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I. INTRODUCTION

A close look at the literature in robotics reveals that robots
are increasingly being provided with sophisticated skills.
Many of these skills are coded in programs or routines freely
available to researchers and engineers alike, so that they can
build more sophisticated systems. However, in spite of the
huge array of skills available, the creation of truly effective
autonomous robotics systems still evade researchers.

When faced with the task of designing a robot that solves
a particular problem, a roboticist has to answer the following
questions:

• Which skills are needed and how to combine them.
• How skills should be modified to work in cooperation

with others.
• Which skills are not available and need to be created.

In this paper we propose to address these problems in a
autonomous way and within the same framework. We rely
on the assumption that many low and high level actions can
be reliably performed by a robot using ad-hoc algorithms.
These include for example object detection, motion planning
and grasping. The role of our proposed algorithm is therefore
to i) structure and organise the execution of available actions,
ii) adapt these actions to solve a particular problem, iii) create
new actions when necessary. This process can be carried on
in a hierarchical fashion.

In our proposed approach an action is performed by a
Finite State Automaton (FSA, plural automata) [1], whose
nodes represent skills that are externally provided to the
robot (or previously created actions) and whose transitions
are the outcomes of the actions. Each action can have a set
of parameters. The FSA are instantiated by a an evolutionary
process [2] that simultaneously evolves the topology of the
FSA and the parameters of the actions. Given the particular
problem that we aim to solve we have been required to devise
new evolutionary operators.

The proposed approach does not depend on a particular
implementation of an action. Therefore if a new action is
provided that performs better than an old one, the corre-
sponding node in the evolved FSA can be replaced with the
new action without impairing the functionalities of the FSA.
Reuse of components thus becomes an important advantage
of our proposed algorithm.

We have conducted several experiments, both on a real
robot and on a simulator, and we conducted extensive testing

to prove that the obtained FSA can reliably drive the robot
to solve the problem for which they were evolved. The code
for the all the experiments is available on-line1.

II. TECHNIQUES

A. Finite State Automaton

Given our particular application, our formulation of the
FSA differs from the classic one adopted for example in [1].
We define an FSA as a quadruple (A,O, δ, s), where:

• A is a finite, non-empty set of actions.
• O is a finite set of outcomes. Each outcome j of state
ai is denoted by outj [ai].

• δ : A×O → A is the transition function.
• s is the initial state.

In addition to the above, all the states have a (potentially
empty) set of real-valued parameters and they share a com-
mon memory where they can read and write data. The role
of the shared memory is to share information so as to enable
passing of data between actions.

B. Evolutionary Algorithm

The evolutionary algorithm we used follows the general
standard structure described for example in [2]. The imple-
mentation made use of the library PyEvolve described in [3].

C. Genome Representation

The genome is represented as a directed graph G = (V,E)
with parallel edges, where V is the set of the nodes and E
is the set of edges. A node vi ∈ V is associated with a
single action type aj ∈ A, and it has a (possibly empty)
list of real-valued parameters 0 ≤ αi ≤ 1. The meaning of
the parameters is action-specific. As every action aj has a
fixed number of outcomes, every node will have a specific
number of outgoing edges, each of them representing the
specific outcome of an action. In addition to the nodes and
edges, the genome encodes the FSA starting state. There is
no restriction on the action type the node can be associated
to, and several nodes can have the same action type.

1https://github.com/lorenzoriano/Graph-Evolve



D. Genetic Operators
Mutation happens both at the graph-level and at the node

level. At the graph level new nodes can be added or deleted,
and the graph structure changes accordingly. A the node
level outgoing edges could change their destination node,
paramters are mutated or the whole node is recreated with a
new associated action.

Crossover between two graphs is perfomed by selecting
two random subgraphs from each parent and swapping them,
ensuring that in the resulting offsprings all the nodes are
reachable from the starting state. Following the idea that
nodes which are close in the graph are likely to be working
together, the two subgraphs are chosen starting from a
random initial node and selecting neighbours using breadth
first search.

E. Simulator
Our approach requires a simulator to evolve a FSA. How-

ever a simulator only needs to represent high-level actions
and their effect, rather than the physics of the robot and
its interactions with the environment. For example we deal
with a grasping action in a high-level way: the result of
grasp(object i) is simply “object i is in the robot gripper”,
without caring about the low-level details of the grasping
itself. The main assumption behind this work is that several
actions are already implemented, including high level ones
like perception, grasping, navigation and localisation. If a
better grasping algorithm is provided, the old one can be
replaced with the new one without affecting the simulations
or any previously evolved FSA.

III. EXPERIMENTS

We tested our proposed system in several experiments,
both in simulation and on a real mobile manipulator PR2
robot. Here we show the results we obtained in two main
experiments.

A. Moving to Grasp
Many robotics applications require the robot to be able

to manipulate objects. The approach we use to grasp an
object [4] works only if it is reachable by the robot. However
during our experiments we found that an object is often hard
to reach, even if it is close to the robot. This is due to
physical constraints of the robot’s arms that are not easy
to analytically model. The main goal of this experiment
is to show how our proposed approach can generate novel
actions when the available ones are not sufficient to solve
a problem. Our generic action is represented by a fully
recursive neural network with fixed topology [5] whose
weights are represented by the parameters of the associated
node in the FSA.

The evolutionary algorithm took 1633 generations to con-
verge to a solution. The resulting FSA has been tested in
395 random starting locations. We only allowed the object
to be not more than 1.5 meters away from the robot and not
behind it. The robot was able to reach and push the object
323 times out of the 395 tests, thus obtaining a success rate
of about 82%.

B. Stacking Objects

The sceond experiment’s goal is to show how previously
evolved actions can be used in a new evolutionary config-
uration and to study the interplay between parameters of
different actions. We devised a scenario where a robot is
facing two objects and it has to stack one over the other.
There are no restrictions on which object the robot is allowed
to take, as long as at the end of the trial one object is
positioned over the other.

Our proposed algorithm obtained a successful FSA after
603 generations. We tested the FSA in 20 different scenarios,
with objects of different shapes and positions. The robot
successfully executed the stacking action in all the scenarios.
In one scenario the robot successfully placed a bottle inside
a bag. This proves that the evolved FSA can deal with
scenarios for which it was not evolved.

IV. CONCLUSIONS AND FUTURE WORK

The main contributions of this work are:
• A framework that combines structuring, adapting and

creating new actions to solve robotics problems.
• A new evolutionary algorithm to evolve both the topol-

ogy and the parameters of FSA.
We performed experiments to prove that our proposed evo-
lutionary algorithm has good performance in a variety of
scenarios. Moreover we proved that, although the evolution-
ary process is performed in simulation, the results have been
straightforwardly applied to a real robot. We have included
videos to document the experiments and the source code for
the evolutionary algorithm is available on-line.
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