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I. INTRODUCTION

Motion planning for manipulation is generally thought to

be too complex of a problem to solve using the same graph

search algorithms that are commonly preferred in navigation

planning. Graph searches are favored in the domain of

navigation because they provide strong theoretical guarantees

without sacrificing fast planning times. However, the high di-

mensionality of the manipulation planning problem generally

slows down these types of searches tremendously. Instead,

sampling-based algorithms are commonly used to quickly

generate motion plans at the expense of the quality of the

solution. Sampling based approaches rely on randomization

to dodge local minima and are therefore incapable of any

form of cost minimization, bounds on the sub-optimality of

the solution and don’t provide a guarantee that the solution

will be found. Also, a major complaint with trajectories

generated by these approaches is that they are highly in-

consistent. Given the same input parameters, the solutions

can be very different.

Consistency in a motion planner is important in achieving

our goal to put service robots in the home. People become

uncomfortable when they can not anticipate and understand

a machine’s behavior. It is our job to assure that our robots

behave in a consistent and predictable fashion. Search-based

approaches to path planning are deterministic. This means

that not only if given the same input, the same output will

be returned, but also, given similar input - similar output is

expected. Such consistency in a robot’s motions, both with

its base and its arms, will help foster a human’s ability to

trust it in their home.

In our approach to planning for manipulation, we are

interested in providing the same guarantees that are expected

in navigation planning, such as completeness, a path will

be found if one exists, and a bounds on the suboptimality

of the solution. Our goal is to also provide consistency

and solutions of minimal cost. To accomplish this, we use

an anytime graph search with some clever modifications to

generate safe trajectories quickly, more often than not in less

than one second.
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Fig. 1. Manipulating objects in cluttered environments is the primary
motivation of this work.

II. APPROACH

A. Motion Planning

Our approach is based on constructing a motion primitive-

based graph and searching this graph for a low-cost solution

[1]. The graph structure we use is a lattice representation.

A lattice is a discretization of the c-space into a set of

states, and connections between these states, where every

connection represents a feasible path. The set of states are

the set of possible discretized joint configurations and the

transitions in the graph are a set of kinematically feasible

motion primitives. A motion primitive is the difference in

the global joint angles of neighboring states. We define a

state as an n-tuple (θ1, θ2, ..., θn) for a manipulator with n

joints. A motion primitive is a short atomic action defined

as a vector of joint velocities, (v1, v2, ..., vn) for a subset or

for all n joints.

The planner minimizes a cost function with the goal of

minimizing the length of the path taken by the end effector

while keeping the arm far away from obstacles. For the

heuristic function, we use the 3D distance from the end

effector to the goal while accounting for obstacles. The

distance is computed in the form of a single 3D Dijkstra’s

search and it is guaranteed to be consistent. To search the

graph, we use an anytime variant of A* called Anytime

Repairing A* [2]. ARA* finds a highly suboptimal solution

quickly and then improves it as time permits.

In [3], we showed that with the use of adaptive motion

primitives we are able to find solutions with much fewer

state expansions, leading to shorter planning times.

B. Learning

Many tasks in manipulation are somewhat repetitive and

have similar solutions like moving objects on a tabletop,



opening doors, or loading a dishwasher. Our approach ex-

ploits previous solutions to make future queries faster. We

do this by caching previous paths and building an efficient

roadmap out of them. When the search finds the roadmap we

allow it to ”jump” to another location on the roadmap that is

”closer” to the goal (by heuristic). This allows us to shortcut

a lot of the search. We also have a heuristic which attracts

the search to the roadmap so we can more easily connect to

the roadmap quickly. The strength of this attraction to reuse

old information also determines the sub-optimality bound on

the solution.

III. EXTENSION TO TWO ARMS

For the past few months we have been researching meth-

ods of extending the approach mentioned above to planning

for two arm manipulation. Our goal is to generate safe

motion plans for two arms that are gripping the same object

such as a box or a tray. We assume the grips will stay fixed

throughout the motion. Extending our previous approach

as is to two arms, each with seven joints, would lead to

the tedious task of searching a graph with 14 DOF. So

instead of having states in the graph represent the set of

possible joint configurations, the states now represent the

position and orientation of the object in space as well as

the redundancy of each arm. The new 8D representation,

(x, y, z, roll, pitch, yaw, θleft, θright), simply adds one di-

mension to the statespace instead of doubling it. This repre-

sentation has other benefits as well. The motion primitives

are defined as movements in space instead of joint velocities,

which are more difficult to comprehend and create. The new

representation is also better suited to easily track the path

suggested by the heuristic function.

Extending our search-based approach to planning for two

arm manipulation is a work in progress. We plan on submit-

ting this work to ICRA 2012. More details will be available

after the work is submitted.

IV. EXPERIMENTAL RESULTS

For an extensive set of statistics on over a hundred

randomly generated tests in different types of commonly

found planning scenarios please refer to the results in [3].

A. Cluttered Environments

Our main focus is to develop algorithms for manipulation

in cluttered environments. The heuristic function mentioned

above allows us to efficiently avoid local minima caused

by obstacles. In the attached video, you will find a clip

showing the PR2 safely pass a long rod through a window

and then back out. The window is marginally wider than the

length of the rod. More videos of manipulation in cluttered

environments are immediately available on demand.

B. Grasping Pipeline

We also demonstrated the utility of our motion planner

with more common scenarios such as simple tabletop manip-

ulation. We recently integrated our motion planner with the

Grasping Pipeline developed and released by Willow Garage.

Fig. 2. Graspy is tired from autonomously manipulating objects in a safe
and consistent way for over two hours. Keep it up Graspy!

We successfully ran the grasping pipeline autonomously for

two hours, allowing it to constantly move two different

objects from one side of the table to the other. The state

machine made hundreds of planning requests for each arm

to the planner and there was only one recorded planning

failure during that time. Footage of the first 53 minutes is

available upon request. In the attached clip, you will find

a short snippet from that video. It’s important to notice the

consistency of the trajectories throughout the video.

Tabletop manipulation is a great example of a repetitive

task when the planner can greatly benefit from learning. To

compare the planner with and without learning, we ran the

grasping pipeline in autonomous mode for twenty minutes.

During that time, the planner was called over 40 times for

each arm. The average planning time of the planner without

learning is 0.20 seconds and 0.02 seconds with learning,

lending a speedup of ten times on average.

C. Two Arms

We don’t yet have results for two arm manipulation. We

expect to have statistics and videos by the ICRA 2012 dead-

line. Our goal demonstration is to have the PR2 manipulate

a tray between different shelves of a catering cart.

V. PROPOSED DEMONSTRATION

In conclusion, we are proposing a demonstration in which

the PR2 will manipulate objects through a cluttered environ-

ment using our one arm planner. With the cooperation of the

grasping pipeline, we can have the robot manipulate large

objects on a tabletop such as a plunger.

If we are successful in completing our two arm planner

before the ICRA deadline, we will also have the PR2 move

a waiter’s tray between different shelves on a catering cart.
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