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GCOE for Cognitive Neuroscience Robotics 
Hiroshi Ishiguro 

Dept. of Systems Innovation, Graduate School of Engineering Science, Osaka University, Japan 

 

This COE aims to develop new IRT (Information and Robot Technology) systems that 

can provide information and services based on understanding the meta-level brain 

functions of humans. We call this new interdisciplinary research area “Cognitive 

Neuroscience Robotics,” which integrates our studies in robotic, cognitive science, and 

brain science, being conducted at Osaka University and ATR. 

 

Our robotics research is distinguished by human-oriented studies. We aim to understand 

human intelligence and cognitive development by developing humanoids and androids. 

Our studies on human-robot interaction and on modeling of cognitive development 

address basic problems among human and machines, i.e., what is human intelligence. 

Studies on cognitive science have advanced with technologies. Systems for measuring 

human gaze and gestures as well as biological information have contributed it. Robotics 

and sensory network can be next promising approach. Therefore, this COE integrates 

these with cognitive science in order to develop human-friendly robots as well as to 

reveal human cognition. Our studies on brain science will further enhance the 

interdisciplinary research. It will enable us to uncover human cognitive function and 

then to propose a new design principle for IRT systems. 
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Abstract— This paper describes an ongoing interdisciplinary 
collaboration between robotics and human cognitive 
neuroscience research, focusing on body movement perception. 
We argue such research is beneficial to both disciplines and can 
be viewed a win-win. Not only it is important to understand the 
human factors in human-robot interaction, collaborations with 
robotics can also help neuroscientists answer questions about 
human brain and behavior, and take steps toward understanding 
how the human brain enables some of our most important skills 
such as action understanding, social cognition, empathy, and 
communication. 

Social robotics, neuroimaging, fMRI, uncanny valley 

I. INTRODUCTION 
From creation myths to modern horror stories (e.g., 

Frankenstein), humans have long been preoccupied with 
creating other entities in their likeness. Advances in technology 
now allow us to create increasingly realistic and interactive 
humanoid agents. Lifelike humanoid robots are becoming 
commonplace; and assistive technologies are changing the face 
of education and healthcare [1,2]. Research on how humans 
perceive, respond to and interact with these agents is 
increasingly important. However little is understood about 
human social cognition in this new context. An 
interdisciplinary perspective on human-robot interaction (HRI) 
is important, since this field will impact issues of public 
concern in the near future, for example in domains such as 
education and healthcare [3-5]  

Our research brings together robotics with cognitive 
neuroscience to explore how humans perceive, respond to, and 
interact with others, including artificial agents, and specifically, 
robots. The research program is interdisciplinary, spanning the 
biomedical and social sciences and engineering. Neuroscience 
and psychology research exploring HRI can make valuable 
contributions to robotics. Conversely, experiments in 
collaboration with roboticists can help advance neuroscience 
by allowing us to ask new questions, or control parameters we 

cannot manipulate in biological systems.  

The goal of this research program is to both improve our 
understanding of how the human brain enables social 
cognition, and to help engineers and designers in developing 
interactive agents that are well-suited to their application 
domains, as well as to the brains of their creators. 

II. ACTION PERCEPTION AND ROBOTICS 
In primates, the perception of body movements is supported 

by network of lateral superior temporal, inferior parietal and 
inferior frontal brain areas. Here, we refer to this network as 
the action perception system, or APS (Fig. 1). Two of the areas 
within the APS, (PMC and IPL) contain mirror neurons in the 
macaque brain [6]. Mirror neurons respond not only when a 
monkey executes a particular action, but also when it observes 
another individual perform the action. For instance a mirror 
neuron that fires as the monkey cracks a peanut, can also fire as 
the monkey observes someone else crack a peanut. It is thought 
that a similar system underlies action perception in the human 
brain [7-10]. Some researchers have argued that in addition to 
subserving action processing, the APS helps in linking “self” 
and “other” in the brain, and thus may constitute a basis for 
social cognition [6].  

The finding that the visual perception of another entity 
automatically engages the observers’ own motor system has 
important implications for the field of human-machine 
interaction. It would be fair to say that in the nervous system, 
simply seeing another agent automatically engages interaction. 

This research was supported by the Kavli Institute for Brain and Mind 
(KIBM), California Institute for Telecommunications and Information 
Technology (Calit2), Japan Society for the Promotion of Science (JSPS), the 
Wellcome Trust, and the European Commission.  
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Figure 1: Schematic of the Action Perception System (APS), consisting of 
posterior Superior Temporal Sulcus (pSTS), Inferior Parietal Lobule (IPL), 

and Premotor Cortex (PMC). Figure adapted from [10]. 
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The APS has received intense interest from neuroscientists 
in the last decade and a half, and we can now use the 
accumulated knowledge in this field to study how the human 
brain supports HRI. Conversely robotics can help research on 
the human brain by allowing us to test functional properties of 
the APS and other brain areas. For example, we may ask, 
during interactions with robots, does the brain rely on the same 
or distinct processes as with interactions with humans? 

Due to the presence of mirror neurons, the neural activity in 
PMC and IPL regions during action perception is often 
interpreted within the framework of “simulation”: A visually 
perceived body movement is mapped onto the perceiving 
agent’s sensorimotor neural representations and “an action is 
understood when its observation causes the motor system of the 
observer to ‘resonate”[11]. But what are the boundary 
conditions for ‘resonance’? What kinds of agents or actions 
lead to the simulation process? Is human-like appearance 
important? Is human-like motion? 

On the one hand, it seems reasonable that the closer the 
match between the observed action and the observers’ own 
sensorimotor representations, the more efficient the simulation 
will be. In support for this, the APS is modulated by whether 
the observer can in fact perform the seen movement [12]. The 
appearance of the observed agent may be additionally 
important [13, 14].  On the other hand, human resemblance is 
not necessarily always a positive feature in robots. The 
“uncanny valley” hypothesis has proposed that as a robot is 
made more human-like, the reaction to it becomes more and 
more positive, until a point is reached at which the robot 
becomes oddly repulsive [15]. While this phenomenon is well 
known to roboticists and computer animators, there is little 
scientific evidence in favor of or against it [16-21]. 

Robots can have nonbiological appearance and movement 
patterns – but at the same time, they can be perceived as 
carrying out recognizable actions. Is biological appearance or 
biological movement necessary for engaging the human Action 
Perception System (APS)? Robots can allow us to ask such 
questions and to test whether particular brain areas are selective 
or sensitive to the presence of a human, or an agent with a 
humanlike form, or respond regardless of the agent performing 
the action.   

There is a small neuroscience literature on the perception of 
artificial agents, including robots [22-25]. Unfortunately, the 
results are highly inconsistent. Many studies had used toy 
robots or very rudimentary industrial robot arms, so the results 
were not informative regarding state-of-the-art robotics. 
Furthermore, the roles of humanlike appearance or motion 
were not explored in previous work. We used neuroimaging 
(functional Magnetic Resonance Imaging (fMRI)) along with a 
method called Repetition Suppression (RS) and well-controlled 
stimuli developed by an interdisciplinary team, allowing us to 
overcome limitations of previous work [26, 27]. 

III. NEUROIMAGING STUDY: PERCEPTION OF ROBOT 
ACTIONS 

We performed fMRI as participants viewed video clips of 
human and robotic agents carrying out recognizable actions. 
fMRI is a powerful method that allows imaging the activity of 

the live human brain non-invasively and has revolutionized 
neuroscience. We worked with Repliee Q2, an android 
developed at Osaka University in collaboration with Kokoro 
Ltd [28, 29]. Repliee Q2 has a very human-like appearance 
(Fig. 2, Android (A)). In order achieve this, the robot’s face 
was modeled after an adult Japanese female (Fig. 2, Human 
(H)). Repliee Q2 can make facial expressions, as well as eye, 
head, upper limb, and torso movements. It has 42 degrees of 
freedom (d.o.f.) in its movements, with 16 d.o.f. in the head. 
With very brief exposure times, Repliee Q2 is often mistaken 
for a human being, but more prolonged exposure and 
interaction can lead to an uncanny valley experience [29].  

Importantly, Repliee Q2 was videotaped both in its original 
human-like appearance (A) and in a modified, more 
mechanical appearance (Fig. 2, Robot (R)). In this latter 
condition, we removed as many of the surface elements as 
possible in order to reveal the electronics and mechanics 
underneath. The silicone covering the face and hands could not 
be removed, so we used a custom mask and gloves to cover 
these areas. The end result was that the robot’s appearance 
became obviously mechanical and nonhuman.  However, since 
the A and R are in fact the same robot, the motion kinematics 
are the same for these two conditions. 

There were thus three agents: human (H), robot with human 
form (A), and robot with nonhuman form (R). H and A are 
very close to each other in form, both with humanlike form, 
whereas R has nonhuman form. In terms of the movement, H 
represents truly biological motion and A and R are identical, 
both with mechanical kinematics. Using fMRI and RS, we 
explored whether the human brain would display specialization 
for human form (similar responses for A and H, and different 
for R) or motion (similar responses for R and A, and 
differential responses for H). Another possibility was for RS 
responses not to reflect biological form or motion per se, but 
instead pattern like the uncanny valley. In this scenario, the RS 
responses to the H and R would be similar to each other, even 
though these two agents are divergent from each other in both 
form and movement (Fig. 2). 

The articulators of Repliee Q2 were programmed over 
several weeks at Osaka University. The same movements were 
videotaped in both appearance conditions (R and A). The 
human, the same female adult to whom Repliee Q2 was 
designed to resemble, was asked to perform the same actions as 
she naturally would. All agents were videotaped in the same 
room and with the same background. A total of 8 actions per 
actor were used in the experiment (e.g., drinking water from a 

 
Figure 2: Stills from the videos depicting the three agents (R, A, H) and 

the experimental conditions (form and motion) they represent.  

 
 



cup, waving hand). 20 adults participated in the fMRI 
experiment. Participants had no experience working with 
robots. Each was given exactly the same introduction to the 
study and the same exposure to the videos prior to scanning 
since prior knowledge can affect attitudes to artificial agents 
differentially [30]. Before the experiment, subjects were told 
that they would see short video clips of actions by a person, or 
by two robots with different appearances and were shown all 
the movies in the experiment. By the time scanning started, 
participants were thus not uncertain about the robotic identity 
of the android.  

Scanning was conducted at the Wellcome Trust Centre for 
Neuroimaging, in London, UK using a 3T Siemens Allegra 
scanner and a standard T2* weighted gradient echo pulse 
sequence. During fMRI, subjects viewed the stimuli projected 
on a screen in the back of the scanner bore through a mirror 
placed inside the head coil. There were blocks of 12 videos, 
each preceded by the same video (Repeat) or a different video 
(Non-repeat), which allowed us to compute the RS contrast 
(Non-repeat > Repeat). Every 30-seconds, they were presented 
with a statement about which they would have to make a 
True/False judgment (e.g., “I did not see her wiping the table”). 
Since the statements could refer to any video, subjects had to 
be attentive throughout the block. Data were analyzed with 
SPM software (http://www.fil.ion.ucl.ac.uk/spm).  

RS differed considerably between the agents (Fig. 3). All 
agents showed RS in temporal cortex near the pSTS. For A, 
extensive RS was found in additional regions of temporal, 
parietal and frontal cortex (Fig. 3b).  

In the left hemisphere, lateral temporal cortex responded to 
H and A, but not to R. The specific location of this activation 
corresponds to extrastriate body area (EBA), a region that 
responds strongly during the visual perception of the body and 
body parts [31]. Our data showed that robotic appearance can 
weaken the RS response in the EBA.  

Aside from the left EBA, we did not find evidence for APS 
coding for human-like form or motion per se. Instead, for the 
android, whose form is humanlike, but its motion is 
mechanical, increased responses were found in a network of 
cortical areas. This was most pronounced (and statistically 
significant) in the IPL [27], one of the nodes of the APS (Fig. 
3b, circled areas). 

But why would there be an area of the brain highly 
selective for androids? This response pattern brings to mind the 
uncanny valley – except, rather than valleys, we measured 
“hills” in the neural responses, in the form of increased RS. A 
framework within which to interpret these data is the predictive 
coding account of cortical computation [32-34]. Predictive 
coding is based on minimizing prediction error among the 
levels of a cortical hierarchy (e.g. the APS). More specifically, 
during the perception of H and R, there is no conflict between 
form and motion of the agent. H appears human and moves like 
a human. R appears mechanical and moves mechanically. For 
A on the other hand the agent’s form is humanlike, which may 
result in a conflict when the brain attempts to process and 
integrate the movement of the agent with its form. This conflict 
leads to the generation of a prediction error, which is 
propagated in the network until the predictions of each node are 
minimized. During this process, we can measure the prediction 

error in the fMRI responses. It is not possible from the current 
data to know the exact neural sources, the directionality, and 
the time course of error propagation, but it is clear that the 
cortical network is engaged more strongly during the 
perception of A compared with the agents that lead to less 
prediction error (R and H). Furthermore, the effect is largest in 
parietal cortex, which is the node of the network that links the 
posterior, visual components of the APS and the frontal, motor 
components [27, 35]. 

In summary, in this interdisciplinary study, we found that a 
robot with highly humanlike form is processed differentially 
compared with a robot with a mechanical form, or with an 
actual human. These differences are found in a network of 
brain areas, most prominently in parietal cortex [27]. We 
propose these “hills” in the brain activity reflect the prediction 
error that is propagated in the system. The uncanny valley may 
thus arise from processing conflicts in the APS, and the 
resultant error signals, which can in turn be measured using 
fMRI [34].  

IV. DISCUSSION AND FUTURE DIRECTIONS 
Humanoid robots are increasingly part of our daily lives [1-

5]. With application in domains such as healthcare, education, 
communications, entertainment, and the arts, exploring human 
factors in the design and development of artificial agents is 
ever more important. This will require an interdisciplinary 
approach, to which we have contributed new data from 
cognitive neuroscience.  

We have described a neuroimaging study in order to 
explain how such work can inform both neuroscience and 
robotics. This study is only a beginning. We are currently using 
magnetoencephalography (MEG) and electroencephalography 
(EEG), both of which allow for imaging brain activity with 
high temporal resolution so that we can study the temporal 
dynamics of action processing. EEG also allows neuroimaging 
in more dynamic and interactive settings compared with fMRI. 

 
Figure 3. Repetition suppression (RS) results for the Human (a), Android 
(b), and Robot (c). (Non-repeat > Repeat at t>=8.86, p<0.05 with False 

Discovery Rate (FDR) correction for multiple comparisons, with a cluster 
size of at least 30 voxels). Figure adapted from [27]. 

. 



Using cognitive neuroscience, we have been able to suggest 
an interpretation for the classic anecdotal reports of the 
uncanny valley hypothesis. The uncanny valley has many 
potential dimensions [15, 16]. While our experiments were not 
designed in an optimum fashion to “explain” the uncanny 
valley, the results suggest an intriguing link between the 
phenomenon, and brain responses in the APS. In a predictive 
coding, the android is not predictable: an agent with that form 
(human) would typically not move mechanically as Repliee Q2 
does. When the nervous system is presented with this 
unexpected combination, a propagation of prediction error may 
occur in the APS. We suggest this framework may contribute 
to an explanation for the uncanny valley and future 
experiments will test this hypothesis.  

Using robotics, we were able to answer questions regarding 
the neural basis of action and body movement perception, an 
active research area [6-14]. We found that the brain was not by 
and large, tuned only to our conspecifics (humans). We were 
able to test functional properties of human action perception 
system (APS). These findings help shed light on how our 
brains enable social cognition, an important skill, and part of 
what it means to be human.  

Interdisciplinary collaboration between cognitive 
neuroscience and robotics can be a win-win for both sides. 
Joining forces, we can answer questions in both disciplines, 
and contribute to the science of tomorrow. 
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Many of you at this workshop are at the cutting edge of 
technical work in robotics.  You’re doing the best in the world.  
There’s also interest here on the side of cognitive neuroscience.  
In turn, I would like to show how we are creating a 
technological world where we will have not just social 
relationships with robots, but in some ways moral 
relationships, as well.  I would also like to bring forward what 
I refer to as the new ontological category hypothesis. 
 
To develop these ideas, I draw on three collaborative research 
studies. 
 
The first study focused on preschool children’s social 
interactions with Sony’s robot dog AIBO (Kahn, Friedman, 
Perez-Granados, & Freier).  In this study, we had 80 children, 
evenly divided into two age groups: 3-4 year olds; and 4-1/2 to 
5/1/2 year olds.  They came into our lab individually, and had 
a 20 minute session with AIBO.  As a comparison condition, 
they also had a 20 minute session with a stuffed dog.  During 
the session, we allowed each child to play with each of the 
artifacts (AIBO and the stuff dog), and in that context we 
asked them structured questions focused around 5 main 
categories (that we had developed from a previous study): 
animacy (e.g., Is AIBO alive?), biology (Does AIBO have a 
stomach?), mental states (Can AIBO feel happy?), social 
rapport (Can AIBO be your friend?), and moral standing (Is it 
ok to hit AIBO?).  We also video-taped all the sessions.  In 
terms of the behavioral results, 6 overarching behaviors 
emerged from the data: (1) exploring the artifact, (2) being 
apprehensive with the artifact, (3) being affectionate with the 
artifact, (4) mistreating the artifact, (5) physically animating 
the artifact, and (6), attempting to engage in reciprocal 
interaction with the artifact.  Quantitatively, we coded 2,360 
behavioral interactions between children and AIBO or the 
stuffed dog.  For the purposes of this workshop, the finding I 
want to highlight is on reciprocal interactions. Children more 
often attempted to engage AIBO in reciprocal interactions than 
with the stuffed dog (683 reciprocal behaviors with AIBO 
compared to just 180 with the stuffed dog).  In the moral 
developmental literature, going back to Jean Piaget’s 
(1932/1969) landmark work on the moral judgment of the 
child, reciprocity is foundational to moral development: in 
terms of reciprocal exchange, perspective taking, moving 

away from heteronomous relationships toward mutual, freely 
initiated interaction.  Thus our data suggest the potential for a 
moral relationship with animal robots. 
 
The second study investigated whether robotic animals might 
aid in the social development of children with autism (Stanton, 
Kahn, Severson, Ruckert, & Gill, 2008).  Eleven children 
diagnosed with autism (ages 5-8) interacted with AIBO and, 
during a different period within the same experimental session, 
a simple mechanical toy dog (Kasha), which had no ability to 
detect or respond to its physical or social environment.  
Results showed that, in comparison to Kasha, the children 
spoke more words to AIBO, and more often engaged in three 
types of behavior with AIBO typical of children without 
autism: verbal engagement, reciprocal interaction, and 
authentic interaction.  In addition, we found suggestive 
evidence (with p values ranging from .07 to .09) that the 
children interacted more with AIBO, and, while in the AIBO 
session, engaged in fewer autistic behaviors.  Based on this 
study, and other work by Scassellati (2005a,b), Dautenhahn 
(2003), and others, there is good reason to hold out promise 
for the benefits of social robots and children with autism. 
 
The third study investigated children’s and adolescents’ social 
and moral relationships with a humanoid robot (Kahn et al, 
2011).  Ninety children (9, 12, and 15-year-olds) initially 
interacted with ATR’s humanoid robot, Robovie, in 15-
minute-sessions.  Each session ended when an experimenter 
interrupted Robovie’s turn at a game and, against Robovie’s 
stated objections, put Robovie into a closet.  Each child was 
then engaged in a 50-minute structural-developmental 
interview.  Results showed that during the interaction sessions 
all of the children engaged in physical and verbal social 
behaviors with Robovie.  Based on the interview data, the 
majority of children believed that Robovie had mental states 
(e.g., was intelligent and had feelings) and was a social being 
(e.g., could be a friend, offer comfort, and be trusted with 
secrets).  In terms of Robovie’s moral standing, children 
believed that Robovie deserved fair treatment and should not 
be harmed psychologically, but did not believe that Robovie 
was entitled to its own liberty (Robovie could be bought and 
sold) or civil rights (in terms of voting rights and deserving 
compensation for work performed).  In a hypothetical scenario 
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where humans were removed from the situation, and “aliens” 
sought to treat Robovie as a non-moral entity, the majority of 
children affirmed Robovie’s moral standing across all criteria.  
Developmentally, while over half the 15-year-olds 
conceptualized Robovie as a mental, social, and partly moral 
other, they did so to a lesser degree than the 9 and 12-year-
olds.   
 
CONCLUSION 
The data from my collaborative studies support the proposition 
that children’s social and moral relationships with social 
robots of the future will be substantial and meaningful.  If this 
proposition is correct, it will create many puzzling design 
decisions.  For example, if we create robot nannies to help 
look after our children, do we design the robot to do 
everything the child asks of it?  If so, does that reify a master-
servant relationship?  If we do not, if we design the robot to 
push back and assert its own moral selfhood, that seems 
strange, too; because these robots are our technological 
creations, and arguably have no selfhood to assert. 
 
People will continue to develop  social and moral relationships 
with robots, but it is unclear how exactly these relationships 
will take shape.  One of the reasons builds on the last point I 
would like to make that involves what I refer to as the new 
ontological category hypothesis. 
 
In philosophy, ontology refers to basic categories of being, 
and ways of distinguishing them.  My lab’s hypothesis is that a 
new ontological category (a) may be emerging through the 
creation of social robots and (b) may continue to emerge as 
other embodied social computational systems (e.g., “smart” 
cars and homes of the future) become increasingly pervasive.  
 
Let me unpack the idea in this way.  In the Robovie study, we 
had asked children whether they thought Robovie was a living 
being.  Results showed that 38% of the children were 
unwilling to commit to either category, and talked in various 
ways of Robovie being “in between” living and not living or 
simply not fitting either category.  As one child said: “He’s 
like, he’s half living, half not.”  It is as if I showed you an 
orange-colored object, and asked you, Is this object red or 
yellow?  You might say neither and both.  You might say that 
while you understand the question, and that aspects of the 
question certainly make sense, that when we combined red and 
yellow together we created something uniquely its own.  That 
may be our trajectory with robots, as we create embodied 
entities that are “technologically alive”: autonomous, self-
organizing, capable of modifying its behavior in response to 
contingent stimuli, capable of learning new behaviors, 

communicative in physical gesture and language, and 
increasingly social.  In other words, I think we are creating 
something that has never existed before.  These are exciting 
times.   
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Abstract— Children with autism have difficulties with social
interaction and prefer interaction with objects, such as com-
puters and robots rather than with humans. Probo is a social
robot platform with an expressive head to study human-robot
interaction. The social robot is in this study used for Robot
Assisted Therapy (RAT) where the robot tells Social Stories to
autistic children. Social Story Telling (SST) is a known therapy
for autism in book form and is now for the first time tested by a
scoial robot able to express different emotions by its 20 motors
in the head. This paper discusses the technological innovations
required to make a useful therapeutic tool for social story
telling. Preliminary tests with Probo have shown that SST with
Probo is more effective than with a human reader.

I. INTRODUCTION
Children with Autism spectrum disorders (ASD) experi-

ence difficulties to engage in social interaction, and therefore
lack learning opportunities in their classrooms and daily
lives. Different therapies exist to attempt to lessen the
deficits and family distress. For now there is no standard
treatment, because the treatment has to be adapted to the
specific needs of each child. To improve the efficacy of
the Cognitive Behavioral Therapy (CBT) different tools are
investigated to assist the therapist like music or Animal
Assisted Therapy (AAT). Many children with ASD show an
affinity for computers [1] [2]. Due to the recent advances
in personal robots, the technology is becoming in the reach
to be used as Robot Assisted Therapy (RAT) with different
advantages over AAT. Emerging research shows, that autistic
children proactively approach robots [3], that robots can act
as a mediator between the child and the therapist [3], that
robots can be used for play therapy [4] and to elicit joint
attention episodes between a child and an adult [5]. Different
forms of robots have been used for autism therapies from
more hobby-toy style robots like GIPY-1 [3], SuperG, Cari,
Robus-T, DiskCat [6], cartoon like robots like Keepon [7],
mobile wheeled robots like Labo-1 [8], Pekee [9], IROMEC
robot system [10]; robotic animals like Aibo [11], robotic

dolls like Robota [12], and humanoid robots like Kaspar [13],
HOAP-3 [14]. The use of robots also allow to provide new
understanding of how human’s higher cognitive functions
develop by means of a synthetic approach, the so called
Cognitive Developmental Robotics (CDR) [15].

The ability to express emotions is essential in commu-
nication and is a focus in different therapies for autistic
children, also in social stories as developed by Carol Gray
in 1991 [16]. Social Stories are short stories written or
tailored to autistic individuals to help them understand and
behave appropriately in social situations. Comic strip-like
conversations using stick-figure and cartoon like emotions
illustrate an ongoing communication and help them improve
their understanding and comprehension of conversation [17].
The innovation is that for this research we use the social
robot Probo (see Fig. 1 [18]) as Story Telling agent. Probo
is a social robot that is developed as research platform
to study cognitive human-robot interaction (cHRI) with a
special focus on children. The robot Probo is designed to
act as a social interface, providing a natural interaction
while employing human-like social cues and communication
modalities. The robot has a fully actuated head, with 20
degrees of freedom, capable of showing facial expressions
and emotions. A remarkable feature is the moving trunk and
the soft and huggable jacket. A user friendly Robotic User
Interface (RUI) enables the operator to control the robot.

This paper discusses the technological innovations re-
quired to make a useful therapeutic tool for social story
telling both on hardware (section II) as software (section
III) and provides the first experimental results (section IV).

II. PROBO: HARDWARE

A. Appearance
Probo has a caricatured-zoomorphic morphology, so it

does not look like a human, but has the abilities to com-
municate the same social cues as a human. Because it has
no resemblances with existing animals or humans, it avoids
the Mori’s theory of the “uncanny valley” [19] and position
the robot on the left hand side of the diagram. The robot has a
fully actuated head with 20 DOF capable of showing facial
expressions and making eye-contact [18]. In contrast with
other robotic heads, a special body part, namely the trunk,
is added to possibly intensify certain emotional expressions
and to increase interactivity. The trunk makes the robot also
easy to recognize for the children. The colour of the robot
is green, this colour evokes mainly positive emotions such
as relaxation and comfort [20].
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Fig. 1. Outer and inner appearance of the Huggable Robot Probo.

In evaluation studies shown by Saldien et al. [18], the
facial expression of Probo are compared with other robots
such as EDDIE [21], Kismet [22], Aryan [23] and Feelix [24]
which did not cover their hardware, resulting in a mechanical
look and the absence of a skin. The presence of the skin
makes it easier to extract the facial features and explains
the better scores. An overall recognition rate of 84% was
achieved.

B. Safety and huggable aspect
Most robots have a mechanical look or are covered with

plastic or metallic shells. Their actuators are stiff which
gives them not only an unnatural look, but also an unnatural
touch. The goal of the huggable robot Probo is to serve as
robotic research platform for Robot Assisted Therapy with
autistic children. Since not only cognitive interaction, but
also physical interaction is targeted a new mechatronic design
must be developed. During the experiments we noticed and
encouraged the children to physically touch and hug the
robot, therefore safety is of primary importance in the de-
sign. Possible approaches to obtain safety are: well-thought
designs of light and flexible structures, the use of compliant
actuators, appropriate material choices, and fail safe designs.
This approach has been followed during the development of
Probo. At the same time aspects as soft and flexible materials
in combination with compliant actuators, contribute to the
huggable and soft behavior of Probo. Traditional actuators
as electrical drives with gearboxes are unsuitable to use in

Probo because they are stiff, giving an unsafe behavior and
an unnatural hard touch. Two different compliant actuators
are developed to cope with this problem, on the one side by
use of novel passive compliant actuators, Compliant Bowden
Cable Driven Actuators (CBCDA), and on the other side by
combining custom made servo motors, Non Back Drivable
Servo (NBDS), with flexible components and materials such
as springs, silicon and foam [25]. In both actuators the
flexible element plays an essential role since it decouples
the inertia of the colliding link with the rest of the robot,
reducing the potential damage during impact [26].

In order to obtain Probo’s final shape and appearance, the
internal robotic hardware is covered. The covering exists of
different layers. Hard ABS covers shield and protect Probo’s
internal hardware, shielding the internals. These covers are
fixated to the head- and body-frames at the different points.
The covers roughly define the shape of Probo. These are
manufactured by use of rapid prototyping techniques, which
means that the parts are build layer by layer. These covers
are encapsulated in a PUR foam layer, that is covered with a
removable fur-jacket. The use of the soft actuation principle
together with well-thought designs concerning the robot’s
filling and huggable fur, are both essential to create Probo’s
soft touch feeling and ensure safe interaction. An overview
of the mechanical design of Probo can be found in [27].

III. PROBO: SOFTWARE

Since the goal is to perform interaction tests with children
it was not our goal to make a fully autonomous system. Due
to the current limited state of the art, we have chosen for a
shared control with a human operator to allow for a higher
level of social interaction. For the story telling the robot was
used in a Wizard of Oz setup [28], [29]. A human operator
simulates the system’s intelligence and interacts with the user
through Probo, without the actual need to implement all this
higher level intelligence in the robot.

The software architecture of Probo is defined as a modular
structure grouping all the systems in a clear control center
(see Fig. 3). Black parts are already developed, red parts are
under development and still need to be fully implemented
in the robot. This system consists of four important blocks:
the Perceptual-System, the Cognitive Control-System, the
Expressional-system and the Motor-System. All those sys-
tems represented in Fig. 2 are made visible in an under-
standable way to the operator over the Robot Control Center
(RCC). This control center has a virtual 3D model of Probo,
that simulates all the movements of the robot and provides
a visual feedback of the robot during control. The systems
are made intuitive that make it possible for non-engineers to
work with the robot within their domain of expertise, without
the need of full understanding the underlying layers.

A. Perceptual-System

In order to interact in a social way with humans, Probo
senses its environment in a human way. Since Probo’s focuss
lies on non-verbal face-to-face communication and since it
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wants to enable physical interaction by its huggable appear-
ance, Probo is equipped with visual, auditory and tactile
perception systems. Following the modular design strategy,
the sensors, which are required to sense Probo’s environment
and physical interactions, are stand alone systems. Audio and
Vision are quite commonly found in robots, while touch is
rather new sensory input in robotics.

B. Cognitive Control-System
This part consists of different subparts:
• In the Emotion-System the emotions are parametrized.

In our model two dimensions are used: valence and
arousal to construct an emotion space. The emotion
space is based on the circomplex model of Russel [30],
see Fig. 3. Each emotion can be represented as a vector
with the origin of the coordinate system as initial point
and the corresponding arousal-valence values as the
terminal point. The direction of each vector defines
the specific emotion whereas the magnitude defines the
intensity of the emotion.

• The Homeostatic-System is a system that makes Probo
react emotionally with a model based on actions and
needs, but is not used during this therapy.

• The Behavior-System is currently under development
to improve the global social interaction level of the robot
and also not needed for this therapy.

• The Attention-System provides the robot with a locus
of attention using eg face detection. Also manual gazing
can be used (eg when is decided to look only to the child
when the story is told).

C. Expressional-system
Besides those autonomous systems of the cognitive con-

troller, different modules are foreseen to steer certain groups
of motors for specific tasks. The Animation module is pro-
vided that allows the user to assemble and manage sequences
of motions. Animations are for example that the robot sleeps
or nods with his head yes and no. In this module the different
stories are preprogrammed with the appropriate animations
as requested by the story. The module can also import
lipsync animations which are generated from a given audio
file. This creates a more lifelike talking creature. The Gaze
module makes that the eyes and neck looks to a certain
point of attention as defined by the Attention System. Each
basic emotion correspondents with a certain position of the
motors to express the facial expressions as studied in the user
tests [18] and implemented in the Facial Expressions Unit.
Prerecorded audio files are replayed for the social stories.

D. Motor-System
To make that all the motions create an illusion of life,

a combination engine (Motion Mixer) and filter system is
developed. Those systems take care that all the motions
coming from different systems are properly mixed and that
the output is one smooth and natural movement such as the
motions seen in humans and animals and not like the very
abrupt motions that we are expecting from robots.

Fig. 2. Graphical User Interface of Robot Control Center (RCC)

Fig. 3. Software Architecture of Probo

IV. PROBO AS STORY TELLING AGENT

A. Procedure

Two boys (Nicu and Mihnea) and two girls (Antonia and
Georgia) participated in the study, aged 4 to 9. The children
were diagnosed according to the Diagnostic and Statistical
Manual of Disorders IV criteria of autism. All parents
were formally informed and agreed to the participation of
their children in this study. The study took place at the
therapy centre for children with ASD. The experiments were
conducted in the same therapy room (about 20m2), see
Fig. 4) in which the children usually participated in all the
therapeutic programs. The robot operators were sitting in
another room (see Fig. 5) to control the robot. By the camera
of the robot the operator could see what was happening in
the therapy room and he could also hear the communication
to make the appropriate actions of the robot. Each child had
only one intervention session a day. The language during
interaction by the therapist and robot was Romanian (the
mother’s language of the children).

For each of the four participants, the main experimenter
and the child’s therapist created an individualized Social
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Fig. 4. Safe and huggable design of Probo allows for both cognitive as
physical interaction.

Fig. 5. The robot is used in a Wizard of Oz method, with the operator
sitting in another room and using a gamepad to control the robot.

Story. The stories were developed by using Gray’s Social
Story construction guidelines [16]. For each participant, a
specific social skill deficit was identified. Also, the contextual
factors that contribute and/or maintain that deficit were
assessed, and the reinforcers for the maintenance and the
generalisation of the specific social skill were selected. The
Social Stories for Antonia and Nicu were designed to teach
them how to share the toys when they are playing together
with other children and for Georgia to teach her how to say
thank you when someone gives his help to her or shares
something with her, and finally for Mihnea to say hello
when he enters in a room where someone is present (see
Fig. 6). The stories were read by the experimenter in the
Social stories phase or told by Probo in the Robotherapy
and Social Stories phase of the study.

To test whether the two strategies used in increasing social
abilities are effective we used an ABAC/ACAB counterbal-
anced design. When a stable value of the level of prompt was
reached, the next phase was started. For every child six robo-
sessions were foreseen. In the baseline phase (A), each child
was observed during social interactions that required using

Fig. 6. Social Story designed for Mihnea to say hello when he enters in a
room where someone is present based on Gray’s Social Story construction
guidelines [16].

the specific social skills aimed to be improved by the social
story intervention (B) or by the Social Story and Robotherapy
intervention (C). For each participant, the social story was of-
fered immediately prior the observation period. After several
sessions of Phase B/ Phase C, the intervention was withdrawn
to the baseline conditions and the participants were observed
without receiving any intervention. Before the robotherapy
(phase C) an habituation phase with the robot was conducted
to let the child interact as much as he/she needs it with the
robot. For example the robot was sleeping and the child had
to wake him up or the robot was sad and the child had
to hug him to make the robot happy. The children could
also ask questions to the robot which the robot answered
by nodding yes or no. The session of the intervention itself
lasted approximately 15 minutes. The Social Story reading
was followed by a comprehensive check with the purpose
of assessing participants’ understanding of the story and had
to be answered with 100% accuracy. After the moment each
story the child had to exercise the social ability that was
targeted in the story. For example if the ability targeted was
to say hello, the child was brought to a room where someone
is present. All experiments were video-recorded and three
experienced persons, trained by the experimenter performed
the analyses of video sequences from all the phases of
the study. The dependent measurements for each participant
were: (1) level of prompt needed to provide the expected
social response and (2) appropriate social interaction on the
target social skill. The level of prompt needed to provide the
expected social response was assessed using a 6-point scale
rating the amount of prompting necessary for a successful
social interaction. 6 meant did not respond to any prompt
(gestural, physical or verbal) and a value of 0 was given if
the participant independently and spontaneously engaged in
an appropriate social interaction, without the need of any
type of prompt.
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B. Data analysis

The dependent variable (i.e. performance) was the level
of prompt needed for the children to perform the requested
social action at the end of each intervention session. The
level of performance for the different intervention phases
are presented as box plots in Fig. 7. Pay attention that
we used an ABAC/ACAB counterbalanced design, but data
are represented in order ABAC. The following conclusions
can be drawn. The introduction of the two approaches of
Social Story (with and without Probo) was associated with
a decrease in the level of prompt. However, the effect of
Probo was more effective than without using the robot since
the average prompt in Phase C is lower than in Phase B. In
the case with the robot in 40% of the interventions no need
of prompt was necessary and a spontaneous engagement in
the appropriate social interaction was obtained while this was
only 13% in Phase B. A more detailed analysis can be found
in [31].

Fig. 7. Box plot of the data collected for the four children during the
baseline and intervention phases. The y axis indicates the values of the
level of performance from 6 to 0, where a value of 6 was given when
the participant needed all types of prompt (gestural, physical and verbal) to
perform the target behavior, and a value of 0 was given when the participant
did not need any prompt (gestural, physical or verbal) to perform the target
behavior. The x axis indicates the intervention phases (A = baseline phase; B
= Social Story intervention phase; C = Social Story plus Probo intervention
phase).

V. CONCLUSION

Probo has been designed as a research platform to perform
human-robot interaction studies and develop robot assisted
therapies with as special target group children. The ap-
pearance of the robot has been optimized for this task.
Since besides cognitive interaction also physical interaction
is targeted, a lot of attention in the design process is put to
make the robot safe and give it a soft and huggable feeling.
The use of compliant actuators and a soft skin is essential
to achieve this goal. The robot was used in a Wizard of
Oz setup and the software was optimized for this task. The
Robot Control Center makes abstraction of the control of
the robot so it is possible to control the robot without the
need of full understanding the underlying layers. The GUI
has a virtual 3D model of the robot so the robot can be
controlled in an intuitive way using a gamepad and mouse.

The first experiments indicate that a Social Story told with
Probo leads to a decrease in the level of prompt necessary to
obtain an appropriate social interaction by the autistic child,
than when the story is told by a human.

Future work includes performing more therapy sessions
with the robot. We also aim to construct a novel version
of Probo with actuated arms to extend the range of stories
with eg learning to give hugs, pointing to objects,... At the
moment the Social Stories are replayed on the robot since the
complete story is prerecorded; goal is also to make interactive
stories besides an interactive habituation phase where the
robot is able to respond to the actions of a child.
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Computational Audiovisual Scene Analysis for Dialog Scenarios

Rujiao Yan1,2, Tobias Rodemann2 and Britta Wrede1

Abstract— We introduce a system for Computational Audio-
Visual Scene Analysis (CAVSA) with a focus on human-robot
dialogs in multi-person environments. The general target of
CAVSA is to learn who is speaking now, where the speaker
is, and whether the speaker is talking to the robot or to other
persons. In the application specified in this paper, we aim at
estimating the number and position of speakers using several
auditory and visual cues. Our test application for CAVSA is the
online adaptation of audio-motor maps, where vision is used
to provide position information about the speaker. The system
can perform this adaptation during the normal operation of
the robot, like when the robot is engaging in conversation
with a group of humans. Comparing our online adaptation of
audio-motor maps using CAVSA with prior online adaptation
methods, our approach is more robust in situations with more
than one speaker and when speakers dynamically enter and
leave the scene.

I. INTRODUCTION

In most robotics scenarios, a robot is usually interacting
with multiple people. Thus it should be able to learn who is
speaking now, where the speaker is, and whether the speaker
is talking to the robot or to other persons. Computational
Audiovisual Scene Analysis (CAVSA) is aimed at fulfilling
these tasks. CAVSA plays an important role in human-
robot interaction, for instance it enables the robot to better
understand dialog situations, improves speech recognition by
assigning words to speakers, and relates visual and auditory
features of a speaker. To evaluate the performance of CAVSA
we employ it for the online adaptation of audio-motor maps.
This task depends strongly on a correct scene representation
and the performance can be measured by comparison to
audio-motor maps calibrated in standard offline procedures.

In robotics, many sound localization systems use audio-
motor maps, which describe the relationship between binau-
ral cues and sound position in motor coordinates (azimuth
and elevation). The main binaural cues are interaural time
difference (ITD) and interaural intensity difference (IID)
[1]. Using audio-motor maps one can compute the sound
source position from measured audio cues. We concentrate
on audio-motor maps for azimuth to ease the description
of our algorithm, but the approach can be expanded to
elevation. Audio-motor maps can be calibrated offline by
measuring audio cues for several known positions [2].
However, audio-motor maps can change and need to be
relearned whenever any relevant part of the robot or the
environment was modified, for example, microphone type,
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Lab), Bielefeld University, 33594 Bielefeld, Germany
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microphone position, robot head and room. Additionally,
it is difficult to estimate the quality of the current maps.
Hence a continuous online adaptation has been considered
during the normal operation of the robot [3]. It is known that
humans continuously adapt the audio-motor maps to their
current auditory periphery, while the dimensions of the head
and external ears are growing from birth to adulthood. Even
adults have sound localization plasticity, for instance when
molds are placed into the external ears to alter audio-motor
maps [4]. Rodemann et al. [3] suggested a purely auditory
online adaptation approach, where audio provides position
information of limited precision.

Vision plays an important role in calibration of audio-
motor maps in humans and animals [5]–[7]. Thus vision
has been used as the feedback signal for higher precision
in adaptation of audio-motor maps in robotics, as per [8],
[9]. However, the approach in [8] fails when more than
one person or the wrong speaker appears in the camera
image. Nakashima et al. [9] proposed another approach
using visual feedback in a simplified environment, where
a red marker was attached to the sound source and no
other red object exists. These methods employ heuristics
for linking visual and auditory information and can only
work in limited environments. Besides, both methods need
extra head motions to search for the visual marker. In
comparison to state of the art, our CAVSA method is used to
find the correct visual correspondence of the current sound
source, and aims at enabling online adaptation to run in
more complex environments. If CAVSA selects an unrelated
visual signal for the adaptation, the quality of audio-motor
maps may deteriorate. Given precise measurements of visual
position and audio cues, the quality of maps depends on
the performance of CAVSA. This is the reason why we
test CAVSA in online adaptation of audio-motor maps. Our
system does not require specific motions of the robot, so that
audio-motor maps can be continuously online adapted during
the normal operation of the robot.

For CAVSA the scene is represented with auditory and
visual features using the concept of proto-objects. Proto-
objects can combine an arbitrary number of features in a
compressed form. For more information about proto-objects
see [10], [11]. The visual and audio proto-objects for the
same speaker are then integrated based on position informa-
tion.

A. Comparison to related work
Currently there is a broad range of applications using

audiovisual integration in multi-person environments. The
first application is speaker recognition (see e.g. [12]), where
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an audiovisual database consisting of all speakers is required
for training. The second application is audiovisual multi-
person tracking. Most methods use only sound position as
an auditory feature and thus fail when a speaker leaves the
scenario for a while and reappears or the speaker moves
while not talking [13], [14]. In this case CAVSA could
flexibly add more auditory and visual features to identify
the speaker. Multi-person tracking can also be implemented
in a smart-room environment [15], where many auditory and
visual sensors are installed. The third group is audiovisual
speaker diarization systems [16], which can index who spoke
when in a video file. The training of diarization is normally
an offline process, where the data can only be processed
after complete recording. Another application searches for
the visual part of the current speaker in a video using
synchrony between lip motion and speech [17]. The approach
requires that the lip of the current speaker is always in the
field of view. In comparison to these methods, our CAVSA
approach can combine many low or mid level auditory and
visual features to achieve a high performance of audiovisual
integration. It runs in an unsupervised, real-time, online and
incremental manner. Besides, we use only a humanoid robot
head with a pair of cameras and a pair of microphones. In
this work just the left camera is employed to capture the
visual signal. The head is mounted on a pan-tilt unit.

Additionally, while current approaches in Computational
Auditory Scene Analysis (CASA) mostly deal with parallel
sources using microphone arrays (see e.g. [18]), we focus
on purely sequential sounds. Our system could be used
after sound source separation in case of concurrently active
sources.

II. CAVSA

In this section we introduce the concept of Computational
AudioVisual Scene Analysis (CAVSA). In CAVSA the scene
is represented with audio and visual proto-objects. Proto-
objects for the same speaker are grouped together in auditory
and visual Short-Term Memories (STM) respectively. Visual
and audio proto-objects are then matched based on position.
Fig. 1 schematically illustrates the system architecture of
CAVSA. Proto-objects, STM and audiovisual association are
described below.

Fig. 1. System architecture of CAVSA. APO: audio proto-object, VPO:
visual proto-object.

A. Proto-objects
Proto-objects are a psychophysical concept and are con-

sidered here as a compressed form of various features.
Proto-objects can be tracked, pointed or referred to without
identification and enable a flexible interface to behavior-
control in robotics. For more information about proto-objects
see [10], [11].

1) Visual proto-objects: In the camera field of view the
visual objects can be segmented based on e.g. the similarity
of color or shape to a given reference model. A frontal face
detection algorithm based on [19] is used to extract visual
proto-objects in multi-person scenarios. We assume that the
person talking to robot is most of the time looking at the
robot face. For each of these proto-objects, the center of
the segment in the camera image is computed. The distance
between robot head and speakers is about 1m. Using the
distance information and saccade maps (see [20]), we can
calculate the face position in 3D world coordinates and
motor coordinates, and store them in the visual proto-object.
Actually, proto-objects could contain an arbitrary number
of features. Depending on the tasks, other features such as
object size, orientation, color histogram and texture could
also be used.

2) Audio proto-objects: A Gammatone Filterbank (GFB)
as a model of the human cochlea is employed in the auditory
preprocessing [11]. The GFB has 100 frequency channels
that span the range of 100 -11000 Hz. To form audio proto-
objects, we first segment audio streams based on energy.
An audio segment begins when the signal energy exceeds
a threshold and ends when the energy falls below this
threshold. We then derive start time, length and energy for an
audio proto-object. A filtering of audio proto-objects based
on segment length and energy is then performed, since short
or low power auditory signals are very probably noise. In
addition, an audio proto-object contains also population-
coded position cues (IID and ITD) and the estimated position
encoded as a population vector, which will be explained in
section III.

B. Short-term memory
In short-term memory (STM), proto-objects for the same

speaker are grouped together. When a new proto-object
appears, the procedure of entering it into STM can be
described as follows:

• If the STM is empty, the new proto-object is added to
the STM.

• If the STM already contains one or more proto-objects,
the distance or similarity of selected grouping features
are computed between the new proto-object and all
proto-objects in the STM. If the distance between the
new proto-object and the closest proto-object in the
STM is smaller than a threshold, these two proto-objects
are merged (averaged). Otherwise the new proto-object
is inserted into the STM.

• Proto-objects, which are not updated for more than a
certain period (200 s in our experiment) are removed
from the STM.



Fig. 2. An example of a position evidence vector, corresponding to output
firing rates from a bank of neurons with different receptive fields. Here the
estimated azimuth is �30�.

Using such a STM, it is not necessary to buffer all the
incoming proto-objects for processing. Moreover, we can
match an audio proto-object to a visual proto-object, even
if it is out of sight for a while e.g. due to the movements of
robot head.

In auditory STM, grouping features could be position
and/or spectral energies. In visual STM one or more features
among position, color and size could be employed to group
visual proto-objects. In this work only position is used as a
grouping feature for the auditory and visual STM. In an audio
proto-object the position is represented by population code
vector. For more information about this population coding
see section III. The similarity of position vectors between
the new audio proto-object and an audio proto-object in
auditory STM is based on the scalar product of normalized
position vectors (mean 0, norm 1). We set the threshold of the
similarity to be 0.6 empirically. In visual STM the Euclidean
distance of positions in 3D world coordinates is calculated
and the threshold is set to 30 cm, so that slight movements
of speakers such as head shaking are tolerated.

C. Audiovisual association

Position is also used to match a visual proto object and an
audio proto-object from their STMs. Auditory position evi-
dence vectors and visual positions in world coordinates must
be converted to the same metric, for which motor coordinates
(azimuth and elevation) are preferred. Speakers are about
1m away from the robot. In this paper we concentrate only
on azimuth as mentioned. The azimuth of an audio proto-
object is taken as the peak position in its position evidence
vector, while the azimuth of a visual proto-object is estimated
using saccade maps (see [20]). Fig. 2 shows an example of
a position evidence vector.

The azimuth distance between audio proto-object Ai (i 2
[1,M]) and visual proto-object Vj ( j 2 [1,N]) is denoted as
DX(Ai,Vj), where M and N stand for the number of audio and
visual proto-objects in auditory and visual STM respectively.
The relative probability that audio proto-object Ai belongs to
visual proto-object Vj can then be approximated as:

Pcommon(Ai,Vj)⇡ exp
✓
�DX(Ai,Vj)2

2 ·d 2
AV

◆
, (1)

where the standard deviation dAV represents the average
difference in estimated azimuth between an audio and a
visual proto-object which are caused by the same speaker.

Fig. 3. Detection of the current speaker. Face detection of the current
speaker is visualized. To easily evaluate the results, the current speaker was
required to raise one hand.

Next, we check how certain the association between visual
proto-object VjMax with the maximal probability and Ai is. If
one visual proto-object shows a very high probability and
all other visual proto-objects have a low probability, this
indicates a reliable association. Conversely, when all visual
proto-objects have quasi equal probability, the association is
unreliable. The uncertainty is computed using the entropy of
the normalized probability. A similar usage of entropy can
be found in speech recognition, as per [21]. All probabilities
Pcommon(Ai,Vj) for audio proto-object Ai are normalized such
that they sum up to 1. The normalized probability is denoted
as:

bPcommon(Ai,Vj) =
Pcommon(Ai,Vj)

N
Â
j=1

Pcommon(Ai,Vj)

. (2)

The entropy for Ai is given as:

Hi =

8
><

>:

0 if N = 1,
�

N
Â

j=1
(bPcommon(Ai,Vj)·log2 bPcommon(Ai,Vj))

log2 N if N > 1.
(3)

Here, the division by log2 N ensures that the maximal Hi
is 1 to easily set a threshold QH . If entropy Hi is larger
than QH , Ai and VjMax are not associated. QH was set to
0.8 empirically. The uncertainty of the whole audiovisual
association can be captured by averaging over all Hi :

H =

M
Â

i=1
Hi

M
. (4)

Given learned audio-motor maps, Fig. 3 illustrates an
example, where CAVSA is used in an online scenario to
visualize the current active speaker among two speakers who
stand in front of the robot.

III. ONLINE ADAPTATION

In this section we will describe how to find the matched
visual position to the current sound and how to adapt audio-
motor maps. In our system audio-motor maps represent the
relation between population-coded cues and position evi-
dence vectors. An audio-motor map M contains for each az-
imuth angle p (-90, -80, ..., 0, ..., 80, 90), each cue l (l = 1 for
IID, l = 2 for ITD) and each frequency channel f (1�100)
a population code vector M(p, l, f ,n). Nodes (neurons) n
have receptive field centers at (�0.9,�0.8, ...,0, ...,0.8,0.9).
We measure binaural cues in each frequency channel when



Fig. 4. System architecture of online adaptation using CAVSA

an onset appears, encode then the measured cues and store
them in the audio proto-object. For encoding, the same
set of neurons n is used and every measured cue IID or
ITD leads to an activation in the nearest neurons, so that
a population code vector is generated. In each frequency
channel f , population code vectors for all measurements
of cue l are then summed up in an audio proto-object.
Finally, each summed population code vector is normalized
to mean 0 and norm 1. Let us denote the encoded cue l
in frequency channel f , at node n as C(l, f ,n). To acquire
position evidence vector E(p), population response C(l, f ,n)
is compared with stored population responses M(p, l, f ,n) for
all positions p by computing scalar products. The peak in
position vector E(p) is taken as the estimated sound source
position. For more details see [11].

We use only the current audio proto-object instead of the
auditory STM (M = 1), since only information about the
current sound is required. The number of proto-objects in
visual STM (N) is considered as the number of speakers
in the dialog scenario. The system architecture of online
adaptation using CAVSA is illustrated in Fig. 4.

The matched visual proto-object is searched for us-
ing equation (1), (2) and (3). Note that if N = 1, then
bPcommon(A,V ) = 1 and entropy H = 0. That means, if only
one visual proto-object exists in the visual STM, the audio
and visual proto-object are assumed to have a common
cause. During the learning of the audio-motor maps, the
standard deviation dAV in equation (1) is dynamically updated
depending on the quality of the current audio-motor map.
We approximate dAV by calculating the average difference
between estimated position in audio and visual proto-objects
over time using the following update rule:

d t
AV =

⇢
DX(A,V ) ·w+d t�1

AV · (1�w) if N = 1,
d t�1

AV otherwise.
(5)

Here, t and w represent update step and weight respectively.
We set w = 0.1 · b dependent on the fixed adaptation rate
b , which controls the degree of adaptation for a single step.
DX(A,V ) describes the position distance between the audio
and visual proto-object in the current adaptation step. d t

AV is
updated only if just one visual proto-object exists. The initial
value d 0

AV is set to 40� empirically.
In the experiments it was found that a visual proto-object,

which is not related to the current sound source but near
the correct visual proto object, can also enhance the quality
of audio-motor maps, particularly when the quality of maps
is poor as during initialization. Thus if entropy H exceeds
the threshold QH , but the position distance between the

visual proto objects with maximum and second maximum
probability (bPcommon) is small, audio-motor maps can be
updated nonetheless. The uncertainty of an adaptation step
can be described by the following equation:

H 0 = H ·DX(VjMax,VjSecMax), (6)

where VjMax and VjSecMax stand for the visual proto-objects
with maximal and second maximal probability respectively.
If uncertainty H 0 is below threshold QH 0 or H < QH , a
confidence factor c is set to 1 and the map is adapted.
Otherwise c = 0 and the map is not updated in the current
step. The threshold QH 0 depends on the standard deviation
dAV (QH 0 = 2 · dAV ), since the system has a high tolerance
for the visual position difference when the quality of audio-
motor maps is poor. The matched visual position pv is then
converted to a position evidence vector, which can be defined
by a delta function dp,pv .
The audio-motor map is updated by:

M(p, l, f ,n, t) = M(p, l, f ,n, t �1)�F(p) ·
(M(p, l, f ,n, t �1)�C(l, f ,n)), (7)

where p, l, f and n stand for position, cue index, frequency
channel and node, respectively. Learning parameter F(p) is
given by:

F(p) = c ·b ·dp,pv , (8)

where c and b represent the confidence of the matching
process and the fixed adaptation rate respectively. In our
experiment b = 0.2.

IV. RESULTS

Our approach was tested in real world scenarios. Offline-
calibrated maps were used as reference. Our approach was
compared with a heuristic method in scenarios where addi-
tional persons dynamically entered and vacated the room.

A. Offline-calibrated audio-motor maps as reference
In the experiment we firstly calibrated audio-motor maps

offline und used them as reference for performance estima-
tion. A loudspeaker was placed in front of the robot (0�), at a
distance of 1m away and at the same height as the robot head.
The head changed its orientation ph every 10� from �90� to
90�, so that the azimuth (�ph) changed correspondingly in
robot-centered coordinates. At each position, 47 sound files
were played and mean population responses of IID and ITD
were measured. The whole offline calibration required more
than 2 hours.

The performance of online-adapted audio-motor maps can
be then estimated by comparison with offline-calibrated maps
using normalized Euclidean distance:

d(M,M0) =

vuutÂ
p

Â
l

Â
f

Â
n
(M(p, l, f ,n)�M0(p, l, f ,n))2

K
, (9)

where M and M0 represent online-adapted and offline-
calibrated maps respectively. K is the total number of ele-
ments in an audio-motor map and satisfies K = kp ·kl ·k f ·kn,
where kp = 19, kl = 2, k f = 100 and kn = 19 is the number of
positions, cues, frequency channels and nodes, respectively.



Fig. 5. Euclidean distance between offline-calibrated and online-adapted
maps over time

Fig. 6. Online-adapted IID maps for several azimuth angles and in different
adaptation steps. Offline-calibrated maps are used as reference.

B. Basic online scenario
In the online scenario we simulated a speaker with a

loudspeaker on which a picture of a face was attached. The
loudspeaker was placed on the same position as in offline
calibration. During online adaptation, the robot head oriented
itself to a random horizontal angle in the range [�90,90]
after an update step was finished. The acquisition of auditory
and visual signals was interrupted during head movement,
so that audio-motor maps were only adapted in still status.
At the beginning maps are initialized with random numbers
in the range [�0.5,0.5] using a uniform distribution. The
normalized Euclidean distance over time between online-
adapted and offline-calibrated maps is illustrated in Fig. 5.
Fig. 6 shows online-adapted IID maps on several positions
(0�, 30�, �30� and �90�) and in different update steps (10th,
100th and 500th step), as well as offline-calibrated maps on
the corresponding positions. Every 100 update steps of our
approach need about 7 minutes. The plot in Fig. 5 shows that
a good similarity is achieved after about 400 steps, which
takes about 30 minutes, while offline calibration requires
more than 2 hours.

C. Natural communication
Our approach was tested in three scenarios where ad-

ditional persons (N > 1) dynamically entered and vacated
the scene. The results were then compared with a heuristic
method which considers the last seen face as the matched
visual position to the current sound source. If more than
one face appears in the camera image, the heuristic method
randomly chooses one. The heuristic method is similar to
methods in [8], [9] for linking auditory and visual informa-
tion. The three scenarios and the corresponding results are

Fig. 7. Scenario 1: one additional person entered the room in the 70th
adaptation step and vacated in the 170th adaptation step. He entered then
in the 480th step and vacated in the 580th step again.

described as follows.
The difference between the first scenario and the basic

online scenario in section IV-B is that an additional person
entered the room during the online adaptation in the first
scenario, stood 1m away, faced the robot for a while, did
not speak and then vacated. After some update steps the
person entered the room and vacated again in the same
manner. The only sound source was the loudspeaker at 0�,
since the additional person did not speak. For this scenario,
CAVSA which computes the association uncertainty with H
in equation (3), CAVSA with consideration of both H and
H 0 in equation (6), the heuristic method and the method
using known sound source position (0�) as reference are
compared. To simplify the description let us denote these
four methods as “CAVSA 1”, “CAVSA 2”, “Heuristic” and
“Reference”, respectively. As shown in Fig. 7, the quality
of audio-motor maps was still poor between the 70th and
170th adaptation step, when the additional person was in
the room for the first time. “CAVSA 1“ did not update the
maps due to the high entropy H in equation (3). ”Heuristic”
selected sometimes the wrong position for adaptation, but
improved the performance of audio-motor maps to some
degree because the quality of the maps was still poor.
“CAVSA 2“ nearly reached the performance of “Reference”
which used true sound source position. Between the 480th
and 580th step the maps were refined. “CAVSA 1“ and
“CAVSA 2“ were almost not influenced by the additional
person because of their good performance on audiovisual
integration, while the error in “Heuristic” increased due to
using wrong positions.

The only difference between the first and second scenario
is that two additional persons instead of one dynamically
entered the room. Fig. 8 shows the comparison of the
four methods with Euclidean distance to offline-calibrated
maps over time. In comparison to Fig. 7 the four methods
performed similarly except that “Heuristic” got much worse
when two additional persons appeared than in the first
scenario when only one additional person appeared.

In the third scenario the loudspeaker was not used. Instead
two speakers stood 1m away from the robot, faced the
robot and talked to it alternatingly. After some steps one
person vacated the room and only one spoke to the robot.
The adaptation began with an audio-motor map which had
been adapted for 80 steps. Fig. 9 illustrates the comparison



Fig. 8. Scenario 2: two additional persons entered the room in the 80th
adaptation step and vacated in the 190th step. They entered then in the 515th
step and vacated in the 620th step again.

Fig. 9. Scenario 3: from start two speakers talked to the robot alternatingly.
In the 205th step one person vacated the room and only one spoke to the
robot.

of “CAVSA 2” and “Heuristic” up to the 310th adaptation
step. It was shown that “CAVSA 2” performed much better
than “Heuristic” when two speakers talked to the robot
alternatingly.

The results in these three scenarios showed that the adap-
tation process with CAVSA was more robust in situations
where additional persons dynamically entered and vacated
the scene.

V. SUMMARY AND OUTLOOK

We have suggested an approach for Computational Au-
dioVisual Scene Analysis (CAVSA) with a focus on human-
robot interaction in multi-person environments. In CAVSA
the scene is represented with audio and visual proto-objects.
Audio and visual Proto-objects for the same speaker are
then grouped together in their STMs respectively. Finally,
audio and visual proto-objects are matched based on position
information. We have shown that our system can correctly
determine the number and position of speakers in typically
human-robot dialog scenarios. This was demonstrated by
the online adaptation of audio-motor maps. Comparing our
online adaptation of audio-motor maps using CAVSA with
prior online adaptation methods, our approach is more robust
in situations with more than one speaker and when speakers
dynamically enter and leave the scene. Only spatial coinci-
dence is so far used to group audio and visual proto-objects
in their STMs, which fails for instance when a person moves
quickly or several persons stand very close to each other.
Hence we plan to employ more grouping features such as
spectral energies for auditory STM and color or size for
visual STM.
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Abstract—In the mirror neuron system, the canonical neurons
play a role in object shape and observer-object relation recogni-
tion. However, there are almost no functional models of canonical
neurons towards the integration of these two functions. We
attempt to represent the relative position between the object and
the robot in a neural network model. Although at present some
generative models based on the Restricted Boltzmann Machine
can code the image transformation in continuous images, what
we need to accomplish in canonical neuron modeling is different
from the requirements of modeling transformation in video
frames. As a result, we propose a novel model called “Restricted
Boltzmann Machine with Transformation Units”, which can
represent the relative object positions based on laser images.
The laser sensor provides binary and accurate images and can
further be connected with other models to construct a unified
architecture of the mirror neuron system.

I. INTRODUCTION

Since Rizzolatti and his colleagues found that some neurons
in the F5 area of macaque monkeys’ premotor cortex fired
when the monkeys did actions like reaching for something or
biting a peanut, the so-called mirror neurons have become a
significant research topic that explains many social behaviors
of human beings. A number of computational models ( [1]–
[8]) have been designed to model different functions of the
mirror neuron system.

Moreover, a lot of research points out that the object
affordance, the relative position between an observer and an
object, should be considered in an integrated mirror neuron
system model, because actions cannot be understood without
understanding object affordances (e.g. [9], [10]). This function
may be realized by the canonical neurons which are active
when the object that can be grasped by movements is observed,
as if the brain is foreseeing a possible interaction with this
object and preparing itself accordingly. These neurons act with
a mechanism of recognizing the object affordance with visual
or other stimuli [11]. This does not lead to the motor action
itself, but to the semantic knowledge about the actions. These
kinds of canonical neurons also exist in the ventral premotor
area F5 [12], [13].

As a result, if we judge the property of action understanding
with consideration of the object affordance of the whole mirror
neuron system, a proper computational model is necessary
to consider both the object shape and the observer-object

relation. For instance, in [14], [15] and [16] of the MNS and
MNS2 model, the authors addressed this problem by manually
calculating it in a geometric way.

In this paper, we propose an ongoing model which em-
phasizes the representation of the relative position of the
object. Specifically, this position information is represented
in a distributed manner in units called Transformation Units.

In the next section, we introduce the main architecture of
the Restricted Boltzmann Machine and its modified version
of coding object transformations. In section 3, the Restricted
Boltzmann Machine with transformation units is presented.
Then the experiment of the novel Restricted Boltzmann Ma-
chine is described in section 4. At the end we close with
discussions and conclusions.

II. RESTRICTED BOLTZMANN MACHINE AND RELATED
WORKS

In the neural networks community, the problem of represent-
ing relative positions can be simply converted into a similar
problem of coding the object transformation in a distributed
representation of a network. In this way the observer-object
relation problem can be considered as a modified version of
the transformation problem if we fix the observer at the origin
and regard the image transformation as a representation of the
observer-object relation.

A. Restricted Boltzmann Machine

A binary Restricted Boltzmann Machine (RBM) consists of
a layer of visible units v 2 {0, 1} and hidden units h 2 {0, 1}.
The connections between the hidden units and the visible units
are symmetric. Without interconnections between the visible
units or the hidden units, the hidden units are conditionally
independent. The probability distribution over the hidden units
and the visible units is defined by

P (v, h) = P (V = v,H = h) = exp(vT b+ hT c+ vTWh)/Z
(1)

where b is the vector of biases for the visible units, c is the
vector of biases for the hidden units, W is the matrix of
connection weights, and Z(v, h) =

P
v,h exp(v

T b + hT c +
vTWh).

Pos-1



The RBM’s definition ensures that all the distributions of
values in hidden units P (h|v) are only dependent on the values
of visible units; the values in visible units are determined in
the same way.

The updating rule for parameters W is:

�W = hvhip(h|v,W ) � hvhip(v,h|w) (2)

the notation h· iP () is the expectation over the probability
distribution P ().

B. RBM for Image Transformation

The first related paper about this topic of image transforma-
tion was advocated by Memisevic and Hinton [17]. They estab-
lished a gated Restricted Boltzmann Machine which is able to
extract distributed, domain-specific representations of image
patch transformation. The model developed a mechanism to
represent domain-specific motion features in the hidden units1.
It works in two pathways: in the gated regression, from a
given pair of two observed images, the hidden units are coded
as a transformation. While in the modulated filters pathway,
given the codes for the transformations as latent variables, the
model can subsequently predict transformations of the next
successive image. However, due to its tensor parameterization,
the computational load of the training is quite high. Later
Memisevic and Hinton developed a factored version of GRBM
that uses three low-rank matrices as a factor instead of three-
way parameters [18] to reduce the computational effort.

Based on the older version of GRBM, Taylor et al. proposed
another method to reduce the complexity [19] by adding
the convolution with a compact parameterization so that the
invariance of relative transformations does not need to be re-
learned.

A temporal Restricted Boltzmann Machine [20], [21] can
be used as well to model sequences where the decision at
each step requires some context information from the past.
It contains one RBM model in each time step and these
models are connected with latent to latent connections between
the time steps. Therefore, it can also be used as a kind
of transformation representation when the previous image
provides a type of “temporal bias” to the hidden variables.
Recently, Sutskever et al. [22] also proposed an improved type
of TRBM by adding recurrent connections between the hidden
units and visible units.

Recent research by Hinton [23] introduces the concept of
“local capsules” which represents different kinds of trans-
formations (poses, angles, lightings) so that it is possible to
encapsulate the results with the inputs. The basic form of this
model is an explicit representation of the pose. Furthermore,
more levels of these capsules will be able to model different
transformations.

1These hidden units are not exactly the same as hidden units in generic
RBM, but a kind of latent variables.

III. RESTRICTED BOLTZMANN MACHINE WITH
TRANSFORMATION UNITS

In this section we propose the Restricted Boltzmann Ma-
chine with Transformation Units (RBM-TU). As part of the
mirror neuron system model, we expect that the information
in the transformation units of the object’s relative position
can be further linked with PB units of the Simple Recurrent
Network with Parametric Bias (SRN-PB) [24] so that these
two units can interact as in Fig. 1. The RBM-TU is a modified
version of the RBM. It has the same architecture as RBM
except the full connections between transformation units and
hidden layer (Fig. 2), so that this network can be regarded as
a hybrid architecture consisting of a generative model and a
discriminative model. The RBM recognizes and reconstructs
the learned images, while the transformation units represent
the relation between the objects and the sensor.

Fig. 1. The proposed computational model of a mirror neuron system towards
action understanding: the RBM-TU represents information on the object shape
and position, and the SRN-PB processes the action sequence together with
the parametric biases units so that the structure of the input sequence can be
characterized and recognized. The network within the dashed rectangle is the
one we are proposing here.

Training is done by placing an object within the laser sensor
area while the robot and the object stay still. The algorithm for
the training is introduced in the next section. After training,
the property of transformation units enables us to recognize
the transformation of the input compared to the training sets.
Comparing our approach to the GRBM, it is more straight-
forward to implement and reduce the computational effort



Fig. 2. Restricted Boltzmann Machine with transformation units Model: the
laser information input into the visible units as a 90 ⇤ 90 image. The hidden
layer contains 900 units, which are fully connected with three transformation
units. We simply use a linear function in the transformation units.

substantially because the updating of the RBM weights and
the transformation units’ weights are separate algorithms.

A. RBM Training

In the training mode, during each epoch, the weights be-
tween hidden units and visible units are updated in the same
way as the generic RBM model by Contrastive Divergence.
After that, the output values of the hidden units with the
sigmoid function become inputs to the transformation units.
In this way, the hidden units and the transformation units
form an independent two-layer network, in which the first
layer consists of the hidden units and the second layer consists
of the transformation units. The connection weights between
the hidden units and the transformation units are updated
by back-propagating the error from the transformation units.
For the position of the object during training, which acts as
a reference position, the target values are set to zero. The
activation function of hidden units can be expressed as:

Hh =
1

1 + e(�sh)
(3)

where sh is the internal value of the hidden layer, and Hh is
the output value of the hth hidden unit.

The activation function of transformation units is a linear
function:

TUi =
X

h

HhWh,i (4)

where W is the connection weight matrix between hidden
units and transformation units. The updating rule of connection
weights between transformation units and hidden units is:

�Wh,i = ⌘�iHh (5)

where ⌘ is the learning rate of transformation weights, and �
is the output error for the transformation units. The algorithm
for a complete epoch can be depicted as follows:

In the recognition mode, the connection weights are fixed
and the values in the transformation units are calculated with

2The word “batch” here means dividing the training set into small sets,
which is very advantageous for parallel computing on GPU boards or in
Matlab [25]. When obtaining each patch of training data, the object remains
in the origin position, and the laser range sensor scans the whole area 100
times.

Algorithm 1 RBM-TU Training
Extract a mini-batch of data sets from the training set.2
Update the connection weights between the hidden units
and the visible units using Contrastive Divergence.
Calculate the values of hidden units given the updated
weights and input.
Update the connection weights between the hidden units
and the transformation units by Eq. 5.

laser images of different relative positions of the object. We
expect that the difference of dense coding in the hidden layer
due to the relative position will lead to variations of the
transformation units. In the next section, an experiment of
representing untrained positions will be conducted to examine
the plausibility of this model.

In the experiment, an Aldebaran NAO [26] is equipped
with a laser head (Fig. 3). The laser head is built based on
a URG-04LX laser sensor by Hokuyo [27], with the angle
coverage of 240 degrees. The reason why we use a laser
sensor is that understanding the object distance often needs
calibration of vision processing, which takes great efforts in
the robot perception process and needs to be re-calibrated in
different environments. However, if we consider the perception
development of human beings, the tactile sensation plays
an important role in order to modulate the vision reference
of a human [28]. Therefore, in this experiment, we attempt
to simulate the tactile sensing via the laser sensor, which
provides a more accurate position information than by only
using a vision system. Further experiments may use it as an
automatically calibration tool of robot vision system.

IV. EXPERIMENT DESCRIPTIONS

A. Experiment Setup

Our environment is a normal office and an object is placed
in front of the NAO for the training. The range sensor produces
500 images as data sets. These images have small variations
because of angle variations of the laser beams and noise of
the sensor, although we keep the positions of robot and object
constant (Fig. 4). The two-dimensional dotted images of the
laser head’s surrounding are captured and learned (Fig. 6).
During the RBM training, we select 100 images as one mini-
batch to update the weights once after the whole mini-batch
learning is finished. As soon as the training is over, the
same object is placed in different positions from the trained
position as long as they can be scanned by the laser sensor
(the coordinates of these 20 example positions are depicted in
Fig. 5).

The laser sensor in this experiment can be considered as a
“measurement” method to survey the surrounding objects, and
each part of the robot remains in the same position during
training and recognition so that the transformation of the
objects equals the relative positions of the objects with respect
to the robot.



Fig. 3. Laser sensor in the NAO head

(a) Top view of relation between the NAO and the object: the
axes show the reference coordinates for the objects and the robot.

(b) Side view of relation between the NAO and the object

Fig. 4. The NAO (left) senses different positions of the object (right, a
folder) through the laser sensor. Markers on the ground are used to indicate
the relative position between the robot and the object.

Binary images obtained from the laser sensor contain the
information on whether the laser beam encounters an object
and on the distance between sensor and object. These images
are processed and reconstructed in the Restricted Boltzmann
Machine. At the same time, we examine the relation between
the representations in the transformation units and the actual
transformation.

B. Experiment Results

We compare the values in transformation units with the
selected untrained relative positions. Fig. 7 shows the relation

Fig. 5. Locations of 20 sample points: the object remains in the same
position (0, 0) during training (star mark). Then in recognition, 20 different
sample points are picked to locate the object in order to test the values in
transformation units (circle marks). The spine of the folder is always along
the x axis.

Fig. 6. Image obtained from NAO laser head: the binary image is obtained
through laser beams reflected by obstacles. By the calculation of the time
difference between emitting and receiving we can obtain the distance of the
obstacle which that beam encounters.



(a) Values of Transformation Unit 1

(b) Values of Transformation Unit 2

Fig. 7. Relation between Values in Transformation Units and Positions

between them.
Although we only select twenty positions as representatives

within the range of the laser sensor, we can still identify the
relation between transformation values and object positions.
Fig. 7 uses interpolation to estimate the values in-between
to better illustrate the transformation units. We can interpret
this combination of the transformation units as the ability to
locate a unique position of object; in this way we can regard

(c) Values of Transformation Unit 3

Fig. 7. Relation between Transformation Values and Positions (cont.): The
circles represent the values obtained from transformation units (values are
accurate to 0.01; some values are omitted due to the limited figure space).
The contour curves are obtained by linear interpolation. We can pinpoint the
relative position of the object along the contours in these images by associating
the values in the transformation units.

the transformation units as a representation of the relative
positions between the robot and the object.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we propose a novel hybrid architecture of
a Restricted Boltzmann Machine with Transformation Units
to model the functional model of observer-object relation
representation in canonical neurons.

The RBM-TU model is a hybrid model which consists of a
generative model (RBM) and a discriminative model (transfor-
mation units) to represent image transformation. Because of
the independent learning processes between these two parts,
the energy function is not as complex as for GRBM and other
RBM-based image transformation models. Although it is not
enough to apply as a video analysis for the transformation of
consecutive images as GRBM does, it is straight-forward to
be implemented because the independent RBM is the same as
the original one.

The training of RBM and RBM-TU is almost the same
as the generic RBM, except that the updating of weights
between hidden units and transformation units are back-
propagated by the target value of zeros when the object is
placed in the original position. Due to the architecture of the
separate generative and discriminative models, the training of
RBM and transformation units are independent. This saves
computational efforts compared to other RBM-based image
transformation coding. The simple representation is suitable to



process precise image representation, e.g. binary laser images.
In terms of coding the object affordance like canonical

neurons in the mirror neuron system, this computational model
of the canonical neurons towards object affordance is only par-
tially developed. An ideal functional model should represent
both:

1) representing the shape of the object;
2) representing the relation of observer to the object.
The two requirements above can be related to the recog-

nition and representation of “what” and “where” the object
is. Although this problem is not yet fully solved, our model
with laser sensing could become a reasonable foundational
architecture of the multi-modal sensing to better perceive the
information. Although we only use one object here to justify
the transformation units, in further experiments RBM-TU with
a soft-max label layer will be used to identify the object shapes
as well.

The current experiment is done in the fixed context of a
room during both learning and recognizing the object position.
In the next experiment we will attempt to combine the robot
vision and laser sensor as multi-modal input so as to eliminate
the room context and concentrate on the relative position of
robot and object. Moreover, as presented in the first section,
this model can be expected to be further integrated with
SRNPB [24] to build up a complete mirror neuron system
model.
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Abstract—Robust speech recognition under noisy conditions
like in human-robot interaction (HRI) in a natural environment
often can only be achieved by relying on a headset and re-
stricting the available set of utterances or the set of different
speakers. Current automatic speech recognition (ASR) systems
are commonly based on finite-state grammars (FSG) or statistical
language models like Tri-grams, which achieve good recognition
rates but have specific limitations such as a high rate of false
positives or insufficient rates for the sentence accuracy. In this
paper we present an investigation of comparing different forms
of spoken human-robot interaction including a ceiling boundary
microphone and microphones of the humanoid robot NAO with a
headset. We describe and evaluate an ASR system using a multi-
pass decoder – which combines the advantages of an FSG and
a Tri-gram decoder – and show its usefulness in HRI.

I. INTRODUCTION

With current speech recognition systems it is possible to
reach an acceptable word recognition rate if the system has
been adapted to a user, or if the system works under low-noise
conditions. However, on the one hand in human-robot inter-
action (HRI) or in ambient intelligence environments (AmIE),
the need for robust and automatic speech recognition is still
immanent [1], [2]. On the other hand research in cognitive
neuroscience robotics (CNR) and multimodal communication
benefits from a robust and functioning speech recognition as a
basis [3]. Headsets and other user-bound microphones are not
convenient in an natural environment in which, for instance,
a robot is supposed to interact with an elderly person. A
microphone built into the robot or placed at the ceiling, a wall,
or a table allows for free movement but reduces the quality of
speech signals substantially because of larger distances to the
person and therefore more background noise.

One method to deal with the additional problems is of
course a further adaptation of the speech recogniser towards
a domain-specific vocabulary and grammar. Enhancing recog-
nised speech with a grammar-based decoder (finite state gram-
mar, FSG) can lead to improved results in terms of recognised
sentences, but it also leads to a high rate of false positives,
since an FSG decoder tries to map the recognised utterances
to legal sentences. To deal with this problem, one can combine
the FSG with the classical Tri-gram decoder to reject unlikely
results. Such a multi-pass decoder can be applied also to
noisy sound sources like a ceiling boundary microphone or
microphones, installed on a robot.

In the past research has been done on combining FSG
and N -grams decoding processes: In 1997 Lin et. al. used
an FSG and an N -gram decoder for spotting key-phrases
in longer sentences [4]. Based on the assumption that sen-
tences of interest are usually surrounded by carrier phrases,

they employed N -gram decoding to cover those surrounding
phrases on the one hand and FSG decoding on the other
hand if a start word of the grammar was found by the N -
gram decoder. Furthermore, with their approach they rejected
FSG-hypotheses if the average word score exceeded a preset
threshold. However, this approach combined FSG and N -
grams while modifying and fine-tuning the decoding processes
on a very low-level, preventing to switch to another FSG or
N -gram model easily. Therefore it would be interesting to
exploit the dynamical result of an N -gram hypotheses list for
the rating of an FSG-hypothesis instead of a fixed threshold.

Levit et. al. combined 2009 an FSG decoder and a second
different decoder in a complimentary manner for the use in
small devices [5]. In their approach they used an FSG decoder
as a fast and efficient baseline recogniser, capable of recognis-
ing only a limited number of utterances. The second decoder,
used for augmenting the first decoder, was also FSG-based
but according to the authors could be replaced by a statistical
language model like N -grams, too. An augmentation for the
first decoder could be a ’decoy’, which is a sentence with
a similar meaning, similar to an already included sentence.
However, those decoys can only be trained off-line. In this
approach the result of the first decoder was not rated or
rejected afterwards, but the search space was shaped to avoid
the appearance of false positives.

Doostdar et. al. proposed 2008 an approach where an FSG
and a Tri-gram decoder processed speech data independently
based on a common acoustic model [6]. The best hypothesis of
the FSG decoder was compared with the n-best list of hypothe-
ses of the Tri-gram decoder. Without modifying essential parts
of the underlying system they achieved a high false positive
reduction and overall a good recognition rate, while they
restricted the domain to 36 words and a command grammar.
Although aiming for applying their system on service robots,
they limited their investigation to the use of a headset. Yet
it would be interesting to test such an approach far-field in
a real environment using the service robots’ microphones or
other user-independent microphones.

In contrast, Sasaki et. al. investigated 2008 the usability of
a command recognition system using a ceiling microphone
array [7]. After detecting and separating a sound source an
extracted sound was fed to a speech recogniser. The used
open source speech recognition engine was configured for the
use of 30 words and a very simple grammar allowing only 4
different sentence types like GO TO X or COME HERE. With
their experiments, the authors have shown that using a ceiling
microphone in combination with a limited dictionary leads
to a moderate word accuracy rate. Also they claim that their
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approach is applicable to a robot, which uses an embedded
microphone array. A crucial open question is the effect on the
sentence accuracy if a more natural interaction and therefore
a larger vocabulary and grammar is being used. Based on the
presented moderate word accuracy the sentence accuracy is
likely to be small for sentences with more than three words,
leading to many false positives.

In this paper we present a speech recognition approach
with a multi-pass decoder in a home environment addressing
the research question of the effect of the decoder in the
far-field. We test the usability of HRI and investigate the
effect of different microphones, including the microphones
of the NAO humanoid robot and a boundary microphone,
placed at the ceiling, compared to a standard headset. After
analysing the background of speech recognition we will detail
the description of a multi-pass decoder in section 2. Then
we will describe the scenario for the empirical evaluation in
section 3, present the results of our experiments in section 4,
and draw a conclusion in section 5.

II. THE APPROACH

Before explaining the multi-pass decoder in detail, we first
outline some relevant fundamentals of a statistical speech
recognition system and the architecture of a common single-
pass decoder (see also [8]).

A. Speech Recognition Background

The input of a speech recogniser is a complex series of
changes in air pressure, which through sampling and quan-
tisation can be digitalised to a pulse-code-modulated audio
stream. From an audio stream the features or the characteristics
of specific phones can be extracted. A statistical speech
recogniser, which uses a Hidden Markov Model (HMM), can
determine the likelihoods of those acoustic observations.

With a finite grammar or a statistical language model, a
search space can be constructed, which consists of HMMs de-
termined by the acoustic model. Both, grammar and language
model, are based on a dictionary, defining which sequence of
phones constitute which words. The grammar defines a state
automaton of predefined transitions between words, including
the transition probabilities. Language models in contrast are
trained statistically based on the measured frequency of a word
preceding another word. With so-called N -grams, dependen-
cies between a word and the (N � 1) preceding words can be
determined. Since N -grams of higher order need substantially
more training data Bi-Grams or Tri-grams are often used in
current automatic speech recognition (ASR) systems.

During processing of an utterance, a statistical speech
recogniser searches the generated graph for the best fitting
hypothesis. In every time frame, the possible hypotheses
are scored. With a best-first search, or a specialised search
algorithm like the Viterbi Algorithm, hypotheses with bad
scores are pruned.

In principle it is possible to adapt ASR for improving the
recognition rate with two different approaches:

1) The acoustic model is trained for a single specific
speaker. This method leads to precise HMM’s for
phones, which allows for a larger vocabulary.

2) The domain is restricted in terms of a limited vocabulary.
This restricted approach reaches good recognition rates
even with an acoustical model trained for many different
speakers.

B. Multi-Pass Decoder
Both introduced methods, the finite state grammar (FSG)

based decoder as well as the Tri-gram decoder, have specific
advantages and limitations.

• The FSG decoder can be very strict, allowing valid
sentences without fillers only. Unfortunately, such an FSG
decoder maps every input to a path in the search space,
which is spanned from all valid starting words to all
valid finishing words. For example if the speaker is using
a sentence like NAO *EHM* PICK PHONE, the decoder
may map it to a most likely sentence like NAO WHERE
IS PHONE. Even if the speaker is just randomly putting
words together, the decoder may often produce a valid
sentence and therefore – very often – a false positive.

• With a Tri-Gram decoder an ASR system is more flexible
and can get decent results if the quality of the audio signal
is high and the data set for training the language model
is sufficiently large. However, since Tri-grams mainly
take into account the last two most probable words,
they cannot deal with long-range dependencies. Therefore
even if the word accuracy is reasonably high, the sentence
accuracy as a cumulative product is fairly moderate [8].

To overcome the limitations of both single decoders, we
can combine them to a multi-pass decoder. First, we use the
FSG decoder to produce the most likely hypothesis. Second,
we use the Tri-gram decoder – which is able to backoff to
Bi-grams or Uni-grams – to produce a reasonably large list
of best hypotheses. Even if the best hypothesis of the Tri-
gram decoder is not appropriate there is a good chance that
one of the similar sentences is. In the next step, we compare
the best hypothesis of the FSG decoder with the list of n-best
hypotheses of the Tri-gram decoder. If we find a match we can
accept this sentence, otherwise we reject the sentence. Figure 1
illustrates the HMM-based ASR system using the multi-pass
decoder.

C. Speech Recogniser and its Adaptation
In this study, we use the ASR framework Pocketsphinx,

because it is open source and has been ported and optimised
for hand-held devices [9]. In comparison to other promising
systems [10], [11] it provides the advantage of being an
effective research tool on the one hand and being applicable
to devices and robots with moderate computing power on the
other hand. Pocketsphinx comes with a speaker-independent
acoustic-model ’HUB4’ based on English broadcast news.
Also available is a language model trained on the same data.

Since it is our aim to keep the system speaker independent,
we decided to limit the vocabulary and to reduce the format
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Fig. 1. Architecture of a multi-pass decoder

of a sentence to a simpler situated grammar or command
grammar, as it can be useful in HRI. Devices and robots in
our AmIE are supposed to be used for a specific set of tasks,
while the scenario can have different human interactors. The
acoustic-model HUB4 was trained over a very large set of data
(140 hours) including different English speakers [12]. With a
vocabulary reduction to 100 words and the new grammar, as
outlined in figure 2, we generated an own FSG automaton
on the one hand and trained an own language model on the
other hand. For the training of the language model, we used
the complete set of sentences which can be produced with our
grammar. The grammar allows for short answers like YES or
INCORRECT as well as for more complex descriptions of the
environment like NAO BANANA HAS COLOR YELLOW.

In summary we adapted Pocketsphinx to recognise instruc-
tion, information, and question sentences in English.

III. OUR SCENARIO

The scenario of this study is an ambient intelligent home
environment. To investigate opportunities and chances of tech-
nical devices and humanoid robots in home environments,
those scenarios are of increasing relevance [13], [14]. In
particular EU research projects like KSERA aim to develop a
socially assistive robot that helps elderly people [15]. Such a
scenario consists of a home environment including interactive
devices and a humanoid robot.

public <utterance>  = <confirmation> |(nao <communication>);

<communication>  = <information> | <instruction> | <question>;
<instruction>    = <command> | <action>;                    
<information>    = ((<object> | <agent>) close to (<object> 
                     | <agent> | <place>)) 
                   | (<object> can be <affordance>)
                   | (<object> has color <color>); 
<question>   = (what can <object>) 
                   | (which color has <object>)
                   | (where is (<object> | <agent>));
<confirmation>  = yes | correct | right | (well done) | no 
                   | wrong | incorrect;
<command>   = abort | help | reset | (shut down) | stop;
<action>    = <head_action> | <hand_action> | <body_action>;
<hand_action>  = (<affordance> <object>) 
                   | (show (<object> | <agent>) );
<body_action>   = (turn body <direction>) | (sit down) 
                   | (walk <number>) | (bring <object>) 
                   | (go to (<agent> | <object>) ) | (come here);
<head_action>  = (turn head <direction>) 
                   | ((find | look at) (<object> | <agent>)) 
                   | (follow <agent>);
<agent>    = nao | i | patient;
<object>   = apple | banana | ball 
                   | dice | phone | oximeter;
<direction>   = left | straight | right;
<number>   = one | two | three;
<affordance>  = pick | drop | push;
<color>    = yellow | orange | red | purple | blue | green;
<place>    = home | desk | sofa | chair | floor | wall;

Fig. 2. Grammar for the scenario

A. Environment

Our AmIE is a lab room of 7x4 meters, which is furnished
like a standard home without specific equipment to reduce
noise or echoes, and is equipped with technical devices like a
ceiling boundary microphone and a NAO H25 humanoid robot.
A human user is supposed to interact with the environment and
the NAO robot and therefore should be able to communicate
in natural language. For this study the human user is wearing
a headset as a reference microphone. The scenario is presented
in detail in figure 3. The details of the used microphones are
as follows:

a) Ceiling Microphone: The ceiling boundary micro-
phone is a condenser microphone of 85 mm width, placed
three meter above the ground. It is using an omni-directional
polar pattern and has a frequency response of 30Hz - 18kHz.

b) NAO: The NAO robot is a 58 cm tall robot with 25
degrees of freedom (DOF), two VGA cameras, and four mi-
crophones, developed for academic purposes [16]. Besides his
physical robustness, the robot provides some basic integrated
functionalities like an initial set of prepared movements, a de-
tection system for visual markers, and a text-to-speech module.
Controllable over WLAN with a mounted C++ API namely
NaoQi, the NAO can be used as a completely autonomously
agent or as a remotely controlled machine. The microphones
are placed around the head and have an electrical bandpass of
300Hz - 8kHz. In its current version the NAO uses a basic
noise reduction technique to improve the quality of processed
sounds.

c) Headset: The used headset is a mid-segment headset
specialised for communication. The frequency response of the
microphone is between 100Hz - 10kHz.

To allow reliable comparison, the location of the speaker is
at a distance of 2m meter to the ceiling microphone as well
as to the NAO robot.



Fig. 3. Scenario environment

B. Dataset
The set of data to test the approach was collected under

natural conditions within our AmIE. Different non-native
English mixed male and female test subjects were asked to
read a random sentence, produced from our grammar. All
sentences were recorded in parallel with the headset, the
ceiling microphone and the NAO robot in a 16 bit format
and a sample rate of 48.000 Hz. In summary we collected
592 recorded sentences each, which led to 1776 audio files.

C. Evaluation Method
For the empirical validation, we converted all files to the

monaural, little-endian, unheadered 16-bit signed PCM audio
format sampled at 16000 Hz, which is the standard audio input
stream for Pocketsphinx.

With Pocketsphinx we run a speech recognition test on
every recorded sentence. Since it is not the focus of this
study to test for false negatives and true negatives, we did not
include incorrect sentences or empty recordings in the test.
The result of the speech recogniser was compared with the
whole desired sentence to check for the sentence accuracy as
means of comparability. If the sentence was completely correct

it was counted as true positive, otherwise a false positive. For
example if the correct sentence is NAO WHAT COLOR HAS
BALL, then NAO WHAT COLOR HAS WALL as well as NAO
WHAT COLOR IS BALL are incorrect.

To test for statistical significance of the false positive
reduction with the multi-pass decoder, we calculated the chi-
square (�2) score over the true-positives/false-positives ratios.
If, for example, the �2 score over the tp/fp ratio of the multi-
pass against the tp/fp ratio of the FSG decoder is very high,
then we have evidence for a high degree of dissimilarity [17].

IV. EMPIRICAL RESULTS

The empirical investigation of our approach consists of two
parts. First, we analysed the overall rate of true and false
positives of the multi-pass decoder in comparison to specific
single-pass decoders. Second, we determined the influence of
the size n of the list of best hypotheses. Every investigation
has been carried out in parallel for every microphone type as
described above.

A. Effect of Different Decoders
With the 592 recorded sentences we tested the speech recog-

nition using the FSG-decoder and the Tri-gram decoder in a
single-pass fashion and combined them in a multi-pass fashion,
using n-best list size of 10. In table I the results are presented
where every row contains the number of correctly recognised
sentences (true positives) and incorrectly recognised sentences
(false positives).

TABLE I
COMPARISON OF DIFFERENT DECODERS

(a) FSG decoder
True positives False positives Tp/fp ratio

Headset 458 (77.4%) 101 (17.1%) 81.93%
Ceiling mic. 251 (42.4%) 251 (50.3%) 45.72%
NAO robot 39 (6.6%) 447 (75.5%) 8.02%

(b) Tri-gram decoder
True positives False positives Tp/fp ratio

Headset 380 (64.2%) 212 (35.8%) 64.19%
Ceiling mic. 133 (22.5%) 459 (77.5%) 22.47%
NAO robot 14 (2.4%) 322 (54.4%) 4.17%

(c) Multi-pass decoder, n = 10
True positives False positives Tp/fp ratio

Headset 378 (63.9%) 24 (4.1%) 94.03%
Ceiling mic. 160 (27.0%) 76 (12.8%) 67.80%
NAO robot 31 (5.2%) 130 (22.0%) 19.25%

tp/fp ratio = tp / (tp + fp) * 100

The data shows that for a headset every decoder led to a
relatively high rate of correct sentences, counting 458 (77.4%)
with the FSG, 380 (64.2%) with the Tri-gram, and 378
(63.9%) with the multi-pass decoder. The single-pass decoder
produced 101 false positives (tp/fp ratio of 81.93%) with FSG
and 212 false positives (tp/fp ratio of 64.19%) with Tri-gram,
while the multi-pass decoder produced 24 false positives (tp/fp
ratio of 94.03%).



For the ceiling microphone the rate of correct sentences
was fairly moderate, reaching 251 (42.4%) with the FSG, 133
(22.5%) with the Tri-gram, and 160 (27.0%) with the multi-
pass decoder. The number of produced false positives was
relativly high for the single-pass decoder reaching 298 (tp/fp
ratio of 45.72%) with FSG and 459 false positives (tp/fp ratio
of 22.47%) with Tri-gram, whereas the multi-pass decoder
produced 76 false positives (tp/fp ratio of 67.80%).

The rate of correct sentences for the NAO robot micro-
phones was very low, getting only 39 (6.6%) with the FSG,
14 (2.4%) with the Tri-gram, and 31 (5.2%) with the multi-
pass decoder. However, the single-pass decoder produced 447
false positives (tp/fp ratio of 8.02%) with the FSG and 322
false positives (tp/fp ratio of 4.17%) with the Tri-gram, while
the multi-pass decoder produced 130 false positives (tp/fp ratio
of 19.25%).

In table II some examples for the the recognition results
with different decoder and microphones are presented. The
results indicate that in many cases where sentences could not
be recognised correctly, some specific single words like APPLE
were recognised incorrectly. In some cases valid but incorrect
sentences were recognised by both decoders, but were success-
fully rejected by the multi-pass decoder. Furthermore, with the
NAO robot often only single words were recognised.

TABLE II
EXAMPLES OF RECOGNISED SENTENCES

True positive Rejected False positive

(a) “NAO GO TO OXIMETER”
FSG decoder Tri-gram dec. Multi-pass dec.

Headset NAO GO TO
OXIMETER

NAO WHAT
COLOR
OXIMETER

NAO GO TO
OXIMETER

Ceiling mic. NAO SIT DOWN NAO SIT DOWN NAO SIT DOWN

NAO robot NAO GO TO
OXIMETER

NAO BE

(b) “NAO APPLE CLOSE TO PATIENT”
FSG decoder Tri-gram dec. Multi-pass dec.

Headset NAO APPLE
HAS CLOSE TO
PATIENT

Ceiling mic. NAO I CLOSE TO
PATIENT

NAO HEAD CLOSE
TO PATIENT

NAO robot NAO FIND
PATIENT

NAO TO PATIENT

(c) “NAO WHICH COLOR HAS BALL”
FSG decoder Tri-gram dec. Multi-pass dec.

Headset NAO WHICH
COLOR HAS BALL

NAO WHICH
COLOR HAS BALL

NAO WHICH
COLOR HAS BALL

Ceiling mic. NAO WHERE IS
PHONE

NAO WHERE IS
HEAD AT PHONE

NAO robot NO

(d) “WELL DONE”
FSG decoder Tri-gram dec. Multi-pass dec.

Headset WELL DONE WELL DONE WELL DONE

Ceiling mic. WELL DONE WELL DONE WELL DONE

NAO robot YES

B. Influence of Parameter n

To determine the influence of the size of the n-best list, we
varied n over {1, 2, 5, 10, 20, 50, 100}. Figure 4 displays the
ratio of true positives and false positives in comparison to the
rate of correctly recognised sentences for every microphone
type as described above.
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Fig. 4. Comparison of true positives/false positives ratio and correctly
recognised sentences

On the one hand, for small n the percentage of false posi-
tives is smaller for every microphone type. On the other hand,
a small n results in a more frequent rejection of sentences.

Finding an optimal n seems to strongly depend on the
microphone used and therefore on the expected quality of
the speech signals. In our scenario a larger n around 20 is
sufficient for the use of headsets, in terms of getting a good
true positives to false positives ratio while not rejecting too
many good candidates. For a moderate microphone like the
ceiling microphone, a smaller n around 5 is sufficient. With
low-quality microphones like in the NAO robot the variance
of n does not point to an optimal configuration. Smaller n
result in very few correctly recognised sentences, while larger
n result in a very low tp/fs rate.



C. Result Summary
In summary, we observed that using a multi-pass decoder

reduced the number of produced false positives significantly.
For a low-noise headset as well as for boundary microphones
and inexpensive microphones installed on a mobile robot, the
experiment has shown that reducing the false positives to
a good degree does not lead to a substantial reduction of
true positives. The overall recognition rates with the NAO
were insufficient, while the ceiling microphone worked with
a reasonable rate using the multi-pass decoder. A good value
for n depends on the hypotheses space and the microphone
used. For our scenario, overall using n = 10 best hypotheses
was sufficient. If the expected quality is moderate and the
number of different words and possible sentences are high,
then a larger value for n is likely to lead to better results.

V. CONCLUSION

In this paper we presented a study of speech recognition
using a multi-pass FSG and Tri-gram decoder comparing a
ceiling microphone and the microphones of a humanoid robot
with a standard headset. The results of our approach are in line
with [6], showing that a multi-pass decoder can successfully
be used to reduce false positives and to obtain robust speech
recognition. Furthermore we can state that using a multi-pass
decoder in combination with a ceiling boundary microphone
is useful for HRI: Adapting to domain-specific vocabulary and
grammar on the one hand and combining the advantages of
an FSG and a Tri-gram decoder leads to acceptable speech
recognition rates. The size of the n-best list is not very crucial
and depends on the search space to some extent. Build-in
microphones of humanoid robots such as the NAO still come
with a low SRN due to noisy fans or motors, and need
intensive preprocessing to allow for speech recognition.

In the future the proposed method can be improved in
various ways. First, one could improve the quality of the
speech recorded by a (ceiling) microphone itself. Using for
example a sophisticated noise filter or integrating a large
number of microphones could lead to a more reliable result
[18]. Second, one could not only integrate different decoding
methods but also the context information into one ASR system
to accept or reject recognised utterances. For example vision
could provide information about lip movement and therefore
provide probabilities for silence or a specific phoneme [19].
Speech recognition serves as a starting ground for research in
HRI and CNR and as a driving force for a better understanding
of language itself. In this context we have shown that using a
multi-pass decoder and environmental microphones is a viable
approach.
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Abstract—In infant primates, the combination of looking and
reaching to the same target is used to establish an implicit
sensorimotor representation of the peripersonal space. This
representation is created incrementally by linking together cor-
related signals. Also, such a map is not learned all at once,
but following an order established by the temporal dependences
between different modalities. Inspired by these observations we
have developed a framework for building and maintaining an
implicit sensorimotor map of the environment. In this work we
present how this framework can be extended to allow the robot
to update on-line the sensorimotor transformations among visual,
oculomotor and arm-motor cues.

I. INTRODUCTION
Manipulation tasks, such as reaching or grasping, require

knowledge about the position of the target in the peripersonal
space. In human beings, this information is obtained by
different sensorimotor signals that have to be linked together
in order to create an integrated representation of the environ-
ment [1]. These cues are represented in different frames of
reference (FoR), as for examples retinotopic, head-centered
and arm-centered. The brain encodes these transformations
between one frame to another in populations of neurons
that exhibit gain fields. Such neural populations are found
in posterior parietal cortex (PPC) areas V6A and MIP. Both
these areas receive their main input from V6 and project to
the dorsal premotor cortex [2]–[5]. The information regarding
eye position and gaze direction is employed by area V6A in
order to estimate the position of surrounding objects and guide
reaching movements towards them [2], [6], [7].
The computational model we propose for modeling the kind
of sensorimotor transformations performed by the PPC [8] is
based on radial basis function networks (RBFNs) [9]–[11].
Networks of suitable basis functions are able to naturally
reproduce the gain-field effects often observed in parietal
neurons [12] and are particularly suitable for maintaining
sensorimotor associations [9].
Even if, in principle, a large neural network could learn
all the necessary sensorimotor transformations, in practice,
given the high dimensionality of the input space, this is not
computationally feasible, not even for the brain itself. Our
conceptual framework [8], and its first implementation on a
humanoid robot [13], show that the problem can be tackled
by decomposing the learning task into incremental phases,

where some fundamental competences are learned before more
advanced ones [14]. This task decomposition can be observed
also in infant development, where a child learns to direct his
gaze to an object before learning how to reach to it [15].
In the literature, several works have tackled the problem

of the hand-eye coordination with the use of Self-Organizing
Maps (SOM) [16]–[18], RBFNs [19], [20] or other types of
neural networks [21], [22]. Hovewer, some major differences
can be pointed out between the previous works and our
approach. For example, Marjanovic at al. do not use stereo
vision [19], while other approaches do not consider eye move-
ments [16], [17], [20]. In general, the sensorimotor association
is created directly between the visuo/oculomotor space and
the arm-motor space without consider the advantage (and
the biological plausibility) of using the visuo to oculomotor
transformation [16]–[18], [20]. When this transformation is
taken into account, either it is not learned on-line [20], [21]
or it is not learned at all [22].
In our approach, the sensorimotor framework was built

using three RBFNs: one for converting the visual position of
a stimulus into an oculomotor position, and the other two for
hand-eye movement coordination. The aim of this work is to
extend the proposed sensorimotor framework [8], [13] to allow
the robot to incrementally learn to gaze and reach objects in the
peripersonal space. The system is based on two key concepts:
adaptation and task decomposition. The described framework
is implemented on an agent based architecture and tested on
Tombatossals humanoid torso.
In this paper, we describe the sensorimotor framework

(Section II) and how it can be updated during the exploration
of the peripersonal space (Section III). Experiments (SectionIV
show that the robot is able to learn the transformations between
the different FoR and create, in such a way, an implicit
mapping of the environment.

II. ENCODING OF THE SENSORIMOTOR
TRANSFORMATIONS

Saccades and reaching movements constitute the basic be-
haviors employed to build a sensorimotor representation of the
peripersonal space. Such a representation is built incremen-
tally, through subsequent, increasingly complex interactions.
The learning sequence in our system is inspired by infant
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Fig. 1. Association of the oculomotor and arm-motor signals. When the robot
move its hand (RP) and gaze towards the same point (FP), it can update its
sensorimotor representation to locally reduce the sensorimotor transformation
error for both the direct and inverse transformations. TP is the target point.

development [15]. As a first step, the system learns to associate
retinal information and gaze direction (i.e. proprioceptive
eye position). This can be done by successive foveations to
salient points of the visual space. The subject looks around
and focuses the eyes on certain stimuli, thus learning the
association between retinal information and eye position.
Then, gaze direction is associated to arm position, as exempli-
fied in Figure 1. This can be done by moving the arm randomly
and following it with the gaze, so that each motor configuration
of the arm joints is associated to a corresponding configuration
of the eye motor control, and vice versa. This process allows
learning a bidirectional link between different sensorimotor
systems. Thus, the robot can look where its hand is but also
reach the point in space he is looking at. The learning of
the bidirectional oculomotor/arm-motor association between
hand and eye positions (O↔A) requires that the robot is able
to fixate its hand. Thus the visual to oculomotor association
(V→O) need to be learned before.
The representation of the peripersonal space is maintained

both by limb sensorimotor signals on the one hand and
visual and oculomotor signals on the other hand. In this way,
different representations of the same target can be maintained
contextually, and used to act on the target if required [8].
The relations between these representations, i.e. sensorimotor
transformations, are accessed and modified by a conjunction
of gaze and reach movements to the same target (left and right
sides of Fig. 2).
The location of a visual target is expressed with its position
in the cyclopean visual field accompanied by information on
binocular disparity. The output of the visual to oculomotor
transformation is the correspondent potential vergence/version
movement required to foveate the target (left side of Fig. 2).
This transformation has been implemented with an RBF
network, described below. The movement computed by the
network, together with the current eye position, provide the
head centered representation of the target.

Fig. 2. Computational framework of the sensorimotor model. Two trans-
formations permit to represent a stimulus contextually in visual, oculomotor
and arm-motor frames of reference. These representations allow the robot to
perform reaching and gazing movement on demand.

The right hand of Fig. 2 schema shows the oculomotor/arm-
motor mapping, required to code arm movements. This map-
ping is modified by proprioceptive feedback, and allows
reaching towards visual or remembered targets. The inverse
mapping is also stored, so that the robot is able to look at
its hand without the need of new visual processing. We use
two populations of radial basis function neurons for mapping
the vergence/version space (representing oculomotor neurons)
into the arm joint space (representing arm-motor neurons) and
vice versa.

III. ON-LINE LEARNING
A radial basis function network is a single-layer feed-

forward neural network where the hidden layer is composed
of a set of radial basis functions1 that can differ for the
center location or for the shape of the activation. The hidden
units employ a non-linear transfer function on the input data.
The output of the network is computed by means of a linear
combination of the hidden units:

y = h(x) ·W (1)

where y is the output vector, h is the activation of the hidden
layer given the input x and W is the matrix of the weights.
The weights can be learned by any of the standard iterative
methods for neural networks, as the delta rule. The delta rule
is a gradient descent learning rule that can be used to adapt the
weights of a single-layer neural networks. The weight update
equation is the following:

∆W = α · h(x)T · (t− y) (2)

where y is the actual output of the network and t is the
expected output. The parameter α is a small positive value
called learning rate which can be constant or variable.
The application of the algorithm to a real robot raises the
problem of how to calculate or estimate the error of the map.
Usually, this error is provided by external agents as human
users or other systems that control the environment. This type
of learning is called supervised. However, given that our model
is inspired to primate behavior, we want the robot itself to
calculate or estimate the output error. We call this learning
method self-supervised because the error term is provided by
the robot itself.
1A radial basis function is a function whose value depends only on the

distance of the input space from a point, called center of activation.



Algorithm 1 V→O: Learning with ground truth
1: o(t)← oculomotor position (vergence/version)
2: v(t)← stimulus position
3: Assuming the robot is fixating the stimulus: v(t) = 0
4: ∆o(t)← random value
5: o(t+ 1)← o(t) +∆o(t)
6: Move head to position o(t+ 1)
7: v(t + 1)← new stimulus position
8: ∆o(t + 1) ← TV→O(v(t + 1)) (movement computed by
the network)

9: e(t+ 1)← −(∆o(t) +∆o(t+ 1))
10: ∆W(t+ 1)← α · e(t+ 1) ·H(v(t+ 1))

A. Visual to oculomotor transformation

For the visual to oculomotor (V→O) transformation, the
application of the delta rule is not straightforward in the
context of self-supervised learning. The visual to oculomotor
transformation uses the retinotopic position of the stimulus to
update the oculomotor position in order to keep the stimulus
at the center of the retina. A stimulus position different from
zero indicates that the gaze position needs to be adjusted.
However, the error is observed on the retina, i.e., in the input
space, while the application of the delta rule requires the error
in the output space, i.e. in terms of vergence and version
angles. This error can not be calculated exactly because its
computation requires the knowledge of the transformation
V→O itself, that is what the robot tries to learn. Therefore, the
output error has to be known a-priori or it has to be estimated
from the input.
1) Learning with ground truth: A possible solution to the

described problem is to provide the robot with an ad-hoc
behavior for the training phase. When the robot is fixating
a stimulus, it can perform a random ocular movement towards
a different location. After the movement, the position of the
visual stimulus can be used to estimate the vergence/version
components of the movement that would allow to return
to the starting point. If there were no errors, the sum of
the two movements would make the robot fixate again the
original stimulus. The actual residual error is used to train the
network according to Eq. 2, as explained in Algorithm 1. This
algorithm has the advantage of training the network with the
exact movement (ground truth) that it is expected to perform.
Also, this solution allows learning the visual to oculomotor
mapping without any previous knowledge. On the other hand,
the adaption process can be applied only during the training
phase and not in the normal behavior of the robot, unless the
visual environment is so rich that visual stimuli are always
available close to the fixation point.
2) Learning with linear approximation: Another way to

estimate the error is to consider that the transformation can
be approximated locally by a linear function, and exploit
the property f(v1) − f(v2) = f(v1 − v2). In this case, the
executed movement ∆o(t) = TV→O(x(t)), that brings the
stimulus position from v(t) to v(t+1), can be seen as a target

Algorithm 2 V→O: Learning with linear approximation
1: o(t)← oculomotor position (vergence/version)
2: v(t)← stimulus position
3: ∆o(t)← TV→O(v(t))
4: o(t+ 1)← o(t) +∆o(t)
5: Move head to position o(t+ 1)
6: v(t+ 1)← new stimulus position
7: v̂(t)← v(t) − v(t+ 1)
8: ∆ô(t)← TV→O(v̂(t))
9: e(t)← ∆o(t)−∆ô(t)
10: ∆W(t)← α · e(t) ·H(v̂(t))

movement for a hypothetical stimulus v̂(t) = v(t)− v(t+1)
(see Algorithm 2). Ideally, stimulus v̂(t) should correspond
to v(t) but practically they differ by v(t+ 1) which is small
but not zero. This method exploits the linear assumption to
adapt the network by using the performed movement. Even if
V→O is not linear, it is monotonic under the assumption of
having convex lenses, i.e. increasing the retinotopic distance of
the stimulus requires a greater motor movement. Thus, if the
learning rate is small enough, the linear approximation allows
approaching the function from the right direction. Moreover,
the smaller the error of the performed movement is, the closer
the functioning of the algorithm is to the ground truth method.
It is important to note that even if the adaptation procedure
is based on a linear assumption, the learned transformation is
not linear. In this method, learning is applied to the current
activation of the hidden layer, but the system has to memorize
the previous input-output pair in order to compute v̂(t) and
the error e(t).

B. Oculomotor and arm-motor transformations
As in the V→O case, on-line training of the robot is

achieved by means of the delta rule. In order to create the eye-
arm association it is necessary that the robot fixates a point
that it has reached with the hand. This can be done using
vision as master signal, under the assumption that the vision
system is able to recognize the robot hand. We addressed this
problem by placing a marker on the robot’s hand. Once the
robot is able to fixate the hand, the application of the delta
rule becomes straightforward, as the input x and the target
t are given by oculomotor and arm-motor positions, while y

can be obtained by applying the direct and inverse networks
to the input.
The transformations are learned during a free exploration of
the peripersonal space (Algorithm 3). This phase consists of
random arm movements and subsequent saccades towards the
final hand position, which allows learning the transformation
from joint space to oculomotor space and vice versa. To gen-
erate the training points, a correct gazing behavior is required.
Therefore, the second transformation can only be trained after
the first one has a reasonably accurate performance.
After the training phase, the robot can perform its normal
behavior, and work in the goal-oriented exploration mode,
where a target object in space has to be foveated and reached.



Algorithm 3 O↔A: Exploration-based phase
1: Move randomly the arm to position a(t)
2: Find the arm in the visual space
3: Fixate the arm using TV→O

4: o(t)← head position
5: ô(t)← TA→O(a(t))
6: ∆WA→O(t)← α · (o(t)− ô(t)) ·H(a(t))
7: â(t)← TO→A(o(t))
8: ∆WO→A(t)← α · (a(t)− â(t)) ·H(o(t))

IV. EXPERIMENTAL RESULTS
A. Hardware and software architecture
Tombatossals is a humanoid torso endowed with a pan-tilt-

vergence stereo head and two multi-joint arms (Figure 1).
Both wrists mount force/torque sensors that can be used to
stop arm movements in case of collisions. The head mounts
two cameras with a resolution of 1024x768 pixels that can
acquire color images at 30 Hz. The baseline between cameras
is 270mm. Both the head and the arms are equipped with
encoders that allow to gain access to the motor position with
high precision. During the training of the RBFNs the left hand
was equipped with a marker that can be recognized by means
of the ARToolkit library. This marker can be used by the robot
to identify its own hand, and it represents also a visual stimulus
that can be moved very precisely in the three dimensional
space. We employed three degrees of freedom (d.o.f.) for both
the head (tilt, left pan and right pan) and the left arm (first,
second and forth joint).
The control system of the robot consists of a collection of
modules that can exchange data among them through software
ports. The connection among modules was managed using
YARP (Yet Another Robotic Platform) [23]. The system archi-
tecture is shown in Figure 3. Modules can be classified accord-
ing to their nature (left: device interfaces; center: sensorimotor
transformations; right: memories) or to their target domain
(yellow: image domain; blue: gaze domain; red: arm-motor
domain). The two exceptions are the visuomotor memory,
which store visual features together with their oculomotor
position, and the O↔A module, which manages both oculo-
and arm-motor FoR. Finally, the task manager takes care
of controlling the data flow between the modules in order
to accomplish the desired task, such as reaching an object,
looking at the hand and so on.

B. Results
In this section we describe the experiments conducted in

order to validate the framework. The structure and parameters
of the networks were chosen using a heuristic search on a
simulated model of the robot. We decided to employ fixed
centers, whose receptive fields can not move according to
the input data, favoring biological plausibility over potentially
better performance [8].
The centers of the RBFN that computes the V→O transforma-
tion were distributed according to a retinotopic-like criterion
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Fig. 3. Cognitive architecture of robot, with modules classified according to
role and domain.

(input to V6A is, at least partly, retinotopic), following a log-
arithmic distribution. A logarithmic organization of the neural
receptive fields is suitable for modeling foveal magnification,
while affording greater sensitivity to disparity, as observed in
the primate visual cortex [24]. A reasonably good performance
was achieved by distributing the neuron centers on a 7x7x7
neural lattice in the cyclopean (x,y) and disparity space. Neural
activation functions were Gaussians with a spread proportional
to the distance between adjacent centers.
The centers of the O↔A networks were distributed uniformly
on a 7x7x7 lattice in the input space, i.e. the vergence -
version(x,y) space for the direct transformation, and the arm
joint space for the inverse one. Again, the activation functions
were Gaussians, but the spread was the same for all neurons.
The weights of the networks were not learned from scratch,
but were bootstrapped using those provided by the simulated
model of the robot. However, due to the approximation of the
latter, the weights had to be adapted to fit the parameters of
the robot’s body. At each interaction with the environment,
the robot autonomously estimated the local error of the sen-
sorimotor transformations and corrected the weights using the
delta rule, as described in the previous section. The value of α,
the learning rate, is of critical importance. If it is too high, the
robot will overfit the training points and will perform poorly
in presence of noise. On the other hand, a small value of α
produces a slow convergence of the network. The learning
rate was set empirically to 0.01 for both V→O and O↔A
transformations.
The two parts of Fig. 2 were learned in two different phases.
In the first phase the robot learns to properly foveate the target
stimulus. In the second phase, the robot foveates its hand in
order to align eye and arm position for learning the O↔A
transformation.



TABLE I
VISUAL TO OCULOMOTOR NETWORK, ERROR MEANS AND STANDARD

DEVIATIONS [DEGREES].

Simulation Grd. truth Linear approx. SSE
µ σ µ σ µ σ µ σ

0.91 0.57 0.40 0.26 0.42 0.34 0.02 0.014

1) Visual to oculomotor transformation: The V→O learn-
ing process (Section III-A) can be summarized as follows.
The vision system locates saliency points in the left and right
images. The task manager selects the target stimulus and
executes a sequence of saccades until the target is foveated.
After each saccade the new position of the stimulus is used
to train the V→O network. Once the target is foveated, the
head is moved randomly and another stimulus is chosen as
target. The choice of the target can be random or can be
driven by the information stored in visuo-motor memory [14].
In the current setup, markers were used instead of real objects
in order to minimize visual errors. The visual target was
considered foveated when its distance from the centers of both
images was smaller then 10 pixels. The foveating behavior was
performed 500 times. The linear approximation method (see
Algorithm 2) was used to estimate the error of the network and
its performance was compared with the ground truth method
(Algorithm 1).
At the end of the experiment, the performance of the system
was evaluated. To that aim, the head was placed in an initial
position where it fixated the visual marker. Thus, the head
was moved on a lattice on the vergence/version space and the
visual position of the marker was recorded. The maximum
amplitude of the movement was ±0.3 rad for both vergence
and version (x, y) angles. The pairs visual position - performed
movement were used as testing set for the system. Table I
reports the errors of the networks with the weights obtained
during the simulations, and successively adapted with the delta
rule, using both the ground truth and the linear approximation
methods. The error of the simulated model is relatively small
but the online adaptation mechanism allows improving the
performance of the system by a factor of 2. The linear
approximation method provides results close to those obtained
with the ground truth and allows the system to adjust the
weights during the normal exploration of the environment.
Results obtained with a Sum of Squared Error (SSE) batch
learning method are also displayed, and will be commented
upon below.
An even better analysis of the error can be performed by

plotting the mean of the error as a function of the distance
from the fovea (Fig. 4). The weights found in the simulation
(black line) produce an error that depends on the distance.
This is due to the approximation of the model that did not
take into account the focal distortion of the lens. The delta
rule allows correcting for this error either using the ground
truth method (red line) or the linear approximation one (blue
line). On the periphery, the correction factor is reduced due
to the smaller number of training points for that region.

Fig. 4. V→O: Mean error as a function of the distance from the fovea.

However, the network is potentially able to approximate the
right transformation as shown by the result obtained training
the network by minimizing the sum of squared error (SSE,
green line, see also Table I). It is not surprising that the
minimization of the SSE outperforms the on-line method as it
uses the global information of the training set, while the delta
rule uses only the information of the new observed point. On
the other hand, the delta rule does not require to store the
whole dataset to learn the sensorimotor transformation, which
is rather implausible from a biological point of view.
2) Oculomotor⇔arm-motor transformations: The net-

works that compute the direct and inverse transformations
from oculomotor to arm-motor signals require a training set
composed of pairs of eye and arm positions. The training set
was generated by moving the arm randomly.
Once the arm movement is completed, the task manager

releases a sequence of saccades to foveate the marker placed
on the hand. However, this procedure generates training
points that are inherently noisy, due to small imprecisions
in identifying the center of the marker in the two images
and due to the size of the “fovea”, which was set to 10
pixels. The on-line training was iterated for 791 trials. The
misalignment between the oculo- and arm-motor position was
estimated to be on average 2.08 pixels, as viewed by the
robot’s cameras. For each transformation, Table II reports
the mean and standard deviation of the error of the RBFNs
bootstrapped from the weights learned during the simulations
and successively adapted on-line. Again, the table shows
also the results obtained with the weights learned using the
minimization of SSE to show the potential performances of
the networks.
The results indicate that the difference between the simulated
model and the robot is remarkable. The weights obtained
during the simulations are not good enough for the robot to
execute the reaching task. Therefore, the on-line adaptation is
necessary. By training the network with 791 points, the system
was able to improve its performance by a factor of 10 for



TABLE II
OCULOMOTOR⇔ARM-MOTOR NETWORKS, ERROR MEANS AND

STANDARD DEVIATIONS [DEGREES].

Transf. Simulation Delta Rule SSE
µ σ µ σ µ σ

A→O 3.98 0.89 0.36 0.26 0.33 0.25
O→A 13.20 6.20 3.89 3.05 0.83 0.84

A→O and of 3 for O→A. The off-line training performed by
minimizing the SSE method shows that the performance of the
O→A can improve with more training points while the A→O
seems to have reached its best performance. In general, as
observed during the simulations, O→A is harder to learn than
A→O. This should not be surprising, as the former computes
the inverse kinematics while the latter computes the direct
kinematics.

V. CONCLUSIONS
In this work we have described how the transformations

necessary to maintain a sensorimotor representation of the
environment can be updated by the robot itself during the
exploration of the peripersonal space. First, the robot learns to
associate visual cues with the oculomotor movements (V→O)
and then produces arm movements to learn the association
between the fixation point and the reaching point (O↔A).
During such exploration, the weights of the RBFNs that imple-
ment the V→O and O↔A transformations are refined using
the delta rule. This learning process is the normal behavior of
the agent, constituting the most fundamental component of its
basic capability of interacting with the world, and contextually
updating its representation of it.
The proposed framework works on the assumption that

problems such as object recognition and disparity extraction
have already been solved. We are currently working on im-
proving the visual system by introducing models, inspired by
the primate visual cortex, which will allow the system to deal
with real objects instead of visual markers.
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Abstract— In an experiment we empirically tested effects 
of social category membership on the evaluation of 
humanoid robots. To do so, German participants rated a 
humanoid robot that either belonged to their German 
ingroup or to a national outgroup with regard to 
anthropomorphism. That is, we asked participants to 
provide  mind attribution, warmth ratings, perceptions 
of  shared reality with the robot  and evaluation of robot 
design. We operationalized alleged robot group 
membership by manipulating the robots name and by 
means of providing additional information about where 
the robot prototype had ostensibly been developed. This 
resulted in a “German” and a  “Turkish” robot 
prototype that participants had to evaluate In line with 
social psychological findings from intergroup research, 
we predicted that participants would anthropomorphize 
the German robot more than the Turkish robot. That is, 
we hypothesized that they would attribute more mind 
and  experience more shared reality with the ingroup (vs. 
the outgroup) robot. Finally, we predicted that 
participants would prefer the ingroup over the outgroup 
robot even with regard to its design. Our results support 
all experimental hypotheses: Generally, on all dependent 
measures, participants anthropomorphized the German 
robot significantly more strongly than the Turkish 
prototype. Analogously, they experienced more shared 
reality with it and found its design more aesthetically 
pleasing than compared to the outgroup robot. 
Implications of these results are discussed. 
 

I. INTRODUCTION 
esearch by Epley and his colleagues [1] has shown  that 
people tend to ascribe typically human attributes (e., g., 
traits, intentions, mind, emotions) even to nonhuman 

entities, such as technical gadgets, gods, pets or robots.  
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That is, people imbue “the imagined or real behavior of 
nonhuman agents with humanlike characteristics, 
motivations, intentions, and emotions” (pp. 864-865).  
Epley and colleagues have emphasized the fact that 
anthropomorphism should not be equated with or reduced to 
attributions of “lifelikeness”, “naturalness”, 
“humanlikeness” [2], or mere animism [3, 4]. Instead, they 
have proposed that anthropomorphic inferences go well 
beyond merely observable behavior [1, 5]. 
In their theoretical framework, these researchers have 
introduced three core determinants of anthropomorphism, 
two motivational factors and a cognitive one. The two 
motivational determinants of anthropomorphism are 
sociality motivation and effectance motivation [1, 5]:  

Sociality motivation refers to the desire for social 
connection and a sense of belonging. Epley et al. [1] have 
observed that people who lack social connection appear to 
anthropomorphize pets, inanimate agents or other nonhuman 
entities more strongly than those who are socially connected. 
Effectance motivation, on the other hand describes the desire 
to master our environment and to interact with it as 
competent social actors [6]. Finally, they propose that a 
cognitive determinant drives people’s anthropomorphic 
judgments. That is, when confronted with an unfamiliar 
agent, people draw on knowledge about themselves and the 
category of “humans”. This way, elicited agent knowledge is 
activated.  

II. RELATED WORK 
 
Social psychological research on intergroup processes has 
shown that people readily categorize others in terms of their 
age, sex or ethnicity [7, 8]. That is, people like to think about 
others in terms of “us” vs. “them”. From this results the 
robust finding that people tend to evaluate or behave more 
positively toward members of their own social than towards 
a social group outgroup, and this is even the case if group 
memberships have been assigned randomly (e.g., ostensibly 
based on an individual’s preference for something). This 
phenomenon is called “ingroup favoritism” [for an overview 
of  social psychological intergroup theories, refer to 9, 10].  

Would such an effect even go beyond judgments of fellow 
social group members and extend to products or technical 
devices such as robots? That is, would group membership of 
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a robot prototype affect users’ perception and 
anthropomorphic inferences about the robot? 

The present research sought to provide answers to these 
research questions: Specifically, we investigated whether 
participants would a) attribute more typically human 
attributes, b) feel psychologically closer and, c) even rate the 
design of the robot more positively when the robot allegedly 
belonged to their own social group vs. a social outgroup. 
With regard to the issue of the operationalization of ingroup 
vs. outgroup membership of the robot, we relied on a simple 
manipulation that will be described in detail in Section C.  

As documented in our previous research on effects of 
social categorization in robots [11], participants readily 
applied gender categories and the respective stereotypes that 
go along with them to humanoid robot that appeared male 
vs. female based on its hairstyle. That is, in line with Epley’s 
notion of elicited agent knowledge that serves as a heuristic 
cue when judging an unfamiliar entity, hairstyle as a visual 
gender cue was sufficient to trigger subsequent stereotypical 
evaluations of robot prototypes. Thus, participants used the 
knowledge that was most readily accessible about the 
categories “male” or “female”, and this in turn biased their 
judgments about the “gendered” robots. In a similar vein,  
[12] and [13] have demonstrated that such categorization 
effects are not restricted to the gender category: To illustrate, 
Powers and colleagues [12, 13] have shown that a robot’s 
behavior, its tone of voice or its appearance (e. g., in terms 
of babyfacedness) constituted key cues for subsequent 
judgments about the robots and its “persona”. These authors 
have suggested that people do not “approach the robot 
tabula rasa but rather develop a default model of the robot’s 
knowledge” [12, p. 159].  

Moreover, Lee and colleagues [14] have demonstrated 
that the appearance and language of a robot affected the 
perceived knowledge of the robot when it was described in 
terms of its ethnicity, either ostensibly stemming from China 
or the US. Taking this information into account, participants 
assumed that the Chinese-speaking robot of “Asian 
ethnicity” would know more about landmarks in China 
compared to an “American” robot that had been developed 
in the United States. This exemplifies that participants 
apparently used accessible social category information to 
form their judgments about the robot prototypes. In other 
words, social categorization processes influenced 
perceptions of the robot types depending on their alleged 
“ethnicity”.  

Our goal was to broaden the theoretical and empirical 
scope of the previous work by testing whether participants 
would show biased anthropopmorphic inferences about an  
ingroup vs. outgroup robot. This notion is based on research 
on intergroup processes and discrimination [15-17]. In this 
work, it has repeatedly been shown that people reserve 
typically human traits for their own group, whereas they are 
hesitant to attribute these features to another social group 
[15]. In a similar vein, consumer research has found that 
people tend to integrate brands less into their self-concept  if 
the brand represents a dissociative (i.e. disliked) reference 
group [18, 19]. To illustrate, White and Dahl [19] have 
shown that consumers avoided brands associated with a 

negatively viewed outgroup more than a brand that was 
associated with outgroups in general. Taken together, 
previous research has provided evidence for the fact that 
social category information matters, independent of whether 
the social category had been activated  in a subtle or more 
direct manner. Would social category membership of a robot 
thus influence the extent to which participants 
anthropomorphized it? To shed light on this research 
question, we conducted an experiment.  

III. METHOD 

A. Participants, Design, and Procedure 
Participants were 78 German university students (37 male, 

40 female, one person did not report his/her gender), with a 
mean age of 23.27 years (SD = 3.29). They were on average 
in their 4th semester of study (SD = 3.46). Participants were 
randomly assigned to one of two experimental conditions. 
That is, they either evaluated an ostensibly German robot or 
a Turkish robot with regard to anthropomorphic inferences.  

As a cover story, participants were asked to take part in a 
survey study on the evaluation of an allegedly newly 
developed robot. They were told that with their ratings, they 
would help to improve the prototype before the robot would 
launch the market.  

Thus, participants completed a questionnaire package that 
was used to measure participants’ anthropomorphic 
inferences about Flobi [20]. Finally, they were reimbursed, 
debriefed and dismissed.  

B. Hardware 
In the present research, we used the social robot Flobi as a 

research platform [20]. Flobi’s head has 18 degrees of 
freedom, in order to convey emotional states, such as 
happiness, sadness, fear, surprise, and anger. Two actuators 
rotate the eyebrows, three actuators move both eyes, four 
actuators serve to move the upper and lower eyelids, three 
actuators move the neck, and finally, six actuators are used 
to animate Flobi’s lips. By means of four LEDs, red or white 
light can be projected onto Flobi’s cheek surfaces to indicate 
either shame or health [see 21 for details].  

Importantly, since the present research sought to focus on 
the effects of group membership on the evaluation of the 
robot platform, we only showed pictures of the robot target 
to participants and no actual human-robot interaction took 
place. Figure 1 shows the picture we used to familiarize 
participants with the robot target.  
 

 
Fig. 1. The humanoid robot Flobi [20, 21] 



  

C. Experimental Manipulation 

Because our aim was to test effects of social categorization 
in the context of robots, we operationalized the robot’s 
group membership by varying two aspects: On the one hand, 
we manipulated group membership by selecting a German 
vs. a Turkish first name for the robot prototype. That is, in 
one condition, participants learned that we would be 
interested in their evaluation of the newly developed robot 
“ARMIN“ (a German first name), whereas the other half of 
participants received the same instructions, but they were 
asked to provide evaluations of the robot “ARMAN“ (a 
Turkish first name). Secondly, to make group membership 
of both robots more salient, partipants were also informed 
that “ARMIN“ had allegedly been developed at a German 
university, whereas “ARMAN“ had ostensibly been 
developed at a Turkish university. The German-Turkish 
intergroup context was chosen because data were collected 
in Germany, where Turks represent the biggest socially 
relevant minority group. 

D. Dependent Variables 

To collect participants’ responses regarding the dependent 
measures we used 7-point Likert scales. For subsequent data 
analyses, average scores were computed to form indices of 
the relevant constructs, with higher values reflecting greater 
agreement with the assessed dimension.  

First, participants were asked to report how interperso-
nally warm they rated the robot prototype [22]. Warmth was 
assessed using five traits (helpful, sensitive, polite, gene-
rous, humble). These items were averaged to form a reliable 
index of Warmth, Cronbach’s α = .81. 

Second, we measured the extent to which participants 
attributed mind to the robot. We did so by asking them to 
rate the robot prototype with regard to its intelligence and 
eight further items: For instance “To what extent is the robot 
capable of feeling hungry / joy / pain / fear?”; “To what 
extent is the robot capable of hoping for things?”; How 
likely is it that the robot has a personality?”; “To what extent 
is the robot capable of being aware of things?” “ How likely 
is it that the robot has a soul?”. These items were adapted 
from Gray, Gray and Wegner’s mind survey [23] and 
translated into German for the purpose of this experiments. 
The items formed a highly reliable Mind scale with 
Cronbach’s α = .89.  

Third, we administered four items to assess participants’ 
degree of shared reality with the robot [24]. The Shared 
Reality index reflects perceptions of similarity and 
experienced psychological closeness to the robot. 
Furthermore, it covers aspects of human-robot acceptance, 
because participants had to indicate how much they would 
like to talk to the robot and to what extent they would be 
willing to live with it. The index of shared reality with the 
robot was reliable, given Cronbach’s α = .74.  

Finally, we were interested in a more subtle measure of 
favoritism for the ingroup robot. Therefore, we asked 
participants two questions related to their Aesthetic 
Preferences. The items read: “To what extent do you think 
the robot’s design is well-developed?” and “Do you think 

the robot’s design is aesthetically pleasing.” This measure 
proved highly reliable, Cronbach’s α = .87 

IV. RESULTS 
To test the experimental hypothesis that the ingroup robot 

would be evaluated more favorably than the outgroup robot, 
we conducted t-tests on the focal dependent measures. In 
line with our predictions, we found that on all dependent 
measures, participants evaluated the ingroup robot 
“ARMIN” that had been developed at a German university 
more favorably than the outgroup robot “ARMAN” that had 
ostensibly been developed at a Turkish university.  
Figure 2 depicts our findings: 

 

 
 

Fig. 2. Mean attribution of anthropomorphism and judgments of aesthetic 
preference as a function of Robot Type. 
 
 
Figure 2 illustrates that participants anthropomorphized the 
German robot “ARMIN” significantly more than the Turkish 
equivalent named “ARMAN”. This pattern of results was 
obtained on various dimensions: For example, participants 
perceived “ARMIN” as warmer (M = 4.84, SD = 1.15) than 
“ARMAN” (M = 3.97, SD = 1.31), t(76) = 3.04, p = .003. 
Most importantly, participants attributed more mind to the 
ingroup robot “ARMIN” (M = 2.65, SD = 1.40) than to the 
outgroup robot “ARMAN” (M = 1.99, SD = 0.72), t(76) = 
2.75, p = .007. Going beyond mere judgments of the robot’s 
sociality and mind, participants also reported significantly 
more shared reality with the ingroup robot (M = 3.34, SD 
=1.39) than with the outgroup robot (M = 2.51, SD = 1.11), 
t(76) = 2.95 , p < .001. With regard to participants’ aesthetic 
preference, results show that they clearly favored the design 
of the ingroup robot (M = 4.00, SD = 1.62) over the 
outgroup robot (M = 3.18, SD = 1.48). This mean difference, 
too, was statistically significant, t(76) = 2.33, p = .02, 
despite the fact that both groups had been presented with 
exactly the same pictures of the allegedly new robot 
protoypes. 

V. DISCUSSION 
Our research experimentally investigated processes of 

social categorization in the context of social robotics. From 
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findings on human-human intergroup research we know that 
commonly, individuals prefer their own group over another 
social group. That is, people tend to attribute more positive 
traits to their own social group relative to a social outgroup. 
Similar effects have also been observed with regard to 
typically human attributes. For example, Haslam and 
colleagues [16] have shown that people ascribe more 
typically human traits to themselves than to others, a 
phenomenon the authors coined “self-humanization”. We 
were interested in finding out whether participants would 
also ascribe more typically human attributes (e. g., warmth, 
mind) to a robot that ostensibly was “part” of their ingroup 
vs. an outgroup. We chose a German-Turkish inter-“robot” 
setting to test this assumption. That is, simply by labeling 
the robot target differently, an “intergroup” mindset was 
activated and participants biased their judgments of the robot 
prototypes accordingly. In other words, participants clearly 
evaluated one and the same robot prototype more positively, 
only because it had allegedly been developed in their home 
country and carried a name that signified ingroup member-
ship. Because the current research was conducted with 
German participants only to establish and activate a 
German-Turkish intergroup context, it would be interesting 
to conduct the same study with Turkish participants. If 
ingroup favoritism were the underlying process, analogous 
results should be obtained in a Turkish sample. However, 
because it proved difficult to get access to Turkish-speaking 
participants, only data from a German convenience sample 
were presented here to make a case for social categorization 
effects of group membership using social robots.  Critics 
might argue that Germany is better known for its 
engineering science and technological advancement as 
compared to a country like Turkey and this might explain 
the overall bias in favor of the German robot “ARMIN”.  
 However, we would counterargue that in the present 
study, no objective measures of the perceived technological 
standards in Germany vs. Turkey were assessed. That is, 
participants did not evaluate the products with regard to 
functionality and technical development. With regard to 
objective criteria including technical advancement, the 
argument could have been plausible. Interestingly, however, 
our dependent measures did by no means assess participants’ 
impression of the technical state of the art of the robot 
prototypes. Rather, the measures of anthropomorphism that 
were focal in the present research included judgments of 
sociality, mind attribution, perceived shared reality with the 
robots and finally, their ratings of the design. 

On all dependent measures, a similar pattern of results 
emerged: The German robot “ARMIN” consistently and 
significantly outperformed the Turkish robot “ARMAN”. 
These results can be interpreted and explained from different 
angles: On the one hand, our findings are in line with Epley 
and colleagues’ [1, 5] notion of elicited agent knowledge, 
show-ing that the group membership manipulation used in 
the present experiment obviously triggered relatively more 
favorable judgments of the robot that represented 
participants’ ingroup. The heuristic thinking underlying such 
evaluations could be summarized as “whatever belongs to 
my group is better” – in the case of our experiment, this 

apparently mindless and automatic reasoning extended to 
robot platforms [25]. Moreover, the present findings can 
easily be reconciled with previous work on the 
dehumanization of social outgroups [15-17]. As research in 
the context of human-human intergroup contexts has 
repeatedly and robustly shown, in comparison to one’s own 
reference group, social outgroups are commonly perceived 
less human. Analogous patterns were obtained for the 
outgroup robot with regard to ratings of anthropomorphism 
and overall evaluation.  

Besides the theoretical impact of the present results, they 
also bear clear practical significance: That is, our data 
indicate that with regard to user-centered robotics, 
developers should carefully reflect upon the naming of their 
product. In keeping with [18] and [19], marketers should 
bear in mind attributes of the consumers they want to target, 
because an association of the product with them and their 
ingroup affects subsequent product evaluations. According 
to a human-centered robotics approach, we would suggest to  
tailor the robot to the respective user group. Taking into 
account the current developments in technology and social 
robotics, social robots will sooner or later accompany 
humans in every day life. Our results show that perceived 
closeness to and shared reality with a robot depended on 
whether the robot was perceived in terms of an ingroup 
member. As such, the robot could be interpreted as a  a self-
extension and was subsequently rated much more favorably 
than the respective outgroup counterpart. Thus, if the robot  
depicted in Fig. 1 should ever launch the market, we would 
recommend to activate ingroup associations in the 
consumers, either by means of the product name or by 
emphasizing where the product originated. Future research is 
underway to examine whether the present findings 
generalize to other ingroup-outgroup contexts. The current 
findings, however, nicely exemplify a whole new meaning 
of the term “social robot” and the implications that go along 
with it.  
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Abstract—At birth infants are faced with the difficult task of
learning to control their bodies to interact with the physical
and social world around them. From a motor control point
of view the problem infants face is monumental, due to the
high number of degrees of freedom, high compliance, and low-
repeatability provided by the human musculoskeletal system. In
fact the complexity of the control tasks that infants solve so
effortlessly far outstrips the abilities of the most sophisticated
approaches to motor control and artificial intelligence. Observing
how infants develop such motor skills as they interact with
objects and caregivers may provide insights for new approaches
to robotics. One obstacle for progress in this area is the lack
of datasets that simultaneously capture the motion of multiple
limbs of infants and caregivers across the developmental process.
Here we present our first steps towards the collection of one
such datasets, focused on the development of reaching behaviors.
We describe the technical and logistic problems we faced so far
and the solutions we found. We also show preliminary analyses
that illustrate how the collected data suggests new approaches to
motor control in robotics, and to theories of motor development
in infants.

I. INTRODUCTION

The sensory-motor systems of the brain generate move-
ments that are compliant and non-repeatable, yet remarkably
well-adapted to an unstructured, uncertain and non-stationary
world. Contrary to this, the fields of robotics and motor control
has for the most part focused on simplifying the control
problem by using stiff, highly geared actuators, emphasizing
repeatability over compliance, and avoiding unstructured con-
ditions. This approach worked well for industrial applications
and revolutionized the assembly line. However, in order to
develop robotic technology that could transform daily life, it
is important to focus on robots that approximate the control
properties of the human body. The problem is that due to
the complexity, compliance, non-repeatability, and temporal
dynamics of the human body, most of the control schemes
used in current practice become inapplicable.

Infants face the very difficult task of learning to control their
bodies to interact efficiently with the physical and social world
around them. From a motor control point of view this problem
is formidable, due to the high number of degrees of freedom,
high compliance, and low-repeatability provided by the human
musculoskeletal system. The solution to this problem eludes
the most sophisticated approaches to robotics and artificial
intelligence. Yet infants solve this problem seamlessly within
a few years of life. Understanding how this is done and re-
producing this process in robots may have profound scientific

!
Fig. 1. Diego: a humanoid robot that approximates human body complexity
and dynamics.

and technological consequences. One obstacle for progress in
this line of work is the lack of datasets that jointly capture the
joint development of infant and caregiver body motions at high
temporal and spatial resolution. Such datasets may provide the
key to reverse engineer human motor development and to syn-
thesize it in new human-mimetic control algorithms for robots.
Another obstacle for progress is the lack of robot systems that
approximate the complexity, compliance and control dynamics
of the human body. Based on these motivating ideas, we have
been pursuing a project whose goal is to gain a computational
understanding of how infants learn to control their bodies. One
component of this project focuses on the development of a
sophisticated humanoid robot named Diego San (see Fig.1),
that approximates the complexity, compliance and control
dynamics of the human body. The other component, which is
the focus of this paper, focuses on the collection of a motion
capture dataset to understand the development of reaching
behaviors in the context of physical and social interactions
with the world. While the use of motion capture has recently
become popular in the motor development literature, a unique
aspect of our work is the attempt to simultaneously capture the
motion of the entire body (arms, legs, trunk, head) in both the
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infant and caregiver. In this paper, we present our initial steps
towards capturing such data. We describe the technological
and logistic problems we are facing and the solutions we are
finding to these problems. We also describe our preliminary
steps analyzing the data obtained so far.

II. SETUP AND DATA COLLECTION PROCEDURE

Although motion capture technology is now quite mature,
most modern systems are optimized for single adults in
standing postures with low levels of occlusions. However,
our experiment focuses on infants in a natural lying posture
interacting with their caregivers. Based on pilot work with
several motion capture systems, we decided to use the Phas-
eSpace Impulse, because of the fact that it uses active LED
markers. In contrast to systems using passive markers (such as
the Vicon system), active LED markers have individual digital
signatures so that the system can easily tell the identity of each
marker at each point in time. This is particularly important in
setups, like ours, with a large number of occlusions. Another
alternative would have been to use magnetic based motion
capture. Unfortunately due to the magnetic characteristics of
our experimental room this was not an option we could use. A
disadvantage of active markers is that they need to be powered
via cables attached to a small wireless driver (see Figure 2).
Our final system utilized 10 infrared cameras. The cameras
were installed around the perimeter of a 3.3m⇥3.3m sound-
attenuated playroom for recording. Additionally, four fixed
video cameras are used to supplement the infrared system.
This includes a small headband camera worn by the mother
to record the infant’s expressions during the sessions.

A. Mocap Suit Design
As there are no commercially available motion capture

suits for infants we had to develop our own. This apparently
mundane task turned out to be surprisingly difficult. While we
have made significant progress, every capture session teaches
us new lessons on how to improve the design. Originally we
had 4 design criteria:

• Scalability the system needed to allow for the addition
and removal of LED markers depending on task demands.

• Low profile the wiring and placement of the suit markers
should not interfere with infant movement, or distract the
infant during sessions. Additionally, the markers could
not touch the infant’s skin.

• Durability the longitudinal design involved multiple ob-
servation sessions a week with each infant being seen
over the course of 8-10 weeks. The suit needed to be
robust enough to functionally endure these sessions.

• Redundancy capturing the motion of an infant lying in
the prone position with his or her mother leaning over the
infant presented significant line of sight problems that are
not typically encountered in traditional motion capture
on adults. Thus, the suit had to be designed with a high
degree of marker redundancy to optimize the amount of
time each part of the infant’s body was able to be tracked
by the PhaseSpace system.

!

A! B!

Fig. 2. Versions of the infant suit. A) An early suit prototype, note the
diffusion of light from the LEDs on the infant’s arms and body created by
the external onesie. B) The current suit design, note the absence of the external
onesie, and the additional markers

Each system of markers connects to an individual wireless
LED driver, which supplies power for the markers and sends
data from the markers to the server. Initially, the 24-gauge
ribbon cable that connects the LED driver was spliced and
an array of parallel LEDs was connected to each port in the
LED driver. The markers were then attached using Velcro
adhesive strips connected to an infant onesie. The procedure
was to dress the infant in the onesie, attach the markers, and
then place another onesie over the markers. (See Fig. 2A).
After several pilot sessions with using this configuration, we
found that the additional onesie caused diffusion in the LEDs,
causing inconsistent tracking of markers.

A modified suit was designed (see Fig.2B), this time using
series connections from the LED driver with connectors that
could be crimped onto the wire directly. The series connections
both reduced the amount of wire and made for a more
logical arrangement of the LED strings. Each LED string
could accommodate up to 7 markers per string. Five LED
strings were constructed, two for the arms, two legs, and
a head/body string. Given earlier tracking problems caused
by the outermost onesie (see Fig.2A), we piloted a session
with only the inner onesie and the now external wiring.
Surprisingly, the pilot infant did not appear to notice the
external wiring or the LED markers. We are currently using
this configuration for all data acquisition. To date, no infants
have spent a noticeable amount of time gazing at or touching
the markers or other components of the suit.

B. Experimental Procedure

On each motion capture session infant and caregiver are
brought into the motion capture playroom and the infant is
placed on his/her back with caregiver facing the child (see
Fig. 3). Caregiver is instructed to interact with infant in the
following conditions:

1) Face to face without any toys for 2 minutes.
2) Caregiver offers a series of toys for 10 minutes with the

goal of initiating reaching.



!Fig. 3. An example of our experiment scenario. The infant is looking at the
toy shown by the mother.
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Fig. 4. correlation of movement magnitude between body regions by marker

3) Unstructured infant play with mobile for 1 minute.
The session ends with the examiner presenting toys to the
infant in predetermined series of positions.

III. PRELIMINARY RESULTS

A. The Nature of the Developmental Process

The classic robot control literature typically measures the
difficulty of a control problem in terms of the number of
degrees of freedom and joint compliance. A robot with a large
number of compliant joints, results on a highly dimensional
problem with tightly coupled non-linear dynamics. Such prob-
lems are very difficult to solve with current approaches. A
classical solution is to reduce the effective number of degrees
of freedom by temporarily or permanently stiffening some
joints, so that the control problem decouples into a small set of
independent equations. Perhaps influenced by classic robotics
theory, the literature in developmental psychology has adopted
a similar point of view. For example, it has been proposed
that infants’ early attempts to reach engage a low number
of degrees of freedom. From this point of view development

proceeds from engagement of less to engagement of more
degrees of freedom.

Unfortunately much of the behavioral evidence supporting
this less-to-more view of motor development has focused on
laboratory experiments that capture the motion of a single
infant arm as it reaches towards an object in very restricted
conditions [1], [2].

Thus our dataset will offer a unique opportunity to test
current theories of motor control by analyzing how the dif-
ferent parts of the body, not just an individual arm, coordinate
throughout development. To begin exploring this issue we
performed some preliminary analysis on the data obtained so
far, focusing on how hands and legs move while mom offers
baby a toy for him/her to reach. The analysis was performed on
a single motion capture session of an 18 week old infant. First,
the instantaneous motion energy of each marker was estimated
by squaring the displacement between adjacent frames. A
displacement was counted only when a marker is visible in
both frames and the displacement is reasonable (speed <
24m/s) so as to exclude missing markers and motion marker
jitter. The displacement values were normalized per marker
across the entire session. Second, the temporal correlations
between the average group motion energy for marker located
on two segments of the infant’s body were computed over the
entire session. If two limbs were moving at the same time
regardless of the direction of movement, there will be a high
correlation between the corresponding markers (Fig.4).

Not surprisingly, high correlations were observed for mark-
ers located within each of the following groups: head, left arm,
right arm, left leg and right leg. Interestingly, high correlations
were also observed between markers on different limbs (e.g.,
0.4 Pearson correlation coefficient between the left and right
arm). Basically it appears that infants were simultaneously
using all the limbs (the two arms and legs). To explore the
temporal unfolding of inter-limb correlation, we plotted the
motion energy over time as the infant attempted to reach for
an object (see Figure 5(a)).

Note that the two arms and legs move in synchrony bursts
that lasts approximately 4 seconds. Looking closer at the
second burst (see Fig.5(b)), we see a fine grain motion energy
plot. Figure 6 shows the actual movement of all tracked groups
in the horizontal plane.

Thus the evidence, while preliminary, does not appear to
be consistent with a less-to-more view of motor development.
If anything early in development children appear to use many
more joints than necessary. Rather than reaching with a single
arm, they appear to be simultaneously reaching with both their
arms and limbs.

B. Analyzing Mother Infant Contingency Structures
An important component of the dataset we are collecting

is the fact that we simultaneously motion capture infant and
caregiver data. Our use of motion capture technology allows
the analysis of contingencies between behavior of mother and
infant at a very high spatial and temporal resolution with min-
imal human coding. The issue of which actions of a particular
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3) Unstructured infant play with mobile for 1 minute.
4) Examiner presenting tracked toys in predetermined po-

sitions.

III. PRELIMINARY RESULTS

A. Measuring Concurrent Movement: Motion Energy Corre-
lation Analysis

One question that our dataset can address that has been
outside of the scope of infant motion capture studies with
only a limited number of motion markers is whether a subject
moves one joint at a time or multiple joints at the same time
during a reach. While, some degree of joint movement would
be expected to occur, having a rich quantitative description
of this coupling and how it changes over the course of
interaction and development is the focus of our future work.
For this preliminary analysis, a simple correlational tool was
developed to perform these analyses. First, the instantaneous
motion energy of each marker is estimated by squaring the
displacement between adjacent frames. A displacement is
counted only when a marker is visible in both frames and the
displacement is reasonable (speed < 24m/s) so that we exclude
missing markers and motion marker jitter. The displacement
values are normalized per marker across the entire session.
Second, the temporal correlations between the average group
motion energy for marker located on two segments of the
infant’s body are computed over the entire session. If two
limbs are moving at the same time regardless of the direction
of movement, there will be a high correlation between the
corresponding markers (Fig.4).

High correlations are observed in the following groups:
head, left arm, right arm, left leg (first 2 leg markers) and right
leg (last 3 markers). Surprisingly, high correlations were ob-
served between markers on different limbs (e.g., 0.4 between
the left and right arm). To explore the temporal unfolding
of inter-limb correlation, we plotted the motion energy over
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(b) zoom-in the second episode (shaded) in (a) (smoothing window =
.05s)

Fig. 5. Kinetic energy for left arm, right arm, and legs during a 20 second
segment

!
Fig. 6. Marker trajectories (projected on to the X-Y plane) of the movement
episode shown in Fig. 5

time. For simplicity, the markers have been grouped by their
corresponding limbs and group averages are reported.

Figure 5(a) shows a 20 second segment in which both arms
are moving together over time. The legs are also moving
together over time, though the intensity of movement is lower.
This subject appears to move his limbs in ballistic episodes,
where each episode lasts for about 4 seconds. Looking closer
at the second episode (see Fig.5(b)), we see a fine grain motion
energy plot. Figure 6 shows the actual movement of all tracked
groups in the horizontal plane.

To sum up, using simple motion energy correlation method,
we are able to identify ballistic episodes that the infant
appeared to move both hands and legs at the same time while
the mother was trying to offer the baby a toy.

B. Quantifying Contingencies Between Mother and Infant

The issue of which actions of a particular partner within the
context of a dyadic interaction engender predictable responses

(a) a 20s segment (smoothing window = 1s)
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(b) zoom-in the second episode (shaded) in (a) (smoothing window =
.05s)

Fig. 5. Kinetic energy for left arm, right arm, and legs during a 20 second
segment
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Fig. 6. Marker trajectories (projected on to the X-Y plane) of the movement
episode shown in Fig. 5

partner within the context of a dyadic interaction engender
predictable (contingent) responses of the other partner has long
been a focus of developmental science [3], [4]. Most work
in this area follows two basic steps: first use coarse-grained
hand-coded variables to describe the dyadic interaction (e.g.
coding infant gaze as being to one of several candidate loci of
attention); second, use techniques such as cross-correlation to
identify the temporal properties of influence between mother
and infant [3]. Here we address this issue by examining to
what extent the 3D position of a marker on the infant can
be predicted by the 3D position of a marker on mother and
vice-versa. Specifically, we are interested in the following
questions:

1) Movement of which parts of mother’s body are most
predictive of the orientation of the infant’s head?

2) What is the temporal delay for each possible location
on the mother’s body that is maximally predictive of

the orientation of the infant’s head?
In this section we present our initial steps in developing
computational strategies to address these questions. We used
windowed Canonical Correlation Analysis [5] of the 3D posi-
tion of one marker on the mother and the 3D position of the
marker at the center of the infant’s forehead.

Within the context of time series analysis, Canonical Cor-
relation Analysis is a technique for projecting each of two
multivariate time series to create two univariate time series
that are maximally correlated. In the context of motion capture
analysis we can view this as computing two directions of
motion: one for marker 1 and one for marker 2 such that the
motion of each of these markers projected onto the computed
directions is maximally correlated. For example, Canonical
Correlation might project the movement of mother’s hand in
the direction transverse to the infant’s body and the infant’s
head motion direction along the same direction, indicating that
motion of mother’s hand across the infant’s body is predictive
of shaking of the infant’s head. For each experiment one time
series was composed of 3D positions of the marker on the
center of the infant’s forehead and the second time series was
the 3D position of a particular marker on the mother. We used
two marker locations on mother to investigate which was most
informative of the infant’s head orientation. Specifically, one
marker was on mother’s right hand and the second marker we
investigated was at the center of mother’s forehead.

We computed the canonical correlation as a function of time
by using a running temporal window. We utilized two different
window lenghts: one short window (2.08 seconds) that gives
us fine temporal resolution but a somewhat noisy estimate of
the local canonical correlation, and a longer window (16.67
seconds) that gives us a more stable characterization of the
canonical correlation that is useful for characterizing coor-
dination over entire sessions. For each session analyzed and
for each time window length, the canonical correlation was
computed using a sliding window with 50% temporal overlap
between adjacent windows (e.g. for the 16.67 second window
the first temporal window would be 0s to 16.67s and the
second would be 8.34s to 25s, followed by 16.67s to 33.33s).

We examined one particular mother-infant dyad (Subject 10)
at two time periods, 7 weeks apart. The Infant was 13 weeks
old at the first session and 20 weeks old at the second. For
each session we computed windowed canonical correlations
between the two markers on mother and the marker at the
center of the infant’s forehead. The plots in Fig.7 show the
mean canonical correlation values for each of the sessions
as a function of delay. Peaks in the negative region indicate
periods in which the movement of the mother’s marker was
predicted by a preceding movement of the infant’s head, i.e.,
mom was following the infant. Peaks in the positive region
indicate periods in which the infant is following mom. Figure 7
(a) suggests an approximately equal number of episodes in
which mom’s head motion follows infant’s head motion and
episodes in which infant head motion follows mom head
motion. The time delay in these contingencies decreases with
development. Figure 7 (b) shows that for the most part infant’s
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Fig. 7. Windowed Canonical Correlation for two sessions between infant
head movement and mother head movement (top) and infant head movement
and mother right hand movement (bottom).
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Fig. 8. Windowed Canonical Correlation for a segment where the infant
shakes head and subsequently moves a toy that mother is holding (which
causes her hand to move). This event happens at time = 4 seconds on the
graph. The event causes the canonical correlation for Infant Ahead 1.04s to
spike since the head motion precedes the motion of the marker on mother’s
right hand.

head follows mom’s hand movement, rather than mom’s hand
movement following infant’s head. Again the temporal delay
of this contingency decreases with development.

In addition to analyzing the mean canonical correlation
over the entire session, we also investigated whether short-
time Canonical Correlation Analysis (window length of 2.08

seconds) could be used to to spotlight meaningful episodes of
mother-infant interaction. The 3 regions with highest canonical
correlation were as follows:

1) Subject 10 at 13 weeks: Mother struck a butterfly mobile
that she was holding above the infant with her right hand
and approximately 1 second later the infant shook its
head. This segment had a high canonical correlation with
a positive delay of 1.08 seconds whereas the canonical
correlation for 0 delay and a delay of -1.08 seconds was
lower.

2) Subject 10 at 13 weeks: While the infant grasped a toy
that mother holding simultaneously, the infant shook
his head and then moved the object with his hand.
The movement of the infant’s hand caused mother’s
hand to move as well. This episode is an example of a
contingency between mother motion and infant motion
that was entirely created by infant motor movements.
The Windowed Canonical Correlations are given in
Fig.8.

3) Subject 10 at 20 weeks: Mother tickled infant with her
right hand, 1 second later the infant shook his head

Interestingly, most of the highest coupling events were not
instances of the infant tracking the movement of mother’s
hand, but rather were composed of dynamic interactive events
that incorporated both play with objects as well as social
interaction.

While the present analysis is promising there are several
extensions that we will pursue in the future:

• Multiple Markers Canonical correlation between multi-
ple points on infant and multiple points on mother may
give interesting contingency patterns that go beyond the
single body part to single body part analyses presented
here.

• Canonical Correlation with Infant Kinematics Instead
of using the location of the center marker on the infant’s
head, it may be more informative to look at quantities
derived from the markers such as infant head orientation
or joint angles of various limbs of the infant.

IV. DISCUSSION AND CONCLUSION

The human musculoskeletal system is a sophisticated ma-
chine designed to support movements that are compliant,
versatile, and adapted to the uncertain nature of the world.
The price paid for this compliance and versatility is the
fact that simple control approaches like the ones used in
contemporary robotics, do not work. From an engineering
point of view, infants face a formidable motor control problem
when learning to control their own bodies. While controlling
robots with the complexity and dynamics of the human body
is currently beyond our most sophisticated algorithms and
powerful computers, infants learn to do so seamlessly in
less than two years. Uncovering how this is done will have
profound scientific and technological consequences. A critical
limitation of the literature on motor development is the fact
that it is carved into isolated research niches e.g., reaching,



facial expressions, crawling, walking, shared attention. Each
of these niches typically studies one part of the body as it
performs a single task, e.g., hands and arms reaching for an
object. While this research strategy is reasonable, it may result
in a distorted perspective of how infants really learn to control
their bodies. Here we presented our first steps to address the
current limitations in the developmental literature.

The preliminary data obtained so far is already presenting a
different perspective about the development of motor control.
For example, current work on the development of reaching em-
phasizes the fact that infants reach with very little movement in
the elbow’s joint when compared to adults. This is interpreted
as evidence of a “less-to-more” developmental trajectory [1],
[2]. This point of view seems plausible because we tend to
assume that moving less degrees of freedom is easier than
moving more degrees of freedom. Our experience with the
compliant humanoid robot Diego San, being developed as part
of this project is that this is not necessarily the case, i.e., due to
the high compliance of the joints, getting Diego San to move
one degree of freedom at a time is quite difficult. Interestingly
our motion capture data suggests that during early reaching
episodes infants not only move their arms and hands but also
engage their legs, head and face. If anything the data suggests
a developmental trajectory that progresses from engaging more
degrees of freedom (reaching with two arms and two legs), to
engaging less degrees of freedom (reaching with one arm). We
are also finding that the physical and social contexts of motor
development are tightly coupled. The result is that behavioral
categories that are natural from an adult perspective may be
artificial from an infant’s perspective. For example, when a
caregiver is present, making facial expressions, vocalizing, or
moving the legs, may be as effective to make contact with
an interesting object, as reaching with the arms and hands.
Thus, it could be argued that moving the legs or making facial
expressions should be a legitimate part of the literature on
the development of reaching. This developmental approach is
quite different to the standard way we get robots to reach:
simplify the control problem by using as few degrees of
freedom as possible. Thus it appears that our current notion of
“simple” in robotics may not match well the notion of “simple”
that infants appear to work with.

The results presented here are still preliminary and thus they
should be taken only as an illustration of things to come. Yet
the approach and the technologies we are exploring are already
contributing a different perspective on motor development.
This perspective may give us clues to develop a new generation
of robots that learn to control their own bodies.
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Abstract—Dopamine neurons appear to code the discrepancy
between a reward and its prediction, and as such play a key
role in learning from positive and negative feedback. Although
the traditional view stresses the role of errors in learning, we
suggest that a temporary decrease in learning from negative
feedback may in fact facilitate the process of finding more
suitable behaviors that would reflect the change in behavioral
competences of the agent. More in detail, omission of the
errors enables selection of different behaviors in a context when
they normally would not be selected providing more learning
opportunities for fine-tuning these behaviors. Herein, we propose
that omission of the errors is tightly related to an elevated level of
dopamine that is caused by a high reward for gaining the control
over the enviromnent. Our results with a robot simulator serve
as a proof-of-concept for our approach.

I. INTRODUCTION

Obtaining a desired objective is a satisfying experience for

nearly everyone. The way of achieving the goal is not always

easy and straightforward. Sometimes many different methods

need to be explored until the goal can be accomplished. If none

of the possible solutions is helpful in attaining the goal, the

goal is memorized as impossible and later attempts abandoned.

Sometimes, however, these efforts may be resumed when new

competences appear. This can clearly be seen in infants. At

the beginning nothing is reachable for them, as they do not

have enough skills to coordinate eye and hand movements.

Soon these first movements become successful, and infants

learn that only close but not far objects are reachable for them.

This, however, changes with the onset of crawling and later on

with walking behavior. Consequently, infants need to relearn

that attaining distant objects is possible only by locomotion,

a behavior more appropriate in this context.

Our previous experiments revealed that infants during the

transition phase to walking show a decreased ability to learn

what lies within their reachable space [1], [2]. We suggested

that the blocked ability to learn from negative outcome while

reaching makes infants fine-tune their walking skill, as a

primary motive for walking is to reach for something [3].

Thus, we proposed that a temporary decrease in learning from

negative feedback could be an efficient mechanism behind

infant learning new skills. Furthermore, we proposed that

disregarding the errors is tightly connected to the sense of

control, and results from an extremely high level of perceived

self-efficacy. In this paper, we propose possible brain mech-

anisms that may lead to omission of errors during feedback

processing.

An important theoretical framework underlying our proposal

is the dynamic systems approach [4]. In this framework stable

configurations of a system are referred to as attractors. In that

sense, the decision not to reach for far objects is a stable

attractor for the infants that are not able to locomote on their

own. When a possibility of a new behavioral competence

appears, for example walking, the system should change its

decisions about appropriate behaviors. Therefore, the existing

stable attractor needs to be destabilized in order for the system

to accomodate a new one.

Another important role in our proposal is played by the

neuromodulator dopamine. Phasic dopamine signals were sug-

gested to trigger a switch in the current attractor state in

the networks of prefrontal cortex, by transiently enhancing

afferent input while potentiating local inhibitory signals thus

gating new information into the prefrontal cortex [5]. Further-

more, dopamine in the amygdala was suggested to modulate

behavioral transitions [6] that characterize development and

progression in competences. The main focus in the literature,

however, has been put on dopamine and its role in the

prediction of rewards and determination of whether predic-

tions about outcomes are violated or verified. A decrease of

dopaminergic activity owing to the omission of rewards, was

mainly interpreted as coding a prediction error or learning

signal that is supposed to trigger learning and adaptation

of future behavior [7]. Another interesting point is that the

dopamine system may act at several different timescales in

the brain from the fast, restricted signalling of reward and

some attention-inducing stimuli to the slower processing of a

range of positive and negative motivational events [8].

The main premise of our approach is that when an infant

gains control over its environment, the reward circuitry in

her brain will deliver a large reward to the executive brain

areas facilitating repeated selection of actions that led to

the gain of control. This reward is experienced even though

behavior on a shorter time scale (e.g. reaching) fails, but

progress is made on behavior spanning an extended time scale

PM1-3



Fig. 1. On the left: Reward prediction error response of single dopamine
neuron (taken from [9]). On the right: Interpretation of the responses of
midbrain dopamine neurons in the TD model; r(t): reward; V(t): reward
prediction; δ: dopamine response (taken from [10])

(e.g. reaching by walking). Omitting the errors in this way

enables selection of different behaviors in a context when they

normally would not be selected, thus destabilizing existing

attractors and facilitating the formation of new ones.

We review the mechanism of the reward prediction error

both in neuroscience, and in reinforcement learning theory in

the next section. After that, we present cases where learning

from negative outcome was significantly decreased. In Sec. IV

we introduce our hypothesized neural circuitry facilitating be-

havioral state transition. The next section, presents results from

our robot simulation study where the underlying assumptions

of the model were tested. We close the paper with discussion

and an outline of future work.

II. PREDICTION ERROR LEARNING

The response of dopamine neurons appears to code the

discrepancy between a reward and its prediction [9]. A typical

response of a single dopamine neuron is shown in Fig. 1

(on the left). During the acquisition process the dopamine

neurons increase firing rates when reward (R) is received but

not expected (no CS). Over time this increase in firing rate

is back propagated to the earliest reliable stimulus (CS) for

the reward. The dopamine cells no longer increase their firing

rate upon presentation of the predicted reward. However, when

rewards are expected but not received, the firing of dopamine

neurons drops below tonic baseline levels.

The activity pattern of dopamine neurons represents the

reward prediction error, which is central to the temporal

difference (TD) learning model [11], [12]. The TD model cal-

culates a prediction error δ(t) based on the temporal difference
between the current discounted value function γV (t) and that
of the previous time step, V (t − 1).

δt = r(t) + γV (t) − V (t − 1), (1)

where γ is a discount factor which allows rewards that arrive
sooner to have a greater influence over delayed ones, and r(t)
represents the current reward [12], [10]. The interpretation of

the dopamine neurons responses in the TD model is shown in

Fig. 1 (on the right). Before learning, no reward is predicted,

that is V (t) ≡ 0. Thus, the TD error δ(t) is the same
as the reward itself. After learning has been completed, the

predicted future reward V (t) builds up immediately after

the cue signal, causing the discounted temporal derivative

to provide a positive pulse in the TD error even if there is

no reward. At the time of reward delivery, V (t) drops to
zero and the negative temporal derivative of V (t) cancels
out the positive reward signal. However, when the reward

is omitted, there is a negative response due to the drop in

the predicted reward V (t). By acting as a teaching signal,
dopamine-mediated prediction errors are expected to gradually

train learning mechanisms to improve their predictions in an

incremental and trial-by-trial fashion [13].

III. DECREASED ABILITY OF LEARNING FROM ERRORS

Although there may be some individual differences due

to genetic variations affecting dopamine function, in general

healthy people are equally good at learning to obtain positive

outcomes and to avoid negative outcomes. People with Parkin-

son’s disease, however, show specific deficits in trial-and-error

learning from feedback. These effects were nicely explained

by Frank’s basal ganglia model [14]. Basal ganglia dopamine

levels in these patients are severly depleted as a result of

cell death. As the positive outcomes are signaled by a raise

in the firing rate of dopamine neurons, the depleted overall

dopamine levels in unmedicated patients results in a weaker

reinforcement of the stimulus. On the other hand, the errors in

reward prediction are signaled by a decrease in the firing rate

of dopamine neurons. As a result of low dopamine levels, the

errors in unmedicated patients have much stronger negative

reinforcement of the stimulus. The dopaminergic medications,

however, reverse these biases and medicated individuals with

Parkinson’s disease are better at learning from positive than

from negative feedback. The dips of dopamine required to

learn negative prediction errors are effectively filled in by the

medication, and such blunting of negative prediction errors

reduces learning from negative outcomes. Essentially, the

medication prevents the brain from naturally and dynamically

regulating its own dopamine levels, which has a detrimental

effect on learning, particularly when dopamine levels should

be low, as for negative decision outcomes.

The inability to learn from negative feedback was shown in

healthy subjects during the trust game [15]. In this experiment

information about the moral profile of the opponent was pro-

vided to the players before the game started. This information

can create a prior belief, but feedback from the game should

adjust this prior belief to reflect new evidence. However, the

experiment showed the lack of differential responses between

the positive and negative outcomes when playing with morally

good or bad partners. More specifically the activation of the

caudate nucleus differentiated between positive and negative

feedback, but only for the ’neutral partner’, and not for the

’good’ one, and only weakly for the ’bad’ one. The normal

trial-and-error learning would predict a sharp decrease in the

feedback response following violations of expectations. One



Fig. 2. The neurocircuitry of the ascending dopaminergic system (taken
from [21]).

of the possible explanations suggested by the authors was that

participants had a reward reaction to the presentation of the

morally good partner, irrespective of decision.

In patients with bipolar disorder, failures in motor learning

may result from the lack of striatal error signal during un-

successful motor inhibition. Such deficits in motor regulation

could be related to the emotional disregulation, as irritability

and decreased motor inhibition may be linked mechanisti-

cally [16]. The impulsivity was suggested to represent a

core characteristic of the disorder and to be responsible for

symptoms like hyperactivation, excitability, and hasty decision

making [17]. Patients with bipolar mania tend toward high goal

setting, have unrealistically high success expectancies [18],

and exhibit increased goal-directed activity and excessive

involvement in pleasurable activities that have a high potential

of risk [19]. Bipolar patients show elevated activation of

dopaminergic brain areas when expecting high rewards com-

pared to anticipation of no rewards, which could result from

dysfunctional nucleus accumbens activation during prediction

error processing [20]. When both, schizophrenia patients and

healthy controls, showed lower nucleus accumbens activation

upon omission rather than upon receipt of rewards as a

potential correlate of such a learning signal, bipolar manic

patients did not display a similar reduction in the activation

of dopaminergic brain regions.

We have presented different cases where learning from

negative outcome was significantly decreased. The first lesson

from these examples is that elevated state of dopaminergic

areas can lead to omission of the errors during learning like

in the case of Parkinson’s patients. The second lesson is that,

abnormal activity in the striatum (dorsal or ventral) also causes

decreased ability to learn from negative feedback. We believe

that temporal omission of errors while learning a new skill may

result from a similar mechanism. The next section introduces

the details of our hypothesis.

IV. SENSE OF CONTROL AND OMITTING THE ERRORS

The principal assumption behind our approach is that a

need for control is innate, and exercising control is extremely

rewarding and beneficial for an individual’s wellbeing [22],

Fig. 3. The striato-cortical loops, including the direct (”Go”) and indirect
(”NoGo”) pathways of the basal ganglia, and neural circuitry for perceiving
control. PFC: prefrontal cortex; Amy: amygdala; Nacc: nuccleus accumbens;
VTA: ventral tegmental area; SNc: substantia nigra pars compacta; GPe:
internal segment of globus pallidus; GPe: external segment of globus pallidus;
STN: subthalamic nucleus; Thal: thalamus; VPm: ventral pallidum.

and people’s ability to gain and maintain a sense of control

is essential for their evolutionary survival [23]. The hypoth-

esized neural circuitry that would explain the facilitation of

behavioral state transition is depicted in Fig. 3.

Similary to existing BG models (eg. [24]), there are two BG

pathways to selectively facilitate the execution of the most ap-

propriate motor commands (”Go” pathway), while suppressing

competing commands (”NoGo” pathway). The ”Go” pathway

depends on D1 receptors and supports learning from positive

feedback, whereas the ”NoGo” pathway depends on dopamine

D2 receptors and supports learning from negative feedback.

These two pathways compete with each other when the brain

selects among possible actions, so that an adaptive action can

be facilitated while at the same time competing actions are

suppressed. More specifically, striatal ”Go” neurons directly

project to and inhibit the internal segment of the globus pal-

lidus (GPi). The GPi in turn disinhibits the thalamus eventually

facilitating the execution of the motor commands. Contrary,

striatal ”NoGo” neurons project to and inhibit the external

segment of globus pallidus (GPe), releasing the inhibition of

GPe onto GPi, and thus blocking the motor activity. Dopamine

modulates the relative balance of these pathways by exciting

synaptically-driven activity in Go cells via D1 receptors, while

inhibiting NoGo activity via D2 receptors.

Prefrontal cortex (PFC) is constantly involved in the ac-

quisition of new skills and knowledge, and may also play a

role in organizing other parts of the cortex [25]. Increased

activity in the medial PFC has been associated with perception

of control [22]. The PFC and the amygdala have synergistic

roles in regulating purposive behavior [26]. While the PFC

guides a goal-directed behavior, the amygdala appears to

extract the affective significance of stimuli. Communication

between these two brain regions is bidirectional and appears

to be essential in judging rewarding or aversive outcomes of

actions. The PFC was shown to inversely correlate with amyg-

dala during successful emotion regulation [27]. The inverse

relationship reflects the inhibitory pathway from the dorsal



and lateral regions of PFC to the amygdala. Furthermore, it

was proposed that amygdala drives vmPFC in a bottom-up

affective reactivity task but can be downregulated by more

dorsal and lateral portions of the PFC via the vmPFC in

a top-down reappraisal task. The optimal balance between

such bottom-up and top-down influences in a given emotional

situation was suggested to be crucial for the individual to

respond adaptively [28].

The nucleus accumbens (Nacc) is a hub for information

related to reward, motivation, and decision making [29]. The

Nacc provides a ventral pathway by which the limbic system

and prefrontal areas can influence the initiation of goal-

directed behavior [30]. Dopamine D1 and D2 agonist when

injected in the Nacc compared to the dorsal striatum facilitate

the initiation, speed and vigor of locomotion, and markedly in-

crease the frequency and duration of spontaneous exploratory

activity. Suppression of ventral striatal activity when antici-

pated rewards were not obtained has been interpreted as a

prediction error signal [20]. The Nacc receives strong, direct

projection from the amygdala and prefrontal cortex. The PFC

modulation of Nacc dopamine function appears to be bipha-

sic [31]. Under normal activity PFC provides an inhibitory

control over Nacc dopamine release. Electrical stimulation of

PFC at 10Hz, which closely corresponds to the firing rate of
PFC neurons in animals engaged in cognitive tasks decreases

dopamine release in the NAcc. However, electrical stimulation

at 60Hz that is much higher then normal activity, caused an
increase in NAcc dopamine levels. Activated Nacc neurons

project to and inhibit pallidal neurons in the region called

ventral pallidum (VPm). The suppression of tonic activity in

the pallidum then disinhibits the thalamic nucleus [32].

The ventral tegmental area (VTA) dopamine cells play a

crucial role in facilitating motivated behavior via its coor-

dinated modulation of prefrontal and Nacc circuity, as well

as its direct input to limbic structures which effects input

to the Nacc at source [33]. Moreover, with simultaneous

stimulation of both the amygdala and VTA, Nacc stimulation

more readily produces initiation of forward locomotion and

exploratory activity to novelty [30]. Dopaminergic input from

the VTA modulates the activity of neurons within the nucleus

accumbens, as well as within the PFC [34].

One possible explanation for decreased learning from neg-

ative feedback is that exercising control is highly rewarding

itself and even if the outcome of the action is not as predicted,

still the reward for gaining control is provided. That leads to

high activity in the PFC. As discussed previously, the PFC

modulates the Nacc dopamine function. This regulation is

biphasic, and at normal activity the PFC provides an inhibitory

control over Nacc dopamine release, but the PFC stimulation at

much higher than normal levels increases nucleus accumbens

dopamine. Herein, we assume that gaining control evokes such

a high PFC response. Thus, high activity in Nacc leads to

disinhibition of the VPm, and in turn dishinhibition of the

thalamus. Simply speaking, that facilitates selection of the

behaviors that led to the gain in control. This loop bypasses

the dorsal striatal areas involved in action selection (colored

Fig. 4. The M3-neony robot simulator.

yellow in Fig. 3). However, the dopamine prediction error that

helps to improve the selected behavior still reaches these areas.

Our hypothesized role of ignoring the errors is important only

in the more executive areas responsible for action selections.

The details of this model are still to be verified, but its

underlying assumptions about the role of ignoring the errors

during hierarchical skill acquisition have been tested in a

simulation study outlined in the next section.

V. SIMULATION

We investigated how ignoring the errors could help a robot

(shown in Fig. 4) to learn new skills in an approximate

optimal control framework. For the purpose of our study, the

framework had a two-layer structure. The top layer, was a

decision making layer, that was trained using standard Q-

learning to select appropriately for a given context, one of

the three possible behaviors, that is reaching, walking or

no response. Herein, we made use of a standard inverse

kinematics controller for the reaching action, and only the

walking module was trained using standard Q-learning.

The state space of the decision making module was a

discretized distance to the goal (6 states in our case changing

by 2cm). The goal of the modul was to select one of the
possible sub-modules depending on their predicted action

outcome. The module received a reward (R = 60) when the
selected action was successful, and a punishment (R = −30)
in the opposite case. The walking module had 6 different

predefined states and actions, each state was described by 8

joint angles (4 for each leg). The goal of the module was to

learn how to alternate from one state to another so that the

robot does not loose balance, and it moves forward at the

same time. The module received a partial reward for getting

closer to the goal (r = 10), and negative reward for moving
backwards (r = −3). When the robot reached the goal the
module received additional reward (r = 60). Any action that
resulted in loosing balance was punished (r = −30). In the
simulations, epsilon greedy action selection was used with

ε = 0.1.
The simulation started with a robot not able to walk. The

action of walking was available for selection, but its execution

resulted in no movement. We simulated the onset of walking at



(a) The robot without the state of elation.

(b) The robot with the state of elation.

Fig. 5. The percentage of behavior selection.

w = 40 epochs. Until the onset of walking the distance to the
object (close or far distance) was changed randomly with 40%

probability of change. After the onset of walking the object

was placed only far away from the robot. We tested the robot

in two different scenarios: without the state of elation, and

with the state of elation. The state of elation was simulated by

ignoring the negative outcomes of the actions in the decision

making layer.

The settings and thus the behavior of the robot before the

onset of walking was the same in both scenarios. Therefore,

only the results of the simulations after this period are shown.

As the robot chose actions with certain probability, the results

of the simulations may vary across trials. We present the

average results over 10 different trials. As it can easily be

seen in Fig. 5(a), the robot without elation learned that the

object is not reachable, and the probability of selecting the ”no

response” behavior was very high during the entire experiment.

The robot had almost no opportunities to practice the walking

behavior. On the other hand, the robot with the state of elation

(shown in Fig. 5(b)), after 13 epochs started to select walking

behavior more frequently making it possible for the walking

module to improve.

As the results of the simulations may strongly depend

on the values of reward, we repeated the simulation for

different configurations of rewards. We varied the values for

(a) The robot without the state of elation.

(b) The robot with the state of elation.

Fig. 6. The percentage of walking behavior selection.

partial reward for getting closer to the goal in the walking

module (r ∈ {5, 10, 15, 20, 25}), and the reward for successful
action selection (R ∈ {30, 60, 90, 120, 240}) and punishment
(P ∈ {−30,−60,−90,−120,−240}) for failure in reaching
a goal in the decision making module. The results for total

of 125 different configurations are shown in Fig. 6(a) and

Fig. 6(b). As it can be seen, just a few configurations for the

robot without elation allow the walking behavior to be selected

more often. Thus, introducing the state of elation, facilitated in

many cases the transition from selecting no response behavior

towards selection of the walking behavior.

VI. DISCUSSION

In terms of the dynamic systems approach [4], we may

conceptualize the role of disregarding the error as follows.

Assuming that the behavior of the infant is governed by a

dynamic system component for decision making, and another

one for execution of movement, the performance-dependent

reward signal would be one of the control parameters of

the decision making component. In the stable case where

behaviors have been learned well (for instance to reach for near

objects), negative rewards during exploratory actions would

lead to further stabilization of the already learned attractors.

If, however, the negative reward is ignored, i.e. the control

parameter is changed, existing attractors might be destabilized.



This in turn would make it easier for the system to switch to

other attractors, giving their corresponding movements more

chance to be practiced in a new context where they would

normally not be chosen. Over time, this practice might lead

to new stable attractors even under consideration of the error

signal once the effect of high dopamine state wears off.

As robots are expected to be active participants in humans’

daily life, they need to be able to constantly learn and improve

their abilities autonomously. The conceptual model and its

simplified implementation in the simulation study of this paper

offer one possible mechanism contributing to such adaptive

behavior acquisition.

VII. FUTURE WORK

As the preeliminary result with the robot simulator seems

to confirm the viability of our approach, the next step in our

research is to implement the conceptual model in more detail

and evaluate its ability to account for the behavioral data in [1],

[2]. Furthermore, we will perform a series of experiments with

a real M3-neony humanoid robot, and study the dependence

of the results on parameter settings in the simplified version

of our model presented in Sec. IV.

VIII. CONCLUSION

The core idea behind the model was that the level of sense

of control determines how much the negative outcome of the

action is taken into account for decision making. Omission

of the errors was suggested to enable selection of different

behaviors in a context when they normally would not be

selected providing more learning opportunities for fine-tuning

these behaviors.
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Abstract – This paper introduce a concept of “mutual adaptive 
interaction” with primitive experimental examples. Interaction 
manners between human and robots usually pre-designed pre-
cisely. On the other hand, signs used by humans continuously 
evolve in form and meaning through interactions. We presume 
the open-ended learning is one of the essential aspects of the 
sign (primitive language) and is caused by iteration of misun-
derstanding and re-adaptation in mutual adaptive interactions. 
Following the concepts, our studies treating human navigation 
and robot’s multimodal interaction are shown as examples. 
 

I. INTRODUCTION 

 Recently, much attention is paid to studies of robot “pro-
gramming by demonstration”. It would relate to the concept 
of imitation learning. Though the concept of imitation itself 
is quite simple, it has various interesting and difficult prob-
lems robot system should overcome. One of them is that 
robot should judge what motions should and/or can be imi-
tated and what motions should not and/or cannot. This in-
terpretation depends not only on the ability of robot hard-
ware but also on the context of learning process. Even if 
human shows same demonstration, robot has to change its 
interpretation, i.e. what should be learnt from the demon-
stration, according to the learning condition. This kind of 
learning often happens in the interaction between human’s 
child and the caregiver. Children and their caregiver seem 
to change the interpretation by estimating the intention of 
the demonstration. If the estimation fails, they notice the 
miscommunication, and they modify the conjecture to 
re-adapt to the other’s intention. The repetition of miscom-
munication and re-adaptation leads to further evolution of 
interactions.  

We have tackled this evolutional interaction between 
humans and robot by taking three approaches, embodied 
system, mutual adaptation, and self-consistency. We actu-
ally use neuro-dynamical systems to deal with these three 
aspects. This paper introduces our previous studies espe-
cially concerning on the open-ended interactions treating 
human navigation [1] and robot’s multimodal interaction [2] 
as examples. 

Section II describes the study on a navigation robot with 
a human covered his/her eyes through mutual adaptation, 
Section III describes the study on sign evolution between 
small robots through multimodal interaction, Section IV 
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discusses three concepts for designing the open-ended in-
teraction system, and Section V concludes the paper. 

II. MUTUAL INTERACTION IN HUMAN NAVIGATION TASK 

This section introduces our studies on implicit mutual 
learning between a human and a robot. Concretely, we de-
signed a navigation task in which a humanoid robot, 
Robovie and a human participant navigate together in a 
given workspace (Fig. 1). The experimental environment 
was L shaped course whose outside walls were marked red 
and blue for every block. The robot and the participant 
whose eyes are covered hold their arms together and navi-
gate the workspace. We asked the participant to travel 
clock-wisely in the workspace as quickly as possible with-
out hitting the wall. We also informed to the subject the 
following points: 1) the robot moved just avoiding the walls 
using its range sensor without any planning, 2) the subject 
could control the robot motion by changing the angles of 
robot’s elbow joint, and 3) the robot changed the behavior 
by learning the environment and the subject’s control man-
ner. The robot movement is determined by adding two mo-
tor forces; one is the output from a neural network in the 
robot and the other is the participant’s directional control. 
The performance is measured by the travel time period at 
each trial.  

 

 
Figure 1. Navigation Task 

 
An interesting point of this collaboration task is that the 

sensory information is quite limited for both the robot and 
the participant. The robot can access only local sensory in-
formation such as range sensors and a poor vision system 
only detecting vague color information. The participant’s 
eyes are covered during the navigation task. But the partic-
ipant is allowed to look around the workspace before the 
experiments. The participant has to guess his/her position 
by means of the interactive force felt between the robot and 
his/her arms utilizing his/her memorized image of the 
workspace geometry. Both sides attempt to acquire the for-
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ward model of anticipating the future sensory image from 
past experiences. 
A. Recurrent neural network and consolidation learning 

In our experiment, the current sensory inputs may not tell 
the exact position of the robot due to the sensory aliasing 
problems. To solve this problem, we use the recurrent neu-
ral network (RNN) storing/self-organizing the contextual 
information in the context units. Figure 2 shows the RNN 
architecture designed for our robot. It has two modes of 
operations. The first mode is the open-loop mode that is 
one-step prediction by using the inputs of the current sen-
sory-motor values. The second mode is the close-loop mode 
in which the output re-entered the input layer through the 
feedback connection. By iterating this with the closed loop, 
the RNN can generate an arbitrary length of the look-ahead 
prediction for future sequences. The RNN was trained by 
using the back propagation through the time (BPTT) learn-
ing method [3]. 
 

 
 

Figure 2. Recurrent neural network implemented in Robovie 
 

B. Consolidation Learning  
It is generally observed that if the neural net attempts to 

learn a new sequence, the contents of the current memory 
are severely damaged. To overcome this problem, we used 
the consolidation learning technique. In this method the 
newly obtained sequence pattern is stored in the “hippo-
campal” database. The RNN, which corresponds to the ne-
ocortex rehearses the various memory patterns by 
close-loop with random initial state, and these patterns are 
also saved in the database. The ensembles of such various 
rehearsed sequences actually represent the structure of the 
past memory in the dynamical systems sense. The RNN is 

trained using both the rehearsed sequential patterns and the 
new experience. 
 
C. Development Process of the Interaction 

The interactions were evaluated in 15-trial navigations 
with seven male subjects. The RNN with a usual learning 
method and the RNN with consolidation learning were 
compared in the experiments. In consolidation learning the 
teaching data were the current sequence pattern and the 
three rehearsal patterns.  

As the experimental results, though the performance of 
the RNN with the usual learning method stagnated, the per-
formance of the RNN with the consolidation-learning algo-
rithm continued to improve. The results of the questionnaire 
showed that the RNN with the consolidation-learning algo-
rithm gave the best mental impressions.  

To analyze the effect of consolidation learning, we ex-
amined the robustness of the RNN dynamics by looking at 
its initial sensitivity characteristics. Both RNNs with the 
usual learning and consolidation learning were tested to 
generate the output sequences with the noise addition. It is 
observed that output trajectories of the RNN by the usual 
learning tend to diverge more than those by consolidation 
learning. This robustness characteristic of the RNN seems 
to be directly related to the Operability in the mental im-
pressions.  

We also investigated the development process of the 
RNN. We compared the rehearsed trajectories of the RNNs 
obtained in each trial in our experiments. Figure 3 shows a 
typical transition of the amount of change of the trajectories. 
It was confirmed that the transition with the consolida-
tion-learning method had three peaks (1st, 4th, and 8th trial) 
and decreased gradually. This means that the phase transi-
tions occurred three times in the development process and 
became stable. On the other hand, the transition with the 
usual-learning method had no clear peak and increased. 
This means that there was no clear phase transition in the 
process and it became unstable.  

 
Figure 3. Transition of the Change of Rehearsal Trajectory 

 
The trials in which the phase transition occurred with the 

consolidation-learning method corresponded to the trials in 
which the performance improved drastically. Also sharp 
improvement of mental impression could be recognized in 
the comments of the questionnaires of these trials. The 
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RNN with the consolidation-learning method might be use-
ful to realize a robot-human open-ended interaction. 

III.  SIGN EMERGENCE IN ROBOT IMITATIVE INTERACTION 

This section introduces another study on mutual adaptation 
between two robots conducting multi-modal interaction. In 
our target interaction, two robots try to convey a mo-
tion/voice pattern to the other robot using a voice/motion 
pattern as a sign. If the interpretation of the sign is shared 
between them, they have conveyed their intention to the 
other correctly, otherwise incorrectly. 
 
A. Interaction Model 

An overview of our interaction model is shown in Fig. 4. 
An agent robot Keepon has a pair of NNs to interpret signs 
and two RNNs called MTRNN (Multiple Time scale RNN) 
for voice and motion. For example, a robot interprets a 
voice sign as a motion pattern as follows. (1) Recognition: 
The observed voice is transformed into voice parameters by 
Voice MTRNN. (2) Interpretation: The voice parameters 
are transformed into motion parameters by Interpretation 
NN. (3) Generation: The motion parameters are transformed 
into a motion pattern by Motion MTRNN. 

Through interchanging of voice and motion, two robots 
modify their interpretation of signs to adapt to the other by 
retraining their Interpretation NN. 
 

 
Fig. 4 Overview of Interaction Model 

 
B. MTRNN model 

We utilized MTRNN for the recognition and generation 
of signs (voice and motion). The model works as a recog-
nizer and a generator of actions by learning motor informa-
tion and sensory information simultaneously. Furthermore it 
recognizes and generates unknown actions with its general-
ization capability. This capability provides the diversity of 
actions used as signs that is essence of evolutionary interac-
tion. 

MTRNN, proposed by Yamashita et al. [4], is an extend-
ed RNN model (Fig. 5). This model deals with sequential 
data through calculating the next state S(t+1) from the cur-
rent state S(t). The model is composed of three neuron 
groups, each with an associated time constant. The three 
groups in increasing order in the time constant, are in-

put/output nodes (IO), fast context nodes (Cf ) and slow 
context nodes (Cs).  

Cs0, initial value of the Cs, is self-organized depending on 
a dynamical structure among training patterns through the 
process that connection weights, which are shared by all 
patterns are updated. 

 

  
     Figure 5. Composition          Figure 6. Dynamics Representation 

of MTRNN                        of MTRNN  
 

We used a small life-like robot “Keepon” [5] for our ex-
periments (Fig. 7). We set two Keepons facing each other at 
intervals of 230 mm, and place speakers beside them. 

To synthesize sound for the Keepons’ voice, we used 
“Maeda model”: the vocal tract model. This model has 
seven parameters that determine the vocal tract shape. By 
using this Maeda model, we can apply the framework of 
sensori-motor integration to recognize and generate voice.  
 

 
Figure 7. Experimental setup (top)  

 
C. Experimental Result 

One of the experimental results is shown in Fig. 8. The 
graph at the top of Fig. 8 shows the sequence of communi-
cation error for Keepon A and B. The others show voice 
and motion patterns generated in segment I, II, and III of the 
interaction period. The result of the experiment revealed the 
following facts. There is repetition of coherent states with 
low error and incoherent states with high error in the inter-
action. In coherent states, the two robots conveyed their 
intention to the other correctly, and interacted stably using 
similar voice-motion pairs (cf. segment I, III). On the other 
hand, in incoherent states, they failed to convey their inten-
tion and showed irregular behaviors (cf. segment II). The 
signs used for communication in coherent states (e.g. seg-
ment I and III) are different. Moreover the voice and motion 
patterns used as signs are different from the training pat-
terns described in the section III-B.1. The communication 
error tended to decrease on the whole, but the interaction 
kept evolving without convergence. 

IV. DISCUSSION 

In this section, I would like to discuss the important as-
pects of above two examples of dynamical interaction. In 
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two interactions between robots and human, we found that 
the interaction repeats phase transitions of miscommunica-
tion and re-adaptation alternately, and emerges new interac-
tion manners depending on robots’ and humans’ body dy-
namics through the generalization capability of neu-
ro-dynamical system. It is interest that the similar phenom-
enon is also observed in the study of the robot cognition 
based on dynamical system [6].   

 
 

Fig. 6 Result of the Interaction Experiment 
 

Note that these interactions do not include any random 
factors (noises) which cause the phase transition. The sys-
tems are purely dynamical systems without stochastic pro-
cesses. Each agent (robot and/or human) tries to predict the 
other’s reactions and behaviors in the mutual adaptation 
process. However, even after such a long interaction, the 

slight prediction error remains in each agent, because they 
interact in the physically continuous and complex world. 
Thus, the agent in the real world always has to adapt to the 
confliction between the internal dynamical model and the 
external world including the interaction partners. The small 
error could be a trigger which causes the drastic changes 
like phase transition. 

This instability nature in dynamical interaction systems is 
essential for emergence of various type of interaction man-
ner including primitive signs. Moreover, their behaviors 
seem to relate to the concept of “chaotic itinerancy [7]”, 
though the interactions described in this paper cannot be 
regarded as pure dynamical systems in the sense that they 
update its development rule in the neural networks. 

V. CONCLUSION 

This paper proposes a research theme of “interaction 
emergence” for flexible human-like interaction systems to 
prevent user’s boring. 

We tackle this theme by taking a synthetic approach cou-
pling multiple dynamics of the neural networks, the robot 
system, and the environment. Concretely, the concept of 
open-ended interaction is introduced. We also show the 
neuro-dynamical systems models which can adapt the dy-
namics of mutual adaptation between robots and human.  

Future work includes mathematical investigation of RNN 
model and implementation of the model to large-scale sys-
tems. The ultimate goal is to obtain explanation model for 
emergence of interaction. 
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Abstract—To gain a deeper understanding of human manual 
dexterity we investigate the grasping of known and unknown 
objects by recording hand kinematics (using a CyberGlove) 
and eye movements (with a mobile eye-tracking system) in a 
two-stage experiment: subjects first had to look at and grasp  8 
known and 8 unknown objects, which they had neither seen nor 
handled before. In the second stage they had to interact with 
the objects. Mental representations of the objects were 
analyzed using a hierarchical sorting paradigm both, before 
and after contact with the objects. The results show that 
subjects first separated the objects according to their shape and 
size. However, when tested after having had haptic contact with 
the objects, they then tended to cluster the objects based on 
their functional aspects. This first aspect was also found in the 
grasping data: clusters in the principle component (PC) space 
can first be distinguished by object size and shape. For the 
unknown objects subjects showed less complex movements in 
the first part of the interaction phase – presumably where they 
tried to figure out what the unknown object is, followed by 
more complex postures in the second part of the interaction 
phase. We also found that unknown objects require more 
intensive cognitive processing, indicated by a slightly higher 
number of fixations with shorter saccade lengths and a wider 
attention distribution when interacting with them. Our results 
support the notion that there are close links between 
perception, conceptual factors and grasping movements when 
confronted with objects being seen for the first time. These 
insights are of importance for the field of cognitive robotics, 
where it is hoped that robots can select and adjust actions 
flexibly according to the given situation. 

I. INTRODUCTION 
anual action is a skilled behavior requiring intricate 

control of the musculoskeletal system of the human 
hand. Especially when we grasp, manipulate and interact 
with objects, movements of the hand have to be accurately 
adapted to the object’s shape and the task we want to 
perform. During such skilled movements, the large number 
of degrees of freedom (DOF) in the human hand has to be 
controlled in a highly efficient way [1]. There are many  
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examples of carefully hand-programmed robots which can 
carry out impressive manipulation tasks, such as using tools 
to assemble complex objects and pouring water into a glass 
[2]. However, fully autonomous grasping of previously 
unknown objects remains a challenging problem, because it 
is difficult to obtain an accurate 3D reconstruction of a novel 
object to find suitable grasping positions [3-5]. Some 
proposed solutions are based on geometric models of the 
objects, obtained by stereovision or a 3D laser sensor, or by 
learning the contact points between the fingers and the 
object surface and therefore imitating human grasping 
behavior [3],[6],[7]. In [8] an architecture for grasp synthesis 
inspired by the human neurophysiology of action-oriented 
vision was presented, proposing an adaptation of brain 
models to the peculiarities of robotic setups. Additionally, 
there are learning algorithms that use a data glove and neural 
network techniques to realize a mapping of human and 
artificial hand workspaces, to learn the different joint values 
for the robotic hand from the human grasping data [9],[10].  

  These approaches work quite well in controlled world 
environments. However, when it comes to action in the real 
world, precise models are an unrealistic idealization and 
uncertainty about many parameters prevails, such as 
geometric shape, object weight, surface friction, or 
mechanical stiffness. For many common daily tasks object 
models as they are currently used in robotics, with their 
focus on an explicit description of detailed material physics, 
are simply unfeasible to parametrize properly [2]. In 
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Fig. 1. The 8 known (left two columns) and 8 unknown (right two columns) 
objects. 0. yo-yo, 1. hole puncher, 2. magnifying glass, 3. orange, 4. brush, 
5. soap, 6. lanyard,  7. folding rule, 8. balloon pump,  9. CD cleaner, 10. 
HDD, 11. (Chinese style)  magnifying glass, 12. ink stone, 13. contact 
lenses solution, 14. orange peeler, 15. tape measure.  
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contrast, human actions are heavily informed by large 
amounts of knowledge about the characteristics of the 
encountered objects and goals, and how to counteract the 
numerous disturbances and mishaps that usually occur 
during even moderately complex movements [2].  

II. COGNITIVE NATURE OF ACTION 
 

Results from movement research and neurophysiology led 
to the cognitive-perceptual hypothesis of central motor 
planning. It suggests that movement representations have the 
same spatio-temporal structure within the brain as the actual 
movement. Experimental studies [11] showed that 
representational frameworks were organized in a hierarchical 
tree-like structure and revealed a good match with the 
biomechanical demands of the task. After measuring 
kinematic parameters, we previously investigated the 
relationship between the structure of motor representation 
and the kinematic parameters of different movements [11-
13]. These studies revealed significant correlations between 
kinematic parameters (time structure, angles according to the 
take-off-phase, tilt angle, angular velocities, etc.) of 
movement and the corresponding parts of mental 
representations. According to this perspective, the 
representation structure can access all the topological 
properties that support the movement. It has been shown that 
mental (action) representation plays a central role in the 
control and implementation of actions. As current studies 
show, human grasping movements are cognitively 
represented on the basis of movement concepts (e.g., Basic 
Action Concepts) and build on effect-orientated target codes 
(in relation to space rather than to body) [13],[14]. In [1] we 
compared grasps directed towards real and virtual spherical 
objects varying in size. We found that the grasping 
movement is influenced by object characteristics (i.e., object 
size) at an early stage of the movement. We also found a 
separation of smaller objects from larger ones in the analysis 
of mental representation of grasps and concluded that 
grasping movement is strongly influenced by conceptual 
factors. Altogether, our experimental results support the 
hypothesis that voluntary movements are executed in a 
person-task-environment constellation and are directly stored 
in memory through representations of their anticipated 
perceptual effects. A technique for investigating mental 
representation of movements in athletes, the structural 
dimensional analysis-motoric (SDA-M) has been used to 
study different fields of sports such as volleyball, gymnastics, 
sky diving, and dancing. It has also been applied to everyday 
scenarios, such as drinking from a cup, using tools, and 
grasping objects of different sizes [13], [14]. 

The importance of attention in guiding manual actions has 
seen renewed interest of late [15], [16]. In order to achieve 
good eye-hand coordination, hands and eyes must work 
together in smooth and efficient patterns. Johansson et al. 
[17] analyzed the coordination between gaze behavior, 
fingertip movements, and movements of a manipulated 

object. Obligatory gaze targets were those regions where 
contact occurred. They concluded that gaze supports hand 
movement planning by marking key positions to which the 
fingertips are subsequently directed.  

We also investigate whether the Eye-Mind Hypothesis 
[18] is supported by the captured data. This states that the 
number and the distribution of fixations reflect the degree of 
cognitive processing required for the understanding of 
particular scene regions. Long fixation durations and short 
saccade lengths signify a fine and deep processing of a 
particular image region and is an indicator that the 
understanding of visual input is quite difficult. In contrast, 
long saccade lengths and short fixation durations indicate a 
fast and coarse scanning of a particular scene region, 
signaling that the information content of that particular image 
region is easy to process or less important for the current 
task. 

In this paper we use a bi-modal approach to study the 
perceptual and grasping behavior of humans while picking up 
and interacting with known and unknown objects. We 
additionally investigate how the mental representation 
structures of the different objects in the long-term memory 
are build up and how this representation changes after 
interaction with the objects. Changes in the visual and 
grasping behavior of subjects are also studied. Here we 
present a first test of the SDA-M in a grasping task in which 
there are known and unknown objects. We expect that the 
subjects are first guided by their visual perception when 
clustering the objects. Objects, which they cluster together, 
may be approached by using similar grasping postures. After 
performing a typical interaction with the objects, subjects got 
an impression of how to handle them. We expect that this 
lead to a different hierarchical clustering of the objects. These 
changes in the mental representation structures may also be 
reflected in a different grasping behavior. 

III. METHODS 
 

To test our bi-modal setup a simple three-stage  
experiment was designed in which five subjects (three 
males, age from 25-30 years) were shown 8 known and 8 
unknown objects (see Fig. 1). All subjects had normal or 
corrected-to-normal vision and had no known impairments 
related to arm or hand movements. All gave written 
informed consent to be part of the study and the experiment 
was carried out according to the principles laid out in the 
1964 Declaration of Helsinki. Subjects performed all three 
experiments in the same order, starting with Experiment 1, 
directly followed by Experiment 2 and Experiment 3. 
Finally, they repeated Experiment 1 again. The experiments 
were carried out in the Manual Intelligence Lab of Bielefeld 
University, making use of its sophisticated multimodal set-
up for investigating manual interactions [19]. During data 
collection, the subjects sat in front of a table (with 
dimensions l=210cm, w=130cm, h=100cm). Subjects wore 
an Immersion CyberGlove II wireless data glove (Immersion 



  

Corp., San Jose, CA; data acquisition rate: 100Hz; sensor 
resolution: <1°) on the right hand that allowed for the 
recording of whole hand kinematics (22 DOF) [9].  

Two markers were placed on the table 40cm from the 
subject. The one on the left hand side indicated the position 
of the objects before being picked up. The marker on the 
right hand side marked the position where the subjects had 
to put the objects down. In order to get insights into human 
visual perception processes while handling known and 
unknown objects, we used an SMI iViewX (monocular) 
mobile eye tracking system [20] (sampling rate of 200 Hertz, 
with a gaze position accuracy < 0.5°) for our experiments.  

A. Experiment 1 
In a first experiment we analyzed how subjects clustered 

the 16 objects by means of the SDA-M. When performing 
Experiment 1 for the first time, subjects had to cluster the 
objects using the pictures (see Fig. 1), without having had 
haptic contact with them. The images (200 x 133 pixels) 
were presented in black and white in order to prevent 
clustering based on color information. This experiment took 
approximately 15 minutes. The subjects were seated in front 
of a laptop computer on whose screen they saw one of the 16 
objects, which served as a reference object. The remaining 
15 objects were presented underneath the anchoring unit 
aligned along one column. Each of these 15 objects were 
presented and subjects had to judge whether each one was 
"functionally related in day-by-day use” to the anchor 
object. If the subjects decided these objects were 
functionally related, they pressed the right arrow key and the 
current object shifted to the right side of the screen (positive 
list). Otherwise, subjects pressed the left arrow key and the 
object was shifted to the left side of the screen (negative 
list). This procedure repeated until all 15 objects were 
compared to the anchor object. Each object occupied the 
anchor position once. Using this splitting procedure, sixteen 
decision trees per subject were created. First, the binary 
decisions generated by each subject were used to calculate a 
correlation matrix, R, that is a reflection matrix of the mental 
representation structure of these objects in subjects’ long-
term memory. Low values (close to -1) mean concepts (or in 
our case, objects) are dissimilar or high values (close to 1) 

mean that concepts are similar. Next a distance matrix, D, is 
computed from the correlation matrix:  

ikik RmND −⋅= 1)(2 , with N = number of concepts 
(for the 16 objects), i and k are the indices of the correlation 
matrix R, and m is usually equal to N (but is used as a 
correction factor if R is not square). The entries in the 
distance matrix reflect the Euclidean distances between 
individual concepts. Based on the distance matrix a greedy 
algorithm is used for a hierarchical cluster analysis with the 
distances based on the subjective distance judgments of all 
combinations of pairs of 16 objects obtained in the previous 
step. As a result we obtained the individual partitioning of 
the 16 objects, the so called dendograms (see Fig. 2). Cluster 
solutions were calculated for all individual subjects and for 
the whole group. Each cluster solution was established by 
determining an critical Euclidean distance dcrit, with all 
junctures lying below this value forming an individual 
concept cluster. The critical value dcrit depends on the 
number of concepts. The algorithm tries to calculate the 
optimal critical value dcrit, but in cases of sub-optimal dcrit 
calculation, some manual tuning is possible. For further 
details on the splitting procedure see [13]. If two objects are 
often labeled as being "functionally related in day-by-day 
use”, they have a small Euclidean distance, and this results 
in a low projection of the objects on the vertical line in the 
tree diagram (see objects 3 and 14 in Fig. 2 right). If two 
objects are not judged to be "functionally related in day-by-
day use”, and therefore not selected together during the 
splitting procedure, the Euclidean distance is big and the 
projection of the two objects is high in the tree diagram (see 
objects 0 and 11 in Fig. 2 left). 

B. Experiment 2 
In this experiment all subjects had to grasp 8 known and 8 

unknown objects (see Fig. 1). First, the eye-tracker and 
CyberGlove were calibrated. Then, subjects had to pick up 
each object, hold then for 10s and finally put them down 
again. Shortly before the time came to an end, the 
experimenter gave the subjects a verbal signal. Then subjects 
moved their arm to the right marker and put the object down. 
Subjects then had to move their hand back to the starting 
position and wait for the next trial. Subjects were instructed 

Fig. 2. Average cluster solution of all subjects before (left) and after (right) the grasping experiment. On the horizontal line the numbers of the single 
objects are represented as corresponding with the list shown in Figure 1. The Euclidean distance between the single objects is depicted on the y-axis. The 
solid horizontal line marks dcrit.  



  

to place the right hand at the starting position between the 
two markers at the edge of the table in front of them and 
wait for a “go” signal to grasp the objects. Each object was 
presented in a suitable random order. 

C. Experiment 3 
Here, the experimental procedure was nearly the same as 

for Experiment 2. However, this time subjects had to 
perform an interaction with each object for 20s. They had to 
actively explore the objects in order to discover what 
possible functions they had. For known objects this was 
clear, but for the unknown objects their functionality could 
only be determined by this interaction phase and sometimes 
it remained unclear. Because the task was to interact with the 
object, they could use both hands, but only the right hand 
was tracked. Again, their gaze movements were recorded 
with a mobile eye-tracking system. Finally, subjects had to 
return to Experiment 1 with the same stimuli.  

IV. RESULTS  

A. Experiment 1: Mental Representation of Objects 
In order to compare the cognitive representation structures 

before and after grasping the known and unknown objects, 
we computed the average dendrograms over all subjects 
from the results of the first time subjects partook in 
Experiment 1 (Fig. 2 left) and second time subject partook in 
Experiment 1 (Fig. 2 right). When comparing the results of 
the cluster analysis (dcrit = 4.59), we can see clear differences 
in the clustering of the objects between the dendrograms 
computed before interaction with the objects and after 
interaction. Initially, subjects had to judge if two objects 
were "functionally related in day-by-day use” just by 
comparing pictures of the objects, i.e., without seeing the 
objects in real or touching them. The resulting dendogram 
(see Fig. 2 left)  reveals five clusters: (cluster 1: lanyard – 
tape measure, cluster 2: orange peeler – brush – folding rule, 
cluster 3: contact lenses solution - magnifying glass – soap, 
cluster 4: CD cleaner – ink stone – hole puncher, cluster 5: 
(Chinese style) magnifying glass  – yoyo). Subjects found it 
difficult to find objects with similar functionalities, and thus 
the Euclidean distance of objects within clusters is quite 
high. Failing to find functional similarities, subjects seemed 
to cluster the objects according to similarities in shape and 
size. Only one cluster (cluster 3: contact lenses solution - 
magnifying glass – soap), was classified according to the 
functionality of the objects, i.e., cleaning functionality. Fig. 
2 (right) shows the results of the SDA-M after subjects had 
haptic contact with the objects and had performed typical 
movements with them. The tree diagram again shows five 
clusters, but this time different objects were grouped 
together (cluster 1: orange – orange peeler, cluster 2: CD 
cleaner – HDD – hole puncher, cluster 3: balloon pump – 
ink stone – brush, cluster 4: folding rule – tape measure, 
cluster 5: (Chinese style) magnifying glass - magnifying 
glass - contact lenses solution). After using the objects, 
subjects grouped them according to their functionality and 

not according to similarities in their shape and size features. 
This is not only true for tools sharing similar function, like 
the folding ruler and the measuring tape, but also for objects 
that are used together in everyday tasks, such as the peeler 
and the orange or the brush and the ink stone. These results 
reveal that subjects were at first unfamiliar with the 
functionality of the unknown objects, but by interacting with 
them, their mental representations of these objects were 
updated and meaningful functional clusters could be formed.  
As can be seen from Fig. 2, the known objects are not 
clustered in the same way before and after the subjects had 
haptic contact with them. A possible reason is that the 
pictures were too small in order to recognize all objects 
correctly. After subjects interacted with the objects, they 
were more familiar with them (shown by the higher number 
of clusters according to functionality).   

B. Experiment 2: Grasping of the Objects 
We analyzed the gaze data with regard to the number of 

fixations, fixation durations, number of saccades and 
saccadic length in x- and y- directions. With regard to the 
fixations, we found only slightly higher number of fixations 
(19 versus 21) as well as longer fixation durations (386.4ms 
versus 400.9ms) for the unknown objects. There are also 
virtually no differences with regards to the saccade lengths 
between known and unknown objects (44.11 and 45.97 
pixels in horizontal, and 60.19 and 59.21 pixels in the 
vertical direction for known and unknown objects, 
respectively).  

A separation of smaller objects from larger ones can also 
be seen in the principal component space computed from the 
hand posture data recorded in Experiment 2. Subjects use 
similar movement synergies for similar sized objects [1], 
[21]. Fig. 3 shows that there is a clear separation of the 
objects according to object size: smaller objects are located 
in the lower part of the space and larger objects in the upper 
part. No differences in terms of functionality could be 
observed in the data. In order to find differences in the 
functionality, subjects need to have a suitable cognitive 
representation for the objects according to their “day-by-
day” use.  

Fig. 3. All 16 objects in PC space (PCs 1 and 2) at the sampling time when 
subjects grasped  them  in Experiment 2. There is a clear separation between 
large and small objects  by a diagonal running through the lanyard and 
balloon pump. 



  

 
 
 
 
 
 

 

C. Experiment 3: Interacting with the Objects 
The analysis of the recorded gaze videos of the interaction 

phase revealed that for the case of unknown objects, subjects 
needed nearly the first half of the available experimental 
time to analyze the objects in hand in order to find out how 
to interact with them. Therefore, we analyzed the gaze and 
grasping data separately for two time intervals: The first one 
was from 2s to 10s (1st_half), reflecting the interval when 
subjects mostly held the object in their hands for further 
analysis. The second interval lasted from 10s to 18s 
(2nd_half). This was the interval in which they tended to 
interact with the objects.  

With regards to the fixation durations, we found a higher 
number of fixations (17.8 versus 18.5) as well as longer 
fixation durations (398.1ms versus 411.3ms) for the  
unknown objects. The number of fixations is only slightly 
higher and the duration is approximately 5% longer for the 
unknown objects. However, when interacting with the 
objects, there are clear differences with regard to the saccade  
lengths between known and unknown objects (49.61 and 
62.36 pixels in horizontal, and 55.9 and 78.44 pixels in the 
vertical direction for known and unknown objects, 
respectively). The overall results are in line with the Eye-
Mind Hypothesis: the number and distributions of fixations 
reflect the degree of cognitive processing required to 
understand the scene. Long fixation durations and short 
saccade lengths signify a fine and deep processing of a 
particular object. For the case of unknown objects, subjects 
required more cognitive processing in order to identify what 
the object was and then react with the object in a meaningful 
way. Subjects were not only able to immediately identify 
known objects, but also able to interacting with them. An 
attention map [22] was calculated to highlight which areas 
were looked at and how intensely they were studied [see Fig. 
4]. In an attention map each pixel is assigned a value 
between 0 and 1 depending on how long the subjects 
focused on a particular pixel (values closer to 1 indicate 
higher attention by the subject). Color-spots indicate which 
areas were attended and how intensively the subject looked 
at them. The attention maps of subject 1 for the known 
object (hole puncher, see Fig. 4 left) shows a smaller 
attention area – thus is because the subject knows the object 
and can immediately perform a typical movement with it. 
For the case of an unknown object (CD cleaner, see Fig. 4 
right), the attention area is larger, especially for the highly 
fixated area (red spot). This indicates that the subject had to 

 
 
 
 
 
 
 

analyze the object in detail in order to figure out what to do 
with it. 

We also computed the variance of the first two PCs for 
each object over all subjects separately for each of the two 
interaction intervals (Fig. 5). Lower values indicate more 
complex movements. The figure shows that there are only 
small differences in the variances for the known objects 
between the two time intervals (58.16 and 57.45, 
respectively). Subjects know the objects and immediately 
start with the typical movements. In case of the unknown 
objects, there are slightly larger differences (60.61 and 
56.02, respectively). This indicates that subjects made less 
complex movements initially as they first explored the 
object, but that in the second half of the interaction phase 
they performed more complex movements. We stress that 
these results are not conclusive, but are certainly a good 
starting point for further research. 

V. CONCLUSIONS AND OUTLOOK 
Using a bi-modal approach we investigated motor 

synergies of hand postures as subjects interacted with 8 
known and 8 unknown objects. Our results clearly reveal 
differences in the mental representation structures for the 
objects in the long-term memory before and after the 
experiment. First, subjects were not familiar with all objects 
and clustered them according to shape and size features. 
Later, they got familiar with them – resulting in a higher 
number of object clusters according to functionality.  

The analysis of the gaze data is, however only weakly 
pronounced, in line with the Eye-Mind Hypotheses, 
revealing a higher cognitive load for the analysis of the 
unknown objects (especially with respect to the saccadic 

Fig.5: The mean variances for the first two PCs for all subjects over all 
objects in the interaction  phase. 

Fig. 4: Attention maps showing main areas of fixation activity when  subject 1 is interacting with a known object (hole puncher, left) and an unknown  
object (CD cleaner, right). Colors are used to visualize the extent to which image areas are fixated, where red means that the area is highly fixated, black 
means that the area was not fixated at all. 



  

length in the interaction phase). The small differences in the 
eye tracking parameters may be due to the fact that there is a 
high variance in objects size and shape, which may equalize 
existing differences between grouped objects in the SDA-M. 
For example, when comparing the overall saccadic length in 
horizontal and vertical directions for the ink stone and the 
hole puncher, the data shows smaller values for the saccade 
length for the unknown object. Additionally, subjects use 
visual data to get more information from the object when 
grasping it. In the interaction phase, the distributed attention 
shows that subjects explore unknown objects in more detail 
in order to figure out how to manipulate them. Interaction 
with the object in complex real world environments is 
clearly shaping the cognitive representation of the single 
objects closer to functional similarity – resulting in a 
different grasping behavior. We will repeat the experiment 
with younger and older people, in order to investigate the 
variations in humans’ perceptual and grasping behavior over 
the developmental process. 

Our results support the notion that the grasping 
movements are strongly influenced by conceptual factors, as 
the separation of small objects from larger ones does not 
only show up in the mental representation structures, but 
also in the PC space. The posture analysis in PC space was 
very difficult because of the variety of object shapes and 
sizes and the unconstrained way the subjects could act with 
the objects. Therefore, it was not possible to find meaningful 
clusters of grasping postures for known and unknown 
objects. We build on the theory that the development of 
cognition is linked closely with the capability of acting on 
one’s environment and causing changes to it [2]. These 
insights into the human learning and perceptual processes 
when encountering unknown situations are of importance for 
the field of cognitive neuroscience robotics in order to build 
artificial cognitive systems that can interact with a human in 
an intuitive way. By measuring the cognitive structure of 
motor action/object relations and attentional processes, 
robotic systems can get insights into the level of expertise 
and visual interests of interaction partners. Such cognitive 
structures can be implemented using self-organizing maps, 
allowing a seamless integration into neural network based 
architectures for robot control [23]. The future goal is to 
combine learning of high-level cognitive memory structures 
with low level, automatic learning of grasping movements 
using methods like goal babbling [24]. In term of practical 
applications, cognitive neuroscience robots could possibly 
select and adjust their actions flexibly in a given situation, 
e.g., while assisting an older or handicapped person.   
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The cognitive neuroscience robotics has been taking interdisciplinary approaches to 

understanding of human cognitive processes aiming at designing future products in our 

daily life. A wide range of research issues have been attacked from very fundamental, 

scientific issues such self/other cognition related to MNS to more engineering ones such 

as human-machine interface to control robots inside and/or outside the buildings. These 

issues are not separated nor independent, but closely related to each other. Future issues 

may include deeper understanding of human cognitive functions, new applications of 

BMI studies, and more friendly and natural man-machine interfaces including 

humanoids that can assist people not only physically but also mentally in our daily life. 

In my talk, we discuss these issues. 
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