sample at a large range of depth in combination with precise
GPS localization methods, the ASV provides methods to
collect data sets that allow to analyze the horizontal variability
of populations of P. rubescens in an unprecedented manner.
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Abstract—Autonomous Surface Vehicles (ASVs) offer a
unique opportunity to obtain rich spatially and temporally
distributed environmental data sets within ocean and inland
water environments. Beneficial aspects include long duration
operation, localisation accuracy and ability to carry relatively
large sensor payloads. Operational challenges, particularly for
inland waterways, relate to the level of allowable autonomy
in cluttered environments. Clutter can arise from natural
features and obstacles above and below the water line, and
introduced factors such as boats, bridges and weirs. This
extended abstract provides and overview of an ASV system
for the application of quantifying and mapping greenhouse gas
emissions to the atmosphere in complex narrow waterways. The
system incorporates a spinning laser scanner and sonar systems
to generate 3D obstacle and hazard maps in real-time allowing
operation in previously unexplored and GPS denied regions of
the water storage. Furthermore, a new method of quantifying
greenhouse gas emissions via methane ebullition using an Op-
tical Methane Detector has been developed and experimentally
evaluated using the CSIRO 16 ft ASV illustrating its ability
to continuously map greenhouse gas emission across an entire
reservoir containing many navigation hazards.

I. INTRODUCTION

Quantification of greenhouse gas emissions to atmosphere
is becoming an increasingly important requirement for scien-
tists and managers to understand their total carbon footprint.
Methane in particular is a powerful greenhouse gas, approxi-
mately 21 times higher global warming potential than carbon
dioxide. Water storages are known emitters of methane to
atmosphere [1]. The spatio-temporal variation of release
is dependent on many environmental and biogeochemical
parameters. Therefore, in order to accurately quantify this
greenhouse gas release requires long duration and repeat
monitoring of the entire water body. This is where robotics
can play a significant role.
There are limited examples of ASVs designed for long-

duration, large-scale unsupervised environmental monitor-
ing [2]–[4]. These systems have primarily been designed
for oceanographic surveys and are not particularly suitable
for relatively unexplored inland waterways with complex
and often varying navigational requirements. An emerging
research area for Autonomous Surface Vehicles is that of
mobile adaptive sampling where the ASV can alter its
trajectory to improve measurement resolution in space and
time (e.g [5]). These studies have demonstrated the ability

to capture and track various parameter distributions over
relatively small areas, however, they do not consider obstacle
avoidance, physically changing environments or large-scale
survey requirements. A study by Ferreira et al [6] has
demonstrated the use of an ASV for mapping hazards below
the waterline, however, these maps are not used in real-time
to guide the vehicle for exploration and other parameter (e.g.
scientific) measurements.

Fig. 1. The solar-powered ASV on Little Nerang Dam during methane
quantification experiments.

This work addresses a need to improve the spatio-temporal
resolution of data collected on inland water storages and
lakes with the development of a unique Autonomous Surface
Vehicle (ASV) (see Figure 1). A key requirement in our
application is the ability to navigate and explore narrow,
complex and dynamic waterways unsupervised whilst taking
precision measurements of water quality and greenhouse gas
emissions.

II. 3D LASER SCANNER FOR OBSTACLE DETECTION

Prior to this work, the ASV shown in Figure 1 used a sin-
gle forward facing laser range scanner to detect the presence
of obstacles at a distance of approximately 7-15 m in front
of the vehicle. While this has been successful in avoiding
small obstacles such as buoys it is not considered sufficient
for navigating complex environments such as narrow rivers
where higher resolution 360o coverage is required.



Based on previous work with rotating scanning laser
scanners [7], a new scanning system based on a Hokuyo
URG scanner was developed (shown in Figure 2). The laser
is inclined 15o and spins around a vertical axis giving a
maximum sensing volume (when mounted on the existing
laser mast) relative to the ASV as shown in Figure 3.

Fig. 2. The prototype rotating 3D laser system as configured for operation
on the ASV.

Fig. 3. Sensing volume of the rotating scanner scaled to the size of the
ASV.

The laser rotates at approximately 180 degrees per second,
and with a survey speed of 1 ms−1, this provides the ASV
with a complete update of its obstacle map every 2 m of
travel.

III. ENVIRONMENTAL SENSING
At the highest level, missions are specified as a series

of waypoints and segment velocities with functionality tags
(such as profile, station keep, dock). The vehicle attempts
to maintain a straight path between successive waypoints,
however, this can be modified with the detection of obstacles
and shallow non-traversable water.
A typical sensor payload for the ASV consists of an Opti-

cal Methane Detector (OMD, Heath Consultants, Texas), YSI
Sonde (measuring temperature, conductivity, chlorophyll,

turbidity, dissolved oxygen), wind sensor and a profiling
sonar. Details of the ASV systems and further functionality
are described in [8].
The final paper will detail the methodology of producing

whole-of-reservoir methane efflux estimates using the mea-
sured OMD data.

IV. EXPERIMENTAL RESULTS

The ASV has undergone extensive field trials to evaluate
the tracking and obstacle avoidance performance in a variety
of weather conditions and operational scenarios as described
in [9]. Environmental monitoring trials were conducted on
Little Nerang Dam (south of Brisbane, Australia) in which
the CSIRO ASV was used to autonomously and repeatably
map environmental parameters, in particular greenhouse gas
emission release across the entire 49 hectare water reservoir.
Figure 4 shows a example result of the data produced by

the 3D spinning laser sensor for obstacle avoidance over one
full revolution of the sensor. This example shows both sides
of the ravine wall and a floating obstacle (an instrument
for detecting methane). Since the laser beam is absorbed by
water, there are no range measurements to the water surface
which appears as clear space.

Fig. 4. Ravine at Little Nerang Dam (taken prior to experiments). The
white box is a floating methane detector. (bottom) Two seconds of scan
data from the same location showing the detection of both the ravine walls
and the methane detector which is now located in the centre of the ravine.

In addition to the navigational sensors used to detect
obstacles and allow traversal into the southern distal arms,
the ASV was fitted with an Optical Methane Detector (OMD)
to measure surface methane concentration levels. A high
level path was presented to the ASV to traverse the entire
storage. This path was executed whilst being modified in
real-time based on the hazard maps generated to avoid run-
ning aground against the side of the storage or the southern
shallow arms and to avoid colliding with obstacles such as
logs. This was achieved despite the extremely variable wind
conditions with gusts approaching 70 km h−1. The ability
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Fig. 5. A measured atmospheric methane distribution graph and variation
along the same track with time of day using the Optical Methane Detector
on the ASV for Little Nerrang Dam in Queensland Australia.

to generate spatio-temporal maps of greenhouse gas emis-
sions using the ASV were evaluated on Little Nerang Dam.
Figure 5(a) shows a measured surface methane concentration
distribution using the OMD attached to the ASV. Figures 5(b)
and (c) show the measured methane concentration along a
repeat ASV transect (shown in Figure 5(a)) during a day
and night survey illustrating a spatial-temporal variation of
methane flux.

V. CONCLUSIONS

This paper provides and overview of a novel Autonomous
Surface Vehicle used to quantify greenhouse gas release
to atmosphere across an entire water storage. The ASV

incorporates a 3D spinning laser scanning system to allow
obstacle detection and avoidance in previously unmapped
shallow water environments. A method to quantify methane
ebullition has been developed and validated experimentally
illustrating the ASV’s its ability to continuously map the
spatio-temporal greenhouse gas emissions across an entire
reservoir containing many navigation hazards.
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Aquatic and Land-based Robotic Telemetry for Tracking Invasive Fish

Elliot Branson, Volkan Isler, Pratap Tokekar and Josh Vander Hook

Abstract—Carp is a highly invasive, bottom-feeding fish
which pollutes and dominates lakes by releasing harmful
nutrients. Recently, environmental scientists started studying
carp behavior by tagging the fish with radio-emitters. The
radio-tagged fish are tracked manually using GPS and a
directional antenna. We have been working on developing a
novel robotic sensor system in which the human effort is
replaced by autonomous robots to find and track carp. During
the summer months, we use robotic boats whereas in the winter,
mobile robots track the fish on frozen lakes.
In this extended abstract, we report the current state of

our system including system architecture, coverage and active
tracking algorithms. We also present results from field experi-
ments including coverage experiments in which our boat travels
2.4 km in Lake Keller in Minnesota.

I. INTRODUCTION
Invasive fish such as the common carp pose a major threat

to the ecological integrity freshwater ecosystems around the
world. Presently, the only way to control these fish is through
the use of non-specific toxins which are expensive, ecolog-
ically damaging, and impractical in large rivers and lakes.
Recent studies in small lakes have established that some of
these fishes aggregate densely at certain times and places
and can be controlled by targeting these aggregations using
netting. Therefore, biologists started using a new technology
based on tracking radio-tagged carp to accurately predict the
presence of large carp populations.
Unfortunately, carp aggregations are unpredictable. Man-

ually locating tagged fish in large, turbid bodies of water
remains a difficult task. Our goal is to replace this man-
ual effort with robots. Toward this goal, we developed an
autonomous robotic boat (Figure 1(a)) capable of localizing
tagged fish in lakes and a field robot (Figure 1(b)) performing
the same task on frozen lakes.
In this work, we build on our previous system [1] and

present the following improvements: (1) Coverage:We have
recently developed a new coverage algorithm to detect the
presence of fish. The algorithm takes regions that are likely
to contain fish as input and computes a path to cover these
regions. This allows for incorporating scientists’ domain
knowledge. (2) Active Localization: After detecting the fish,
the goal is to accurately estimate its location. We use multiple
measurements taken at various locations for estimation. The
problem we address is how to choose measurement locations

The work presented in this extended abstract is being con-
sidered for publication in IROS 2011. This work is supported
by NSF Awards #0916209, #0917676, #0936710 and a fellowship
from the Institute on the Environment at the University of Min-
nesota. The authors are with the Department of Computer Science
and Engineering, University of Minnesota, Minneapolis, MN, USA.
{elliot,isler,tokekar,jvander}@cs.umn.edu

in an online fashion so as to accurately localize the fish with
a small number of measurements. We report recent results
on active localization.
We also report results from field experiments for both the

problems. We begin with the coverage problem.

(a) Robotic boat at during coverage ex-
periments at Lake Keller, MN.

(b) Robot (with tracking equip-
ment and antenna) on frozen
Lake Casey, MN.

Fig. 1. Robotic system for monitoring radio-tagged carp during field trials.

II. SEARCH AND COVERAGE

In this section, we present our coverage algorithm for
finding fish. We say that location x on the lake is covered
if the boat moves to a location y from where the tag on
the fish when located at x can be heard. While the fish
move significantly throughout the day, they are expected to
remain within a certain area for shorter periods of time. If
we assume that a fish is approximately stationary during the
search phase, the searching task reduces to a coverage task:
find the shortest trajectory which ensures that all possible
locations of the fish are covered.
We can speed-up the coverage task by incorporating

domain knowledge. Suppose we are given a set of regions
which are likely to contain the fish. For example, these can
be areas rich in vegetation. We assume that these regions are
connected in the sense that there is a path between any two
points. We model the regional contiguity property as follows:
When the robot visits a region, it must cover it completely

before visiting another region.
With the regional contiguity requirement, the coverage

problem can be defined as follows: Given a set of connected
regions R = {R1, R2, . . . , Rn}, find a minimum length tour
with the regional contiguity property which covers every
point in each region Ri ∈ R.
We propose an approach composed of two steps: First,

we compute an α approximation tour τR that visits all the
regions in R. We say that region Ri is visited if any point in
Ri is visited by the tour. The tour, τR, imposes an ordering on
the regions. Next, we compute a β approximation coverage



Fig. 2. Covering a rectangle with given entry and exit points.

tour CRi
for each region Ri ∈ R independently. The final

tour τ is constructed by adding the coverage tours of each
region to τR. We prove that imposing regional contiguity
costs at most a factor (α+β) deviation from the unrestricted
optimal solution.
We now present algorithms for the two components of

the algorithm: Computing a tour that visits the regions and
covering the regions.

A. Visiting the regions: TSPN and the Zookeeper Problems
The computation of the tour τR depends on the geometric

properties of the regions. If the regions are convex polygons
touching the boundary of a (simply-connected) lake then the
tour can be computed optimally by computing the so-called
zookeeper’s route [2]. In this case α = 1. If the regions
are arbitrarily placed, we can use algorithms for TSP with
neighborhoods (TSPN) such as [3].
Most geometric instances of the TSPN problem are NP-

Hard. In our application, it is reasonable to model the lake as
a simply-connected region. Further, areas of interest where
the fish may lie are usually close to the shore because
of vegetation and oxygen levels. This special instance of
TSPN known as the zoo-keeper problem can be solved in
polynomial time due to the following lemma.
Lemma 1 ( [2]): Let R = {R1, R2, . . . , Ri, . . . , Rn} be a

set of convex regions located along the perimeter of a simply
connected polygon P . There exists an optimal solution for
visiting the regions in R which visits them in the order they
appear along the boundary of P .
Once the ordering of the regions is known, the shortest tour

visiting all regions can be calculated which yields entry and
exit points for each region. To turn these tours into coverage
paths, we need a way to cover a region with given entry and
exit points. The computation of these paths is presented next.

B. Coverage
In the second step of our algorithm, a coverage tour for

each region is computed. In our application, we represent
regions with rectangles with arbitrary orientations since they
are easy to specify on one hand and general enough for
practical purposes on the other.
The algorithm presented in Section II-A generates an entry

and exit point for each region. Our coverage problem is
to travel through every vertex in a given rectangular graph
with a given starting and ending point. The following lemma
shows that we can cover the entire rectangle efficiently even
with this constraint.

100 150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550

600

Fig. 3. Complete TSP path. Using the same regions the TSPN graphs show
the entry and exit points for the region along with the the paths between
the regions. The coverage paths are not shown for clarity.

TSP TPSN Coverage Total
Environment 1 8,585 500 4,970 5,470
Environment 2 11,361 600 5,940 6,540
Environment 3 2,522.8 302.2 1,450 1,752.2
Environment 4 3,278.1 371.44 1,825 2,196.4
Environment 5 (Fig. 3) 11,856 682.84 4,950 5,632.8

TABLE I
A COMPARISON OF THE TSP PATH VS. COMBINED TSPN/COVERAGE

PATH FOR DIFFERENT INPUT SETUPS.

Lemma 2: Let R be a rectangle with a grid imposed on
top. Let s and t be two grid points on the boundary specified
as entry and exit points. There exists a tour T which starts at
s, visits every grid point and exits at t such that the length of
T is at most twice the optimal tour which visits every point.

Proof: Given start and end points s and t respectively,
we construct a coverage path as shown in Figure 2. This
path consists of three parts: an optimal part that covers the
rectangle with length equal to that of the OPT , and parts
that connect s and t to the start and end points of this optimal
part. We can prove that the two connecting parts are non-
overlapping and giving us a 2-approximation. The details of
the proof are deferred for the full paper.
We also show that this analysis is tight: there are instances
where we cover the region twice when s and t are fixed.
We now evaluate our proposed algorithms through simu-

lations and field experiments for covering the lake.

C. Simulations and Field Experiments

We first compare the performance of our algorithms with
the standard TSP solution. The TSP solution uses all grid
points to be covered independent of the regions. For comput-
ing the TSP solution, we use the heuristic by Christofides [4]
which yields a 3/2-approximation. We ran the two algorithms
for the environments given in Figure 3. The results are
reported in Table I, whose first column is the length of the
TSP tour and the last column is the length of our solution.
As these results show, in addition to enforcing re-

gional contiguity, our algorithm is more efficient than the
Christofides heuristic in these instances. It seems that the
matching component of the Christofides heuristic sometimes
yields long tours. For example, in Figure 3, the TSP path is
almost twice as long as our solution.



Fig. 4. The GPS trace of the path taken by the boat during the
experiment. The trails shows that the boat covered all four regions by
visiting all the waypoints robustly. Also the trace suggest that the navigation
algorithm negotiated well with the drift caused by wind. The boat traveled
approximately 2.5 km in 36 minutes of the run.

We conducted field experiments in Lake Keller, Maple-
wood, MN to test the coverage algorithm and the navigation
performance of the system. The size of the lake is approxi-
mately 900m × 350m.
We fixed four regions of interest in the lake. The di-

mension of the four regions are approximately 71m× 23m,
100m × 70m, 118m × 100m and 93m × 83m with a total
area of 28, 150m2. During the experiment the boat traveled
approximately 2.5 kilometers in 36 minutes until all the
waypoints were covered Figure 4 shows the boat’s path.
From the experiment we conclude that the coverage algo-

rithm proposed in this paper is useful for real applications.
The experiment also demonstrates that our robotic system
is capable of robustly navigating using waypoints for long
periods of time.
Using the above algorithm, we can efficiently search the

lake for stationary fish. However, the radio antenna has a
large range (about 30m) and we get only coarse estimate for
the fish. To accurately localize the fish, we must combine
multiple measurements. The following section proposes three
strategies to obtain these measurement locations so that the
resulting uncertainty in fish is minimized.

III. ACTIVE LOCALIZATION
We first describe how we obtain bearing measurements

from the radio antenna. Then, we propose three active
localization strategies followed by their evaluation through
simulations and field experiments.

A. Measurement Model
The radio antenna used to detect the tag is direction

sensitive: the signal strength output from the antenna depends
on the relative angle between antenna and the tag. Hence,
we take a coarse sampling of signal strength by rotating the
antenna in steps of 15◦. We can then fit sine waves and third-
degree polynomials using least squares, estimate the maxima
accordingly (Figure 5).

−100 −80 −60 −40 −20 0 20 40 60
120

125

130

135

140

145

 

 

Data
LS cubic
RANSAC
SINE

Fig. 5. A coarse sampling (signal strength versus bearing) and various
least-squares fitting. RANSAC estimation of a cubic polynomial typically
provided the best estimates. The true bearing is 15◦.

This maxima gives us a bearing measurement towards the
target. Our objective is to estimate the location (xf , yf )
of the fish using these bearing measurements. We use
an Extended Kalman Filter with the combined robot and
target state X(t) = (xr, yr, θr, xf , yf ) to be estimated.
The onboard GPS and compass measurements are used to
perform EKF updates for the robot state, while bearing
measurements are used to update the entire state. Since the
bearing measurement function is a non-linear equation, we
linearize the measurement about the current state estimate.
The resulting uncertainty (as show by the determinant of
state covariance) depends on the locations from where the
measurements were obtained. Hence, we can optimize these
measurement locations to minimize the final uncertainty.
The underlying telemetry technology used by the fisheries

researchers introduces another constraint: each tag emits a
signal at a dedicated frequency once every second. Since
each bearing measurement requires sampling the antenna
in multiple directions, we restrict the total measurements
to k discrete locations as opposed to obtaining continuous
measurements.
For the discussion that follows next, we assume that the

initial fish location and covariance estimates are known,
propose three strategies for optimization and evaluate them
with simulations and field experiments, then discuss the
initialization procedure at the end of the section.

B. Active Localization
1) Cramer-Rao Lower Bound: The Cramer-Rao lower

bound for an unbiased estimator X̂ of state X is a lower
bound on the estimation error covariance matrix Pk and is
given as the inverse of the Fisher Information Matrix (FIM)
I . For k bearing measurements with zero-mean Gaussian
noise, determinant of I is inversely proportional to the square
of the area of the 1-σ uncertainty ellipse and can be expressed
as,

|I| =
1

σ4

k
∑

i=1

k
∑

j=1

[

sin(θi − θj)

didj

]2

. (1)

where ∆xi = (xr(i) − xt), ∆yi = (yr(i) − yt), and
d2

i = ∆x2
i + ∆y2

i . Here, (xr(i), yr(i)) is the location of



the robot for the ith measurement, and (xt, yt) is the true
target location.
To compute the k locations, we impose a grid about the

current position of the robot of size n×n. The total number
of candidate points for measurement locations are n2. Hence,
to compute the k measurement locations, we consider each
of the C(n2, k) combinations as a candidate trajectory and
compute the FIM given by 1.
2) Greedy: Instead of computing a fixed path for the

k measurements, we can instead use a greedy strategy
which picks the next measurement location based on the
current estimate and uncertainty of the target. Given the
current robot position and target position, Greedy looks at
all neighboring locations of the robot. At every location,
we simulate all candidate measurements (e.g. by uniformly
picking s samples between 0 to 360◦). Using the current state
and covariance, we can estimate the posterior covariance by
simulating an EKF update using each of these candidate
measurements. Thus, for every neighboring location, we will
have s posterior covariances. Greedy then picks the candidate
location where the maximum determinant of the s posteriors
is minimum. This ensures best worst-case uncertainty for
the target’s position in a greedy fashion. Instead of the best
worst-case uncertainty, we can choose some other heuristic
for the greedy.
3) Enumeration tree: We extend the objective function of

Greedy here, to minimize the worst-case uncertainty obtained
by the EKF after k measurements. We use a min-max tree
to achieve this objective.
The tree is built by assigning each adjacent measurement

location to an action node, and the corresponding measure-
ments to bearing nodes. We recursively define the uncertainty
of the actions and bearings and build the tree to depth
2k, which would correspond to the k desired measurement
locations and k measurements. Each bearing node holds
a worst-case estimate of the measurement uncertainty, as
calculated by the EKF propagation.
Since we use discrete measurement samples while building

the tree, we need to find that child node which is closest
to the current measurement. As there is some uncertainty
associated with the position of the robot itself, we instead
use the Bhattacharya Distance to find that child node, whose
posterior covariance is closest to the current robot covariance
(after the measurement update). The robot then repeats the
above steps until it reaches the leaf nodes (corresponding to
the kth measurement location).
In each of the three strategies proposed above, we assume

initial estimates for the fish position and covariance were
known. We use the following lemma to pick the first two
bearing measurement locations before beginning the strate-
gies.
Lemma 3: Let rmin and rmax be the minimum and

maximum sensing range of the sensor. Assume w.l.o.g
the first measurement taken from the origin is along the
X-axis. Then, if the second measurement is taken from
( rmax+rmin

2
,± rmax−rmin

2
), the worst-case uncertainty in the

target’s position after two measurements is minimized.

C. Simulations and Experiments
We ran 100 random trials for each strategy using the

same initial conditions, target locations, and random seed to
generate measurement noise. The result of the simulations
is presented in Table II, and the corresponding histograms
of final error and determinant of the final covariance matrix
are shown in Figures 6(a) and 6(b) respectively. The outliers
with large error resulted from poor initial estimates.

TABLE II
SIMULATION RESULTS FOR 100 TRIALS

Method
Mean final Mean final

error uncertainty

Enumeration tree 5.7275m 48.36

Greedy 5.9809m 40.59

FIM 6.2975m 54.81

The two best closed-loop (online) strategies, Enumeration
tree and Greedy were then evaluated in field experiments
using the Husky and tracking equipment (Figure 1(b)). Two
results are shown in Figures 6(c) and 6(d). In both plots
the robot’s mean estimated positions are labeled by green
circles, while estimates of fish locations are blue marks.
The rest of the results are presented in Table III. Similar
to the simulation results, we can see that the Enumeration
tree performs better than the Greedy strategy.

TABLE III
EXPERIMENTAL RESULTS WITH DEPTH 2

Method Final error Final uncertainty

Enumeration Tree
0.97 3.53
3.32 8.57
5.35 6.04

Greedy
3.21 20.52
3.29 11.93
8.65 11.34

From the results we observe that both the mean final
error and final uncertainty (determinant) is better for the
Enumeration Tree, where as the FIM strategy performs the
worst of the three. This result is not surprising, for two main
reasons: (1) Since the true target location is unknown, we
compute the FIM using the initial estimate of the target’s
location. (2) The FIM strategy computes locations which
minimize the lower bound on the final uncertainty of an
“efficient estimator”. Since the Extended Kalman Filter is not
an efficient filter, there is no guarantee that it would achieve
this lower bound. On the other hand, the Enumeration tree
and the Greedy actually compute the covariance of the EKF
estimator and pick the location which would minimize its
determinant.

IV. CONCLUSION
In this paper, we focused on a novel application in which a

robotic boat equipped with a directional antenna searches for
radio-tagged invasive fish and picks measurement locations
to precisely localize the fish. We presented a new coverage



0 10 20 30 40 50
0

10

20
FIM

Error

0 5 10 15 20 25 30 35 40
0

10

20
Tree

Error

0 5 10 15 20 25 30 35 40 45
0

10

20
Greedy

Error

(a) Final errors.

0 50 100 150 200 250
0

10

20
FIM

Determinant of Covariance

0 50 100 150 200 250
0

10

20
Tree

Determinant of Covariance

0 50 100 150 200 250 300 350
0

10

20
Greedy

Determinant of Covariance

(b) Determinant of the final covari-
ance.

2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

Tree

X(m)

Y(
m

)

(c) Enumeration tree experiment.

0 5 10 15 20

4

6

8

10

12

14

16

18

Greedy

X(m)

Y(
m

)

(d) Greedy experiment.

Fig. 6. Simulations (a) & (b): We conducted 100 trials with k = 3 for each strategy. The mean final error for FIM, Enumeration tree and Greedy was
6.30m, 5.73m and 5.98m respectively, and determinant of final covariance was 48.36, 40.59 and 54.81 respectively. Experiments (c) & (d): .The true
location of the tag is marked by a star. The initial estimate along with estimates after first and second measurement is shown with 1-σ bounds in blue.
The measurement locations are shown in green.

algorithm with regional contiguity properties. After present-
ing theoretical results on the performance of the algorithm,
we compared it with a standard TSP solution. In field
experiments, we showed that the boat can cover large areas
efficiently using our algorithm. For the localization problem,
we proposed three strategies, compared them in simulations
and reported results from field experiments which show that
our system is capable of localizing the target within a meter
of the true location.
There are a number of directions we have identified

for future work. Since the fish move very little for long
periods of time in the winter, in our algorithms we make the
assumption that the target is stationary. To handle violations
of this assumption, we are working on strategies to localize
moving fish. We are also planning to acquire additional
boats. Having multiple robots is useful because robots can
localize the fish as well as each other more accurately. New
algorithms for multi-robot coordination are being developed
and will be tested on the field.
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Low Energy Consumption Sensor Node Leaping Mechanism for
Enhancing Coverage and Connectivity in Wireless Sensor Networks

Yuki Noguchi, Geunho Lee, Yasuhiro Nishimura, Nak Young Chong, Sang Hoon Ji, and Young-Jo Cho

Abstract—This paper presents the design, performance anal-
ysis, and preliminary implementation of a one-time-use leaping
mechanism for energy-saving sensor node relocation, resulting
in larger coverage and higher connectivity in wireless sensor
networks. It is known to be challenging and difficult to achieve
controllable mobility management for energy-constrained sen-
sor nodes that ensures an autonomous, robust, and dependable
relocation even in adverse environmental conditions. What is
the most important aspect from a practical point of view
is to develop a simple yet efficient omni-directional mobility
system with the minimum amount of energy required. We
propose a new leaping actuating system that utilizes the ground
reaction force generated when releasing selectively multiple pre-
compressed springs mounted underneath the sensor node. We
are in the preliminary stage of developing a final prototype. In
this paper, we investigate through simulations and experiments
the technical features of our working prototype whose distance
and direction are finitely controllable.

I. INTRODUCTION
With recent advances in electronics and communication

technologies, there has been increasing interest in wire-
less sensor networks in a variety of applications such as
environmental or habitat monitoring [1]. One of the most
important issues that can be raised in such applications is
how to cover an area as large as possible while maintaining
network connectivity [2]. Since sensor nodes can be scattered
in an area from an aircraft, their self-relocation strategies
must accompany initial node distribution to enhance network
connectivity and area coverage as shown in Fig. 1. Regard-
ing the self-relocation issue, most researches done to date
have focused on developing scalable distributed algorithms
for computing target locations [3][4], but the nodes were
unrealistically assumed to have unlimited energy resources.
In practice, energy consumption caused by node movement
accounts for a significant portion of battery lifetime. Con-
sidering such practical limitations, in this work, we attempt
to propose a new omni-directional mobility design that can
minimize node energy consumption.
Recently, node mobility has been gaining increasing atten-

tion. To extend the lifetime of a heterogeneous mobile sensor
network, a mobile relay strategy is proposed in [5], enabling
mobile sensors to help relieve static sensors with burden
by high network traffic. To minimize energy consumption
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Fig. 1. Relocation and deployment of sensor nodes: network connectivity
and coverage enhancement for environmental monitoring

for surveillance and data transmission, a minimal energy
path planning method is presented [6]. Meanwhile, various
prototypes have been developed for mobile sensor networks
such as omni-ball [7], evacuation robot [8], jumping robot
[9] and so on. Specifically, there exist some notable leaping
mechanisms [10]-[12] inspired by springtail, locust, or flea
to move at a low energetic cost and jump relatively large
obstacles. In spite of impressive leaping performance, their
complicated structure and/or bulky size are difficult to be
used for tiny wireless sensor nodes.

The main purpose of this work is to present our design
of a new instantaneous mobility mechanism well suited for
tiny wireless sensor nodes. Toward enhancing coverage and
connectivity from initial random distributions of senor nodes,
we propose a novel one-time-use spring-powered leaping
mechanism that utilizes the ground reaction force gener-
ated when selectively releasing multiple actuators (i.e., pre-
compressed springs) mounted underneath individual sensor
nodes. One significant advantage is to minimize the amount
of energy required for relocation and deployment by the
proposed robotic leaper. What is the most important aspect
from a practical point of view is how to control the leaping
distance and direction in order to improve the capability of
fixed sensor networks. Another practical issue in the robotic
leaper design is how to cope with aerodynamic disturbances
over the geographic area. For the purpose, several analysis
processes are integrated and automated, and an optimization
technique is implemented. Toward building our final proto-
type, a working prototype is developed and tested through
simulations and experiments.



Fig. 2. Development progress of robotic leaper ((a) a proof-of-concept
prototype, (b) concept prototype v.1, (c) concept prototype v.2)
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Fig. 3. Variation in leaping distance according to the number of actuators
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II. ONE-TIME-USE LEAPING MECHANISM

Fig. 2 illustrates several one-time-use robotic leaper pro-
totypes. Our idea is to utilize the ground reaction force gen-
erated by selectively releasing multiple actuators (e.g., pre-
compressed springs) mounted underneath the sensor node.
The node body has a globular shape to lessen the air resis-
tance when it flies in the air. The node body encompasses
all electronic components for wireless communications and
a trigger mechanism for controlled release of actuators.
Further, the proposed one-time-use, spring-powered actua-
tors are designed to be suited for leaping in open ground
conditions possibly characterized by variable elevations. In
detail, the eight pre-compressed springs are installed with
the same interval to control the leaping direction across an
area as evenly as possible through a selective combination
of actuators released.

A. Leaping Direction and Distance Control
The dynamic simulation model of the sensor node is

created with SolidWorks [13] and incorporated into a well-
known multi-body dynamics analysis software RecurDyn
[14]. Analytic studies are conducted to examine how all
the possible combinations of releasing actuators affect the
leaping distance: changes in the leaping distance with respect
to the number and combination of releasing actuators. Fig. 3
shows the changes in the leaping distance according to the
number of releasing actuators. When five actuators, out of
eight actuators, positioned continuously are released at the
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Fig. 4. Leaping direction control: each actuator is denoted as si. ((a) !x
direction movement, (b) !z direction movement)

Fig. 5. Connectivity of sensor networks with (A) static nodes, (B)
randomly moving nodes, and (C) direction-controlled moving nodes: error
bars represent the 95% confidence intervals, and boxes indicate distributions
of measured data in the 25% to 75% range.

same time, the maximum leaping distance can be obtained.
Since the impact force by individual actuators si released
is added to a specific direction and/or conterbalanced each
other, the possible combinations of releasing actuators affect
the leaping direction. As illustrated in Fig. 4-(a), by releasing
from s3 to s7, the node’s direction of motion is achieved
along the positive x-axis direction. Similarly, in Fig. 4-(b),
the node’s z-axis direction motion is controlled by releasing
from s1 to s5.
Next, to investigate the effectiveness of the proposed

leaping mechanism in improving network connectivity, a
network simulation testbed is developed using Microsoft
Visual C++. In our simulation, we tested three sets of 100
sensor nodes initially randomly distributed, where the initial
connectivity of each set is 30%, 50%, and 70%, respectively.
1000 random distribution patterns are given for each of the
three sets, respectively. Under these simulation conditions,
the network connectivity of the following cases is investi-
gated. CASE A is the static sensor network that only includes
non-mobile sensor nodes. In CASE B and CASE C, mobile
sensor networks are tested, where isolated sensor nodes
can be relocated using the proposed leaping mechanism.
Specifically, isolated sensor nodes move randomly in CASE
B, and move along the desired directions using an estimation
algorithm for direction of arrival of the signal. The results for
network connectivity are presented in Fig. 5. Compared with
CASE A, the connectivity in CASE B increased more than
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10%. The connectivity of CASE C has increased remarkably.
Despite minimal energy consumption, these results are very
promising to enhance network connectivity in wireless sensor
networks.

B. Parametric Representation of Actuating Force
The impact forces applied to the sensor node body by

the proposed spring-powered actuators can be parameterized
by the locations of acting points and acting directions.
The angular parameters are graphically depicted in Fig. 6.
Since the leaping mechanism has an axisymmetric structure,
the location of acting point can be calculated using the
downward angle φ measured from the x-axis of the node
body center of mass pc, and the attaching angle θ of each
actuator. Moreover, the acting direction can be calculated by
φ, θ, and another angular parameter ψ, which is the upward
angle measured from the x′-axis of the coordinate system
defined at the acting point pap (=(xap, yap, zap)).
From now, the locations of pap and acting directions can

be calculated by the following three angular parameters: θ,
φ, and ψ. Since θ is fixed, by adjusting φ and ψ, the impact
force direction can be controlled. Based on the geometric
structure of the sensor node, the location of pap is calculated
by the following equations.







xap = −L cosφ cos θ
yap = H + L sinφ
zap = −L cosφ sin θ

, (1)

where L and H are the characteristic length for calculating
the locations and the height of the node body center of mass,
respectively, and are set to 49.5 mm and 51.0374 mm. In
the same manner, the acting direction (xad, yad, zad) is given
by







xad = −L cosφ cos θ − L cosψ cos θ
yad = H − L sinφ+ L sinψ
zad = −L cosφ sin θ − L cosψ sin θ

. (2)

III. DESIGN OPTIMIZATION AND SIMULATION
A. Optimization Problem Formulation
The leaping distance and direction are the two most

important performance features in the design of the proposed
leaper. The leaping distance should be secured as long as
possible to realize sufficient relocation capability. Further,

the leaping direction with a high level of accuracy should
be maintained for any intended directions. Various attempts
can be made to find a design solution that satisfies these
requirements. We prefer to find the most robust solutions
to uncertain real-world operating conditions, as well as to
achieve the easiness of finding solutions. A properly designed
leaper should be able to support reliable, accurate positioning
of sensor nodes in adverse operating conditions.
We assume an area where the wind blows consistently.

To reflect the effect of aerodynamics, the drag force [15]
is applied to the sensor node body as a virtual translational
force over the area given by FD = 1

2
ρv2CdA, where FD, ρ,

v, Cd, and A indicate the drag force, the density of air, the
speed of the wind relative to the object, the drag coefficient,
and the reference area, respectively. ρ of air is 1.2 kg/m3.
The parametric value of Cd of the node is assumed to be
0.47, the same as that of the sphere [16]. The speed of the
wind is set to 10 m/s. FD is automatically calculated for
the relative velocity between the node and the wind.
The interval distance between actuators and releasing

combination of actuators can be determined by extensive
simulations. Two remaining angular parameters φ and ψ,
which can represent the actuating force, are chosen as the
design variables to optimize the leaping distance and direc-
tion accuracy. In this paper, the leaping distance is considered
as the objective function to be maximized. For the leaping
direction control, a certain level of tolerable error, 5 degrees,
is considered as a constraint. Now our design optimization
problem is formulated as

Find φ and ψ
to maximize Leaping Distance
subject to Angular error ≤ ± 5◦

. (3)

Among the various optimization techniques available, the
progressive quadratic response surface method (PQRSM)
[17] is selected. The overall algorithmic procedure of
PQRSM goes as follows: 1) applying the design of exper-
iments (DOE) in a trust region, 2) building a metamodel,
3) approximating optimization, 4) updating the trust region,
and 5) checking whether the optimization has converged. If
this termination criterion is satisfied, PQRSM is finished.
Otherwise, the procedure goes back to the first step.

B. Progress Integration and Design Optimization
Several analysis and simulation processes for evaluating

the leaping performance are integrated and automated using
a commercial progress integration and design optimization
[18] (PIDO) software PIAnO [19] to perform the design more
efficiently. By the use of PIAnO, the optimum solution is
obtained in a systematic way. When the aerodynamic drag
force is applied, to identify the effect that the optimum
design has on the leaping distance and directional accuracy,
simulations are performed for the area over which the wind
blows in an essentially constant direction. Although the
leaping distance is decreased by about 10% (from 1122.4139
mm to 900.2469 mm), the accuracy of direction control



Fig. 7. Leaping direction and distance control against winds

satisfies the imposed constraint (from 10.2133 degrees to
4.979 degrees). Fig. 7 shows the leaping behaviors under
the constant directional wind. The wind blows in the z-
direction and leaping behaviors were tested for four intended
directions (every 90 degrees) in the x-z plane. From the
results, it was verified that the accuracy of direction control
could be enhanced. We were able to further verify that
an optimum solution can be obtained for most real world
situations, for instance, where the nodes fly against uncertain,
changing wind directions.

IV. PROTOTYPE DEVELOPMENT
This section describes a preliminary test of our working

prototype, and presents experimental results to demonstrate
its feasibility and performance. Prior to developing a final
prototype based on analytical and simulation results, we
also need to examine whether the arbitrarily-selected pre-
compressed actuators can be self-triggered individually or
in groups simultaneously. This is necessary to convince
ourselves that we can implement the proposed idea properly
in our final prototype.

A. Mechanical Configuration of Concept Prototype
Fig. 8 shows the schematic view of our concept pro-

totype version 1, largely divided into the following three
components: gear drive, triggering device, and anchor parts.
The gear drive includes one DC motor and a 2500:1 gear
reduction unit. The triggering device is composed of four
disks: DISK-1, DISK-2, DISK-3, and DISK-4, respectively,
from the top down to the bottom. DISK-1 and DISK-4 are
the outer layers of the triggering device. In detail, the gear
drive is fixed to DISK-1, and DISK-4 has eight brackets
protruding from its surface where individual anchor parts
are fixed. DISK-2 retains the pre-compressed springs in
the anchor parts, and selectively releases the springs while
rotating. DISK-3 supports DISK-2. Each anchor is composed
of a Γ-shaped rod surrounded by a spring (see Fig. 11). As
illustrated in Fig. 8-(a), the tip of each rod is equipped with

(a) cross-sectional view

(b) bird’s eye view
Fig. 8. Schematic view of the leaper triggering device

a ball (bearing) caster to slide smoothly over the surface of
DISK-2.

B. Concept Prototype Analysis Results

Now we need to calculate the DC motor torque required
to rotate DISK-2. A dynamic simulation model is devel-
oped with RecurDyn considering the friction and material
properties as shown in Fig. 8. Fig. 9 shows how the torque
required varies as DISK-2 rotates. From the obtained torque
requirement of 800 Nmm, we can determine a suitable DC
motor required to rotate DISK-2, allowing pre-compressed
springs retained in individual anchors to be released. Fig. 10
presents the simulation result for the node leaping behavior
when the obtained torque is applied. This simulation shows
that the leaping height was 545.37 mm, when the spring
constant K was set to 4.51 N/mm. With K = 9.02, the
required torque and the leaping height were 1481.499Nmm
and 1136.905 mm, respectively. We have observed that the
leaping height linearly increases with K to a certain degree.
We can verify the proposed triggering system by compar-

ing the period of time needed to apply the proper amount
of torque in Fig. 9 and the time the node starts to leap in
Fig. 10. They are exactly coincident with each other. The
resultant force exerted on the node body by releasing the
pre-compressed springs is considered as the rate of change
of linear momentum. In other words, the force is relatively
large that acts over a small interval time. Therefore, it would
be very important to synchronize the release time among all
of the individual springs.



Fig. 9. Simulation result for the motor torque required to rotate DISK-2

Fig. 10. Leaping height trajectory of our concept prototype

C. Working Prototype Test and Results

Based on extensive simulations, we have developed our
first working prototype as shown in Fig. 11. TABLE I
shows the mechanical specification of the prototype. Here,
we describe in more detail how the triggering device is
being designed and modified. In our very first test, DISK-2
could not rotate due to the excessive amount of static friction
encountered when DISK-2 and DISK-3 contact. To reduce
the friction, as illustrated in Fig. 8, a thrust slide bearing
is put between the faces of DISK-2 and DISK-3. Further,
we make a circular groove over the surface of DISK-2. The
individual rods with the ball (bearing) caster slide along the
groove.
Next, it is very important to ensure that the selected pre-

compressed springs are released at the same time. If this
simultaneous triggering is not supported, we cannot properly
control the leaping direction and distance of each node. To
this purpose, we built a test bed for triggering and synchro-
nization verification as shown in Fig. 12-(a). This test bed is
equipped with eight push-button switches on its top plane.
Whenever each compressed spring is released, the test bed
detects the instant that each spring pushes its corresponding
switch. Fig. 12-(b) presents the experimental results for the
releasing synchronization of the actuators placed on the test
bed. The synchronization verification tests were performed
10 times, and we examined the release times for individual

Fig. 11. Mechanical structure of the working prototype

TABLE I
PROTOTYPE MECHANICAL SPECIFICATION

unit size (mm) weight (g) material
disk-1 t3 φ116 70 aluminium alloy
disk-2 t3 φ80 20 aluminium alloy
disk-3 t3 φ116 80 aluminium alloy
disk-4 t3 φ116 110 aluminium alloy

thrust slide bearing t2 φ35 36 steel
rod 44 (length) 7 aluminium alloy
spring 29.5 φ11.25 20 steel

(compressed: 16)

anchors. An average time difference between the first release
and the last release is 0.763msec. We were concerned about
the effects of possible synchronization deviations practically
not avoidable. We have verified that such an amount of
deviation can be tolerated by our working prototype. Fig. 13
presents the snapshots of the leaping behavior of our working
prototype that can only leap vertically upward off the ground.
The leaping height was measured as 537.98 mm for K =
4.51 N/mm. From the results so far, our working prototype
can be considered quite satisfactory toward building our final
prototype currently under way.

V. SUMMARY AND FUTURE DIRECTIONS

This paper presented a one-time-use, spring-powered
robotic leaper to support intentional mobility for sensor
nodes expected to enhance network connectivity and cov-
erage in wireless senor networks. This controllable mobility
offers an efficient way to monitor physical environments. The
proposed robotic leaper utilizes the ground reaction force
generated when releasing multiple pre-compressed springs
mounted underneath the sensor nodes. In particular, it can
control the leaping direction as well as the leaping distance
by selectively releasing the springs. The design optimiza-
tion was performed for leaper configuration considering
actual operating conditions such as the aerodynamic drag
force caused by the wind. The obtained optimum solution
was verified by extensive simulations, where the accuracy
constraint of the leaping direction was satisfied. Moreover,
experimental results were presented to investigate the validity
and performance of our working prototype. A more advanced



(a) synchronization testbed

(b) result for the releasing synchronization
Fig. 12. Synchronization testbed: result for simultaneous trigerring

Fig. 13. Experimental result: prototype leaping

mechanism is under development for maintaining a stable
attitude and executing a soft landing.
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EXTENDED ABSTRACT

A growing number of robots include techniques for knowl-
edge representation and reasoning into their skill repertoire,
and the question of which techniques are best suited for
robotic systems is still far from being answered – perhaps
even far from being properly posed. In this talk, I will discuss
the current work related performed in the GeRT project from
a knowledge representation point of view.

GeRT (Generalizing Robot manipulation Task) is a Eu-
ropean “7th Framework” project involving the German
Aerospace Center (DLR, project coordinator), the University
of Birmingham in the UK, the University of Örebro in Swe-
den, and the Max Planck Institute for Biological Cybernetics
in Germany. The aim of the GeRT project is to develop
artificial intelligence (AI) techniques for improving the abil-
ity of robots to cope with novelty in manipulation tasks.
The platform used is DLR’s Justin platform, a two-armed
humanoid robot with 44 degrees of freedom (www.dlr.de/rm)
– see Figure 1. Like most other complex robotic platforms,
Justin’s tasks are entirely pre-programmed for the specific
objects and initial configuration. Simply substituting a mug
for a glass in a task that involves pouring liquid from the
mug into another object would entail different pouring and
grasping positions. Similarly, a different initial configuration
of the work area may entail the need to remove obstacles
before a grasping action can be performed. The GeRT project
aims to provide Justin with the ability to automatically
exploit existing programs conceived for specific tasks as
examples to perform similar tasks with objects of different
shapes and in different initial configurations. These tasks will
consist of the same types of basic operations, but which may
be combined in novel ways and have a different physical
execution.

Fig. 1. The Justin robot performs a task involving re-grasping of a cup.

The GeRT approach involves research in planning, learn-
ing, and machine perception. In this presentation, I will focus
on the planning part, and especially on the type of knowledge
needed for that. This knowledge is heterogeneous: we need
accurate geometric knowledge to determine if an action
is feasible (“can I grasp this cup from the top using my
left arm?”) as well as causal knowledge for goal-directed
planning (“what sequence of actions will lead to the achieve-
ment of the goal?). Taking into account both geometric and
causal requirements during planning is difficult because of
mutual constraints imposed by both types of knowledge. For
instance, preparing tea entails that a cup must be filled with
water and transferred to a tray (causal requirement), but the
fact that the cup is full of liquid requires that it be moved
horizontally (geometric constraint) so as to avoid spillage.
If horizontal motion is not possible due to the obstalcle
configuration, the robot may decide to either remove some
obstacles before the move or to fill the cup after the move.

Treating both types of knowledge separately is inefficient
and may lead to incompleteness. In GeRT, we study forms
of hybrid knowledge representation and related algorithms
that are capable of tackling realistically sized problems on
real platforms like Justin.
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