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I. INTRODUCTION

Home assistance is one major future area of interest for
personal robots. Navigation in the highly unstructured and
dynamic environments of a home is thereby the prerequisite
to fulfill any high-level tasks. Current state of the art naviga-
tion frameworks already enable fast planning and robust ex-
ecution for a 3-DoF robot base in a 2D grid map indoors [1].
Sensor data is either two-dimensional or projected down to
2D from 3D. However, this usually means that motion plans
cannot be generated to goal locations in highly cluttered areas
or to goal locations where the 2D projection of the robot
seems to be in collision. The robot thus loses capabilities
such as approaching a table for a manipulation task, which
requires partly moving its base under the table, and can not
navigate with extended manipulators, e.g. to carry a tray,
without keeping an even larger distance to obstacles due to
the enlarged footprint.

To overcome these limitations, we propose a three-
dimensional navigation framework which performs full 3D
collision checks for arbitrary joint configurations of a mobile
manipulation robot with a 3-DoF base. For efficiency, we
rely on a down-projected 2D map and perform expensive 3D
collision checks only when needed. The robot incrementally
builds a 3D occupancy map in an efficient octree-based
representation. A global path planner yields an anytime
solution on a lattice graph. The local planner then executes
this path and validates it during execution. Near three-
dimensional obstacles, a full 3D collision check between the
robot model and the obstacle map is performed.

We validate our approach through experiments on the
PR2 mobile manipulation robot. The PR2 robot has an
omnidirectional base and two arms. Using our approach,
we were able to perform docking and undocking maneuvers
with extended arms at a table (Fig. 1). Our framework
thus allowed the PR2 to reach a far bigger workspace by
allowing the base to move under overhanging obstacles and
also into cluttered areas. Our framework builds upon and
extends the capabilities of the Search-based Planning Library
(SBPL, [2]) and is available as open source software.

II. ENVIRONMENT REPRESENTATION

For collision checks between the complete robot model
and the environment, a 3D representation is required. How-
ever, full 3D occupancy grids pose challenges on the memory
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requirements if a high resolution for accurate results is used.
Thus, we use the octree-based volumetric representation of
OctoMap [3] to efficiently build and store a probabilistic
3D occupancy grid which also accounts for unknown space.
For incremental mapping, the robot constantly inserts its

Fig. 1. The PR2 docks and undocks a table with untucked arms, thereby
considering its full body pose for avoiding three-dimensional obstacles
observed by its sensors. Left: Goal configuration (shaded green) and
resulting plans (blue). Right: Execution of the plan by the PR2.



3D sensor information as point clouds into the map, which
is then updated using raycasting on the individual beams.
A probabilistic map update ensures the proper handling of
sensor noise and dynamic updates when obstacles are ap-
pearing or disappearing (e.g., manipulated objects, or people
moving in the environment). The 3D occupancy map is then
used for collision checks. Each map update also updates a
down-projected 2D map of the environment that is used for
efficiently computing collision-free motions.

III. PLANNING & NAVIGATION FRAMEWORK

Besides incrementally building and updating the map, our
framework for 3D navigation consists of a global planner
to construct a globally optimal plan and a local planner to
execute and validate this plan.

A. Global Planning

1) Search-based Planning on Lattice Graphs: Our global
planner operates on a lattice graph [4] corresponding to the
2D space with orientations (x,y,6). This avoids the typical
problems of dense grid discretizations by building a graph of
concatenated motion primitives of the robot platform, each
consisting of a feasible, possibly omnidirectional motion and
resulting in a (x,y,6) pose. On the PR2 robot, this means
that the robot can explicitly plan for sideways and backwards
maneuvers with or without changing its orientation.

On the lattice graph, we then employ the Anytime Repair-
ing A* (ARA¥*) search [5]. ARA* runs a series of weighted
A* searches while efficiently reusing previous information.
Each weighted A* trades off optimality for speed with an -
suboptimal heuristic, and can be orders of magnitude faster
than A*. ARA¥* iteratively lowers the ¢ until either the
optimal result at ¢ = 1 is found or the given planning time
is over, resulting in an efficient anytime-capable A* search.

2) 3D Collision Checks for Efficient Planning: Collision
checks are one main factor influencing the planning time,
as they occur at every search node expansion. Thus, they
need to be as efficient as possible. For efficient planning,
we combine the 3D map with the down-projected 2D map
and check collisions in 3D only when needed. Whenever
the planner expands a node and determines the costs of
the expansion, a 2D collision check of the robot’s down-
projected footprint (including all possibly extended links) is
done in the 2D map first. If no collision is reported, then it
is guaranteed that there is also no 3D collision. Otherwise, a
3D collision check between the full robot configuration and
the 3D occupancy map is initiated and determines the actual
validity of the expanded motion. For this collision check
between the robot’s links (given as 3D model meshes) and
the occupied voxels of the 3D map, we currently use ODE.

This approach to collision checking ensures that expen-
sive 3D collision checks need to only be carried out for
capabilities like moving through clutter or moving close to
tables. When leaving them away, e.g. due to planning time
constraints, the planning framework gracefully degrades to
2D planning with footprint collision checks.

B. Plan Execution

During execution, the concatenated discrete motion primi-
tives from the global planner have to be converted into motor
commands for the robot’s base. Also, the validity of the plan
has to be checked while it is being executed because new or
previously unseen obstacles might appear. To do so, the local
planner computes the omnidirectional velocities required to
reach the next (z,y,0) pose along the path and does a
single trajectory rollout which is checked for collisions in
the updated collision map. Just as in the global planner, the
collision check is first performed in 2D, and only performed
in 3D when required.

In case collisions are predicted, the robot stops and the
global planner is invoked again in order to find a new
collision-free path.

IV. RESULTS

For evaluation, we employed a PR2 robot in a cluttered
indoor laboratory environment. We used the dense stereo
sensor (augmented by a texture projector) of the PR2 for
mapping at a resolution of 2.5cm. During navigation, the
PR2 left its arms unfolded. This is a useful pose e.g. for
carrying trays, pushing movable objects such as carts, pick
and place, or other mobile manipulation tasks. Within our
framework, the actual body configuration is arbitrary and
can be changed at any time.

Some typical results can be seen in Fig. 1. All goal
configurations were reached collision-free. For paths in open
spaces and when docking or undocking the table, ARA*
yielded the optimal planning result with a final € = 1. Only
for complicated scenarios, such as starting and ending nearly
in collision with the table or a box on the table (Fig. 1,
last four rows), a non optimal path was returned within the
maximum planning time of 15s. In these scenarios, nearly
all node expansions trigger expensive 3D collision checks.
However, the path was still reasonably short and sufficiently
smooth due to the local planner. In our current work, we are
working on a plan refinement during execution to yield even
better results in complex scenarios.

All source code is available in the Robot Operating System
(ROS) at www.ros.org/wiki/3d_navigation.
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