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I. INTRODUCTION

Most manipulation platforms are composed of robotic
arms with several degrees of freedom, for which the motion
planning problem involves exploring a high-dimensional
configuration space. Moreover, planning problems for grasp-
ing and manipulation of complex objects require invok-
ing computationally-expensive collision checking procedures
several times. Consequently, existing planners are unable
to identify high-quality (low-cost) solutions in a reasonable
amount of computation time.

In this talk, we present an algorithm that overcomes these
difficulties by augmenting the asymptotically-optimal RRT∗

algorithm with a sparse sampling procedure, called the Ball
Tree algorithm, and a memoization technique that speeds up
the collision checking procedure. The proposed algorithm is
specifically tailored for anytime computation. That is, the
method quickly yields a feasible initial solution, and utilizes
remaining computation time to improve the solution with the
guarantee of almost-sure convergence to a globally-optimal
solution.

We evaluate the algorithm through a series of Monte-Carlo
simulation studies involving seven and fourteen degree of
freedom manipulation planning problems using a realistic
simulation environment. Simulation results suggest that the
proposed algorithm provides significant improvements in
both the quality of the first solution found as well as the
final path that is executed by the robot, while incurring no
substantial computational cost when compared to the RRT
algorithm. We further demonstrate the algorithm on the PR2
platform for single-arm and dual-arm planning problems. A
more elaborate discussion of the algorithms and the results
presented in this talk is given by Perez et al. [1].

II. ALGORITHM

The RRT∗ algorithm, introduced by Karaman and Fraz-
zoli [2], is an incremental sampling-based motion planning
algorithm that offers the asymptotic optimality guarantee,
i.e., almost-sure convergence to globally optimal solutions,
which the RRT algorithm lacks, without incurring substantial
computational overhead when compared to the RRT.

We implement the RRT∗ algorithm by delaying calls to
the collision checking procedure until absolutely necessary.
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(a) RRT (b) BT+RRT∗

Fig. 1. Given the goal of taking both arms of the PR2 from an initial pose
underneath the table to the pre-grasp pose with the end effectors near the
mug, (a) the RRT typically results a plan involving unnecessary actuation
of several joints while (b) our method identifies more efficient plans.

During the extension phase of the RRT∗ algorithm, we sort
each path in order of increasing cost and proceed to check
the paths for collision in this order until a collision-free path
is found. During the rewiring phase of the RRT∗ algorithm,
we invoke the collision checking procedure only if the cost
of the rewiring path is low enough to improve the cost of the
rewiring vertex. See Perez et al. [1]. Although, in the worst
case, this approach will result in checking all trajectories
for collision, the authors have found in the experimental
studies that on average only a few paths are checked for
collision, significantly improving the running time of the
RRT∗ algorithm in problems in which collision checking is
computationally expensive.

The Ball Tree algorithm, presented by Shkolnik and
Tedrake [3], is a sampling-based method similar to the RRT
that approximates connected regions of free space with balls
instead of points. Treated as sets of reachable points, the
algorithm uses these balls to perform rejection sampling,
resulting in trees that are sparser than those of the standard
RRT while maintaining probabilistic completeness.

We propose a manipulation planning algorithm that offers
two compelling advantages. Firstly, it is noticeably faster
than conventional planners at identifying an initial, low-cost,
feasible path to the goal in configuration space. Secondly, the
algorithm is able to take advantage of available computation
time to refine this solution towards an optimal one. We
achieve these characteristics by combining the Ball Tree
algorithm, which maintains sparse trees to efficiently reach
the goal, the RRT∗ algorithm, which provides the anytime
refinement of the tree, and a memoization method, which
speeds up the collision checking procedure.

The proposed algorithm is called the BT+RRT∗ in this
text. The details of this algorithm are given in Perez et al. [1].



III. RESULTS

We evaluate the effectiveness of our algorithm through
both simulation studies and experiments on the PR2 robotic
platform. We first perform a Monte Carlo study to analyze
the algorithm’s performance in comparison to that of the RRT
and RRT∗ on two different planning problems for the PR2
robot. The first involves solving for a configuration space
path that brings a single, seven degree of freedom arm to a
pre-grasp pose. In the second scenario, we consider jointly
planning trajectories for both arms (see Fig. 1). The experi-
ments utilize the OpenRAVE simulation environment [4].

A. Single-Arm Scenario (Seven Degrees of Freedom)

The results for the seven degree of freedom single-arm
planning scenario are summarized in Fig. 2. As a result of
the sparse tree structure provided by the Ball Tree method,
the algorithm requires less time than the RRT and RRT∗ to
identify an initial solution that, nonetheless, exhibits a low-
cost nearly identical to that of the first RRT∗solution. The
BT+RRT∗ algorithm utilizes the remaining computation time
to refine the solution, with a convergence very similar to that
of the RRT∗as evident in the lower plot.
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Fig. 2. Solution cost as a function of computation time, averaged over the
set of single-arm Monte Carlo simulations for the three algorithms. Vertical
bars indicate standard deviation over the 100 runs while open circles denote
the average completion time. The bottom figure presents an inset view that
compares the mean behavior of our algorithm with that of the RRT∗.

B. Dual-Arm Scenario (Fourteen Degrees of Freedom)

TABLE I
FOURTEEN DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT∗ RRT RRT∗
Success Rate (100 runs) 100.00% 25.00% 59.00%

First Solution Time (s) 34.76 (60.06) 70.78 (82.90) 106.20 (108.65)
Cost (rad) 9.82 (2.94) 21.00 (7.69) 10.03 (2.61)

Final Solution Time (s) 374.65 (46.46) 263.16 (30.40) 380.82 (34.20)
Cost (rad) 8.64 (1.95) 21.00 (7.69) 9.28 (2.14)

Time per Iteration (ms) 37.50 (4.65) 26.34 (3.04) 38.12 (3.42)

The results for this scenario are summarized in Table I.
Allowing a maximum of 10,000 iterations, the RRT∗ was
able to find a solution in 59 of the runs and the RRT was
successful in only 25. The BT+RRT∗ algorithm identified
a trajectory every time and, much like the seven degree of

freedom simulations, returned an initial solution much sooner
than the RRT and RRT∗. The algorithm then refines the
solution, exhibiting an improvement in cost that resembles
that of the RRT∗, both in terms of mean cost and variance.
After 10,000 iterations, the BT+RRT∗ yields an average
trajectory cost slightly better than that of the RRT∗.

C. PR2 Experimental Validation
In addition to the Monte Carlo simulations, we utilized

our algorithm to execute both the single-arm and dual-
arm scenarios on the experimental PR2 platform. We
demonstrated our planner together with the standard RRT
approximately a dozen times for each of the two cases. Both
algorithms were allowed 1000 iterations in the single-arm
scenario and 2000 iterations in the dual-arm scenario.
Fig. 1(b) presents a time lapse image that shows the typical
trajectories that result from our planner. We compare this
with the RRT solutions that typically require excessive arm
motion. The consistency with which our algorithm plans
efficient paths through configuration space supports the
small variance in the lower cost solutions found in the Monte
Carlo simulations. Videos that show single-arm and dual-arm
planning with our algorithm on the PR2 robot are available at
http://ares.lids.mit.edu/manipulation planning/

IV. CONCLUSION

Incremental sampling-based motion planners such as the
RRT are able to identify feasible motion plans quickly,
making them appealing for manipulation. However, the re-
sulting solutions are often far from optimal and the ex-
ploration of the space is commonly sacrificed to avoid
computationally-expensive collision checking. This paper
described a sampling-based planning algorithm that leverages
the efficient planning capabilities of the Ball Tree algo-
rithm together with the asymptotic optimality provided by
the RRT∗. Moreover, the algorithm delays checking paths
for collision until it is absolutely necessary and leverages
memoization to reduce its computation time. We employed
Monte Carlo simulations to evaluate the algorithm’s ability
to provide low-cost solutions for high-dimensional planning
problems in a timely fashion. We further demonstrated the
algorithm’s effectiveness on the PR2 robot.
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