A Volumetric Contact Model for Space Robot and Planetary Rover Application

Willem Petersen Mike Boos John McPhee Yves Gonthier*

University of Waterloo Systems Design Engineering

Waterloo

*Agence Spatiale Canadienne Canadian Space Agency

Introduction Elastic Foundation Model Experimental Validation Planetary Rover Simulation Platform Future Work

Outline

- **Experimental Validation** 3
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

6 Future Work

-

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Outline

1 Introduction

- 2 Elastic Foundation Model
- 3 Experimental Validation
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

6) Future Work

同 ト イヨ ト イヨ

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Motivation

Figure: Dextre at the tip of Canadarm2 (Gonthier, 2007).

Image: A mathematical states and a mathem

э

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Contact Models

ISS battery box (Gonthier, 2007).

Point contact models

- Small contact patches only
- Simple, convex geometries
- No rolling resistance, spinning friction torque

FEM

• Too complex for real-time

- 4 同 2 4 日 2 4 日 2

A Volumetric Contact Model for Space Application

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Contact Models

Falling ISS battery box: real-time (Gonthier, 2007)

Point contact models

- Small contact patches only
- Simple, convex geometries
- No rolling resistance, spinning friction torque

FEM

• Too complex for real-time

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Volumetric contact model

Advantages

- Larger, more complex, and conforming contact patches possible
- Includes both translational (normal and friction forces) and rotational (rolling resistance and spinning friction torque) dynamics.

(4月) (1日) (日)

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Volumetric contact model

Advantages

- Larger, more complex, and conforming contact patches possible
- Includes both translational (normal and friction forces) and rotational (rolling resistance and spinning friction torque) dynamics.
- Validation of the model still required for hard contact (metals)

- 4 回 ト 4 ヨト 4 ヨト

Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

- Experimentally validate the normal force components of the volumetric contact dynamics model for hard-on-hard (metal) contact
- ② Demonstrate parameter identification for this model

・ 同 ト ・ ヨ ト ・ ヨ ト

Volumetric model Normal forces Friction forces

Outline

Elastic Foundation Model

- Volumetric model
- Normal forces
- Friction forces

3 Experimental Validation

- 4) Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

Future Work

- ● ● ●

-

Outline

Elastic Foundation Model

- Volumetric model
- Normal forces
- Friction forces

3 Experimental Validation

- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

Future Work

 - 4 E

Volumetric model

Introduction Elastic Foundation Model

Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Volumetric model Normal forces Friction forces

Volumetric model

Figure: A volumetric contact model based on a Winkler foundation.

$$p(\mathbf{s}) = \frac{df_n}{dS} = k_v \delta(\mathbf{s})(1 + av_n)$$

Image: A math a math

- ∢ ⊒ →

Volumetric model Normal forces Friction forces

Volumetric properties

Volumetric properties

- V volume of interference \mathbf{J}_{s} surface-inertia t
- n contact normal

 J_s - surface-inertia tensor J_v - volume-inertia tensor

Y. Gonthier A Volumetric Contact Model for Space Application

Volumetric mode Normal forces Friction forces

Outline

Elastic Foundation Model

- Volumetric model
- Normal forces
- Friction forces
- 3 Experimental Validation
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

Future Work

/□ ▶ < 글 ▶ < 글

Introduction Elastic Foundation Model

Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work

Normal forces

Volumetric model Normal forces Friction forces

Normal force

$$\mathbf{f}_{\mathrm{n}} = k_{v} V (1 + a v_{cn}) \mathbf{n}$$

Introduction Elastic Foundation Model

Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Volumetric model Normal forces Friction forces

Rolling resistance

Rolling resistance torque

 $oldsymbol{ au}_{\mathrm{r}} = oldsymbol{k}_{\mathrm{s}} \cdot oldsymbol{\omega}_{\mathrm{t}}$

< 17 ▶

э

Volumetric model Normal forces Friction forces

Outline

Elastic Foundation Model

- Volumetric model
- Normal forces
- Friction forces
- 3 Experimental Validation
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

Future Work

同 ト イヨ ト イヨ

Volumetric model Normal forces Friction forces

Friction

The model can include tangential friction forces and spinning friction torque.

Friction forces (Gonthier et al., 2007) $\mathbf{f}_{t} = -\mu_{c} f_{n} \frac{\mathbf{v}_{ct}}{V_{avg}}$ $\boldsymbol{\tau}_{s} = -\frac{\mu_{c} f_{n}}{V V_{avg}} \mathbf{J}_{s} \cdot \boldsymbol{\omega}_{n}$

Outline

- Normal force experiments
- Friction force experiments

Outline

Elastic Foundation Model

- Experimental Validation
 Normal force experiments
 - Friction force experiments
 - 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

6 Future Work

Normal force experiments Friction force experiments Key findings

Normal force experiments Friction force experiments Key findings

Apparatus in normal configuration

Y. Gonthier A Volumetric Contact Model for Space Application

< 4 ₽ > < Ξ

< E

Normal force experiments Friction force experiments Key findings

Quasi-static results with sphere on aluminum

Y. Gonthier A Volumetric Contact Model for Space Application

Normal force experiments Friction force experiments Key findings

Quasi-static results with sphere on magnesium

Magnesium surface tarnished quickly after polishing Orthotropic material

Volumetric stiffness $k_{\rm v} = 3.82 \times 10^{13} N/m^3$

Normal force experiments Friction force experiments Key findings

Cylinder-on-plane contact

- Non-linear force-displacement relationship
 - Either misalignment or surface asperities
- Used a cylindrical wedge to estimate possible misalignment for the volumetric model

Normal force experiments Friction force experiments Key findings

Quasi-static results with cylinder on aluminum

Y. Gonthier A Volumetric Contact Model for Space Application

Normal force experiments Friction force experiments Key findings

Quasi-static results with cylinder on magnesium

Y. Gonthier A Volumetric Contact Model for Space Application

Outline

Elastic Foundation Model

3

Experimental Validation

- Normal force experiments
- Friction force experiments
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

6 Future Work

Y. Gonthier A Volumetric Contact Model for Space Application

Friction force experiments

Normal force experiments Friction force experiments Key findings

Apparatus in friction configuration

Y. Gonthier A Volumetric Contact Model for Space Application

∃ ► < ∃ ►</p>

Normal force experiments Friction force experiments Key findings

Static friction for translation

Coefficient of static friction
$$\mu_s \approx 0.2$$
Bristle stiffness and damping
 $\sigma_0 = 4500 m^{-1}$ $\sigma_1 = 300 s/m$ Y. GonthierA Volumetric Contact Model for Space Application

Normal force experiments Friction force experiments Key findings

Kinetic friction for translation

Coefficient of kinetic friction $\mu_d \approx 0.2$

Friction force experiments

Rotation experiments

Y. Gonthier

Normal force experiments Friction force experiments Key findings

Conensou effect experiment

Tangential force measurements

Spinning torque measurements

Normal force experiments Friction force experiments Key findings

Key findings

- Normal contact
 - Experiments compare well against Hertzian models
 - Applicability to unusual geometries demonstrated
 - Inverse relationship between impact velocity and damping

Normal force experiments Friction force experiments Key findings

Key findings

- Normal contact
 - Experiments compare well against Hertzian models
 - Applicability to unusual geometries demonstrated
 - Inverse relationship between impact velocity and damping
- Friction contact
 - Similar results for translation and rotation
 - Adhesion effect observed
 - Contensou effect demonstrated

A (10) < (10) < (10) </p>

Outline

- 2 Elastic Foundation Model
- 3 Experimental Validation
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

6 Future Work

同 ト イヨ ト イヨ

Motivation for Hyperelastic Foundation

Tire Model for Planetary Rover Simulation

Off-Road Tire Models

- Rigid/Flexible wheel
- Soft soil

Contact Modelling

- Soft-soft contact
- Large deformation
- Highly nonlinear soil properties

Hyperelastic foundation model is required

Volume vs. Hypervolume

Elastic Foundation:

$$\mathbf{F}_{n,L} = k_{v} \underbrace{\int f_{S}(\mathbf{S}) \, dS}_{\text{Volume } V} \mathbf{n}$$

Hyperelastic Foundation:

$$\mathbf{F}_{n,NL} = k_{v} \underbrace{\int f_{S}^{n}(\mathbf{S}) \, dS}_{\text{Hypervolume } V_{h}} \mathbf{n}$$

Y. Gonthier A Volumetric Contact Model for Space Application

Cylinder on Flat Ground

Exact Solution: Find m for a variation of n

$$\int f_S^n\left(\mathbf{S}\right) dS - V^m = 0$$

Y. Gonthier

A Volumetric Contact Model for Space Application

Cylinder on Flat Ground

Series Solution: Find α_i for a certain *n* and dz = 0..R

Y. Gonthier

A Volumetric Contact Model for Space Application

Cylinder on Flat Ground

Mean Value Solution: Find $c_{v}(V)$ for a variation of n

$$F_{n,NL} = k_v b \int_{-a}^{a} g(x)^n dx$$
$$= k_v b \int_{-a}^{a} g(x)^{(n-1)} g(x) dx$$

Apply 'Mean Value Theorem'

$$F_{n,NL} = k_{v}bc_{v}(V)\int_{-a}^{a}g(x) dx$$

= $k_{v}bc_{v}(V)V$ with $c_{v}(V) = \frac{\int_{-a}^{a}g(x)^{n} dx}{\int_{-a}^{a}g(x) dx}$

Cylinder on Flat Ground

Results of $c_v(V)$ for wheel with R = 0.15

Tire/Soil Contact Model

- Vertical Force:
 - Hyperelasic foundation model
 - Bekker soil parameters
- Longitudinal Force:
 - Traction force (Janosi-Hanamoto, grousers)
 - Resistance force (soil compaction)

Outline

1 Introduction

- 2 Elastic Foundation Model
- 3 Experimental Validation
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

Future Work

・ 同 ト ・ ヨ ト ・ ヨ

Planetary Rover Model

- Developed MapleSim 4.5 Model
- Exported symbolic equations to S-function block
- Developed Simulink model and with LLG contact models

Planetary Rover Simulation Platform

Combine tire model with rover dynamics

Planetary Rover Simulation

Simulation and animation of rover with Parallel Geometry Inc. (LLG) software

伺下 イヨト イヨ

Outline

1 Introduction

- 2 Elastic Foundation Model
- 3 Experimental Validation
- 4 Hyperelastic Foundation Model
- 5 Planetary Rover Simulation Platform

6 Future Work

同 ト イヨ ト イヨ

Future work

1. Experimental validation of hyperelastic contact models

2. Use more sophisticated tire and terrain geometries

3. Develop models to run on a high performance computer

- Y. Gonthier. *Contact Dynamics Modelling for Robotic Task Simulation*. PhD thesis, University of Waterloo, 2007.
- Y. Gonthier, J. McPhee, and C. Lange. On the implementation of Coulomb friction in a volumetric-based model for contact dynamics. In *Proceedings of ASME IDETC*, Las Vegas, Nevada, September 2007.