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Fig. 1: Shown is an optimal path in three dimensions of
a cost function that varies only in one dimension. The
blue blocks represents high-cost regions, assumed to extend
ad infinitum in directions orthogonal to the cost variation
direction. The optimal path can be shown to lie in a two-
dimensional subspace: the smallest subspace that contains
both the direction of cost variation and both of the endpoints.

The challenge of motion planning for a robot with many
degrees of freedom has inspired a plethora of interesting
solutions, many of which have become staples of the robotics
research community. In particular, sampling-based planners
often succeed in producing motion plans for complex, high-
dimensional problems while being very flexible and rela-
tively simple to implement. Unfortunately, these desirable
qualities come at a cost of generally low solution quality.
This is particularly a concern in the problem of planning for
a high-dimensional robot arm, which is the subject of the
current work. Much recent work has attempted to address
this issue via extensions of sampling-based planners ([1], [2],
[3], [4]), while other work has focused on adapting classical
deterministic search to high-dimensional settings ([5], [6]).

Our approach is based on a method we have re-
cently developed, known as Learning Dimensional Descent
(LDD [7]), that differs fundamentally from typical sampling-
based and seach-based planners. The key result that motivates
LDD is that optimal paths associated with low-dimensional
cost functions, lie in low-dimensional subspaces, as illus-
trated in Fig. 1. Suppose we are given a cost function—i.e.,
a function mapping our configuration space to a scalar cost—
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and we wish to find a continuous path through configuration
space that minimizes the cost integrated over the path. Fig. 1
illustrates a particular cost function, where high-cost regions
are depicted by blue blocks. If the cost function varies
only in one dimension, we can then show that any optimal
path associated with this cost function, lies in the smallest
subspace that contains both the direction of cost variation
and the endpoints. This idea readily generalizes to vector
spaces of arbitrary dimension. It is straightforward to see how
knowing this subspace in advance leads to computational
benefits—instead of searching over a high-dimensional space
for the optimal path, we can restrict our computation to a
low-dimensional subspace.

LDD implements this idea, but with adjustments that
make it suitable for the typical case where low-dimensional
structure is present only approximately. LDD first finds a
basis W for the subspace that best captures the variation of
the cost function. This is accomplished by sampling along
with a simple spectral optimization, analogous to PCA. It
then finds a sequence of paths x̄k via the following iteration,
where J{x} is the cost of the path x(·) and W k is a
submatrix of W :

x̄k+1(t) = arg min
ak(t),s(t)

J{W kak(t) + x̄k(s(t))}. (1)

Each step in the iteration involves solving a low-dimensional
dynamic programming problem. In the ideal case, this it-
eration will find the globally optimal solution in one step,
as it will search over exactly the subspace guaranteed to
contain the optimal solution (given a suitable W ). Otherwise,
it will cycle through the dimensions in order of decreasing
importance, optimizing each in turn.

We implemented LDD in a mixture of OCaml and C++
with interfaces to ROS, the open-source Robot Operating
System1. The resulting code is freely available online under
an open-source license2. LDD was applied specifically to the
problem of arm planning for the Willow Garage PR2 robot.
LDD was compared to post-processed SBL [8] (a bidirec-
tional sampling-based planner with lazy collision checking),
using the open-source OMPL [9] implementation of the
latter. Our objective was mainly to compare the consistency
and quality of the solutions obtained with both methods.
We used measured arc length of the seven-dimensional joint
trajectories as a primary metric in order to compare the
quality of the solutions.

1http://www.ros.org
2Package penn-ros-pkgs/ldd plan, available at https://

mediabox.grasp.upenn.edu/svn
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Fig. 2: Experimental comparison of repeatability and quality of trajectories obtained with LDD and SBL, with and without
post-smoothing, for each of two scenarios. Each plot shows 35 joint angle trajectories: one for each matching of seven joints
and five trials. Trajectories are plotted with (offset-normalized) joint angle on the horizontal axis and arc length (i.e., time)
on the vertical axis. A thick horizontal line is plotted to mark the arc length at the end of each seven-dimensional trajectory.

Results are shown in Fig. 2 (see caption for detailed
interpretation). Visualizing the joint trajectories bore out our
observation that the LDD trajectories were usually nearly
identical across trials. Smoothing the LDD trajectories also
provided fairly little benefit in terms of decreasing arc
length (vertical axis), indicating that these solutions were
probably nearly optimal to begin with. As expected, the SBL
trajectories were long and inconsistent across trials before
smoothing. Smoothing these sometimes helped dramatically,
but results were generally unpredictable. In both experiments,
the unsmoothed LDD output almost always surpassed even
the smoothed output of SBL. Finally, the consistency of SBL
between trials was not obviously improved by smoothing.

We have demonstrated empirically that LDD finds high-
quality plans for a robot arm operating in cluttered environ-
ments. The solutions obtained thus were of a significantly
higher quality and much more consistent than those obtained
using the common method of finding a feasible path with
a sampling-based planner followed by post-smoothing. This
provides important experimental validation of the concept
that learning and exploiting low-dimensional structure is a
promising avenue for further research as well as a practical

method for solving difficult planning problems today.
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