
Housekeeping with Multiple Autonomous Robots:
Knowledge Representation and Automated Reasoning
for a Tightly Integrated Robot Control Architecture

Erdi Aker Ahmetcan Erdogan Esra Erdem Volkan Patoglu

Abstract— We embed knowledge representation and auto-
mated reasoning in each level of the classical 3-layer robot
control architecture, in such a way as to tightly integrate
these layers. At the high-level, we represent not only actions
and change but also commonsense knowledge in the action
description language C+. Geometric reasoning is lifted to
the high-level by embedding motion planning in the domain
description, using external predicates. Then a discrete plan is
computed for each robot, using the causal reasoner CCALC. At
the mid-level, if a continuous trajectory is not computed by a
motion planner because the discrete plan is not feasible at the
continuous-level, then formal queries are asked to the causal
reasoner to find a different plan subject to some (temporal)
conditions represented as formulas. At the low-level, if the plan
execution fails, then a new continuous trajectory is computed
by a motion planner at the mid-level or a new discrete plan
is computed using an automated reasoner at the high-level.
We apply this tightly integrated robot control architecture in
a housekeeping domain with multiple autonomous robots, and
illustrate this application with a simulation.

I. INTRODUCTION

Consider a house consisting of three rooms: a bedroom,
a living room and a kitchen as shown in Fig. 1. There
are three cleaning robots in the house. The furniture is
stationary and their locations are known to the robots a priori.
Other objects are movable. There are three types of movable
objects: books (green pentagon shaped objects), pillows (red
triangular objects) and dishes (blue circular objects). The
locations of some of the movable objects are not known to
the robots a priori. Some objects are heavy and cannot be
moved by one robot only; but the robots do not know which
movable objects are heavy. The goal is for the cleaning robots
to tidy the house collaboratively in a given amount of time.

This domain is challenging from various aspects:
• It requires representation of some commonsense knowl-

edge. For instance, in a tidy house, books are in the
bookcase, dirty dishes are in the dishwasher, pillows are
in the closet. In that sense, books are expected to be in
the living room, dishes in the kitchen and pillows in the
bedroom. Representing such commonsense knowledge
and integrating it with the action domain description
(and the reasoner) is challenging.

• A robot is allowed to be at the same location with a
movable object only if the object is being manipulated
(attached, detached or carried); otherwise, robot-robot,

E. Aker, A. Erdogan, E. Erdem, V. Patoglu are with the Faculty of
Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey.
{eaker,ahmetcan,esraerdem,vpatoglu}@sabanciuniv.edu

Robots

Dishes

Pillows

Books

* Exchange
Areas

BE
D

RO
O

M

*

*

*

KITCHEN LIVING ROOM

Bookcase

Closet

Dishwasher

Fig. 1. Sample home simulation environment

robot-stationary object and robot-moveable object colli-
sions are not permitted. Due to these constraints, repre-
senting preconditions of (discrete) actions that require
(continuous) geometric reasoning for a collision-free
execution is challenging. For instance, moving to some
part of a room may not be possible for a robot because,
although the goal position is clear, it is blocked by a
table and a chair and the passage between the table and
the chair is too narrow for the robot to pass through.

• When a plan execution fails, the robots may need to
find another plan by taking into account some temporal
constraints. For instance, when a robot cannot move an
object because it is heavy, then the robots may want to
compute another plan that postpones moving the heavy
object to its goal position in the last four steps by
the help of another robot. Representing such planning
problems with temporal constraints and solving them
are challenging.

• Solving the whole housekeeping problem may not be
possible because the formalization gets too large for the
reasoner. In that case, we can partition the housekeeping
problem into smaller parts (e.g., each robot can tidy
a room of the house). However, then the robots must
communicate with each other to tidy the house collab-
oratively. For instance, if a robot cannot move a heavy
object to its goal position, the robot may ask another
robot for help. If the robot that cleans kitchen finds a
book on the floor, then the robot should transfer it to the



robot that cleans the living room, by putting the book
in the exchange area between kitchen and living room.
Coordination of the robots in such cases, subject to the
condition that the house be tidied in a given amount of
time, is challenging.

• When a plan execution fails, depending on the cause
of the failure, a recovery should be made. If a robot
collides with a movable object whose presence and
location is not known earlier (e.g., a human may bring
the movable object into the room while the robot is
executing the plan), then the robot may ask the motion
planner to find a different trajectory to reach the next
state, and continue with the plan. If the robot cannot find
a trajectory, then a new plan can be computed to tidy
the room. Monitoring executions of plans by multiple
cleaning robots, taking into decisions for recovery from
failures, is challenging.

We handle these challenges by representing the housekeep-
ing domain in the action description language C+ [1] as a set
of “causal laws” (Section III) and using the causal reasoner
CCALC [2] for planning (Section IV), like in [3], [4], [5], [6],
in the style of cognitive robotics [7]. We embed knowledge
representation and automated reasoning in each level of the
classical 3-layer robot control architecture, in such a way as
to tightly integrate these layers. In particular, we make use of
external predicates for the first two challenges. We represent
commonsense knowledge as a logic program, and use the
predicates defined in the logic program as external predicates
in causal laws. Similarly, we implement collision checks as
a function in the programming language C++, and use these
functions as external functions in causal laws. In this way,
we closely couple commonsense knowledge and geometric
reasoning into the discrete reasoner (first layer). For the third
challenge, we make use of queries. We represent planning
problems as queries that allow us to add temporal constraints,
and then we ask these queries to the causal reasoner to
find new plans. Hence, high-level reasoning is involved in
the motion planning (second layer). Finally, for the other
challenges related to safe execution of plans (third layer), we
introduce a planning and monitoring algorithm that solves the
housekeeping problem by dividing it into smaller problems
and then combining their solutions, that coordinates multiple
cleaning robots for a common goal, and that ensures recovery
from plan failures if possible (Section V).

II. AN OVERVIEW OF ACTION LANGUAGE C+

We describe action domains in the action description lan-
guage C+, by “causal laws.” Let us give a brief description
of the syntax and the semantics of C+; we refer the reader
to [1] for a comprehensive description.

We start with a (multi-valued propositional) signature that
consists of a set σ of constants of two sorts, along with a
nonempty finite set Dom(c) of value names, disjoint from σ,
assigned to each constant c. An atom of σ is an expression
of the form c = v (“the value of c is v”) where c ∈ σ and
v ∈ Dom(c). A formula of σ is a propositional combination

of atoms. If c is a Boolean constant, we will use c (resp. ¬c)
as shorthand for the atom c = True (resp. c = False).

A signature consists of two sorts of constants: fluent
constants and action constants. Intuitively, fluent constants
denote “fluents” characterizing a state; action constants de-
note “actions” characterizing an event leading from one
state to another. A fluent formula is a formula such that
all constants occurring in it are fluent constants. An action
formula is a formula that contains at least one action constant
and no fluent constants.

An action description is a set of causal laws of three sorts.
Static laws are of the form

caused F if G (1)

where F and G are fluent formulas. Action dynamic laws
are of the form (1) where F is an action formula and G is
a formula. Fluent dynamic laws are of the form

caused F if G after H (2)

where F and G are as above, and H is a fluent formula. In
(1) and (2) the part if G can be dropped if G is True .

The meaning of an action description can be represented
by a “transition system”, which can be thought of as a
labeled directed graph whose nodes correspond to states of
the world and edges to transitions between states. Every state
is represented by a vertex labeled with a function from fluent
constants to their values. Every transition is a triple 〈s,A, s′〉
that characterizes change from state s to state s′ by execution
of a set A of primitive actions.

While describing action domains, we can use some ab-
breviations. For instance, we can describe the (conditional)
direct effects of actions using expressions of the form

c causes F if G (3)

which abbreviates the fluent dynamic law

caused F if True after c ∧G

expressing that “executing c at a state where G holds,
causes F .”

We can formalize that F is a precondition of c by the
expression

nonexecutable c if ¬F (4)

which stands for the fluent dynamic law

caused False if True after c ∧ ¬F .

Similarly, we can prevent the execution of two actions c and
c′ by the expression

nonexecutable c ∧ c′.

Similarly, we can express that F holds by default by the
abbreviation

default F .

We can represent that the value of a fluent F remains to be
true unless it is caused to be false, by the abbreviation

inertial F .



III. REPRESENTATION OF HOUSEKEEPING DOMAIN

We represent the housekeeping domain in C+ and present
it to CCALC for solving reasoning problems, such as plan-
ning. In the following, we will describe the housekeeping
domain using the language of CCALC.

a) Fluents and actions: We view the house as a grid.
The robots and the endpoints of objects are located at grid-
points. We consider the fluents at(TH,X,Y) (“thing TH is
at (X,Y)”) and connected(R,EP) (“robot R is connected
to endpoint EP”), and the actions goto(R,X,Y) (“robot R
goes to (X,Y)”), detach(R) (“robot R detaches from the
object it is connected to”), and attach(R) (“robot R attaches
to an object”). The fluents are inertial and the actions are
exogenous. CCALC allows us to include this information at
the very beginning of the action description while declaring
fluent constants and action constants.

b) Direct effects of actions: We describe the direct
effects of the actions above by causal laws of the form (3).
For instance, the following causal law expresses the direct
effect of the action of a robot R going to location (X,Y):1

goto(R,X,Y) causes at(R,X,Y).

Similarly, we can describe the direct effects of the action
of a robot R detaching from the endpoints of an object it is
connected to:

detach(R) causes -connected(R,EP)
if connected(R,EP).

To describe the direct effects of the action of a robot
R attaching to an endpoint of an object, we introduce an
“attribute” attach point of this action to show at which
endpoint the robot is attaching. Attributes of actions is
a useful feature of CCALC that allows us to talk about
various special cases of actions without having to modify
the definitions of more general actions. We can formalize the
direct effect of attaching a payload (“robot R is connected to
the endpoint EP of an object”):

attach(R) causes connected(R,EP)
if attach_point(R)=EP.

c) Preconditions of actions: We describe effects of
actions by causal laws of the form (4). For instance, we
can describe that a robot R cannot go to a location (X,Y) if
the robot is already at (X,Y), by the causal laws:

nonexecutable goto(R,X,Y) if at(R,X,Y).

To describe that a robot R cannot go to a location (X,Y)

if that location is already occupied by a stationary object, we
need to know in advance the locations of stationary objects in
the house. Such knowledge is represented as the “background
knowledge” in Prolog. CCALC allows to use the predicates
defined as part of background knowledge, in causal laws, as
follows:

nonexecutable goto(R,X,Y) where occupied(X,Y).

1To present formulas to CCALC, conjunctions ∧, disjunctions ∨, impli-
cations ⊃, negations ¬ are replaced with the symbols &, ++, ->>, and -
respectively.

where occupied(X,Y) describe the locations (X,Y) occu-
pied by stationary objects.

In general, the where parts in causal laws presented to
CCALC include formulas that consist of “external predi-
cates/functions”. These predicates/functions are not part of
the signature of the domain description (i.e., they are not de-
clared as fluents or actions). They are implemented as func-
tions in some programming language of the user’s choice,
such as C++. External predicates take as input not only
some parameters from the action domain description (e.g.,
the locations of robots) but also detailed information that is
not a part of the action domain description (e.g., geometric
models). They are used to externally check some conditions
under which the causal laws apply, or externally compute
some value of a variable/fluent/action. For instance, suppose
that the external predicate path exists(R,X,Y,X1,Y1)

(implemented in C++) holds if there is a collision-free path
between (X,Y) and (X1,Y1) for the robot R. Then we can
express that the robot R cannot go from (X1,Y1) to (X,Y)

where path exists(R,X,Y,X1,Y1) does not hold, by a
causal law presented to CCALC as follows:

nonexecutable goto(R,X,Y) if at(R,X1,Y1)
where -path_exists(R,X1,Y1,X,Y).

Now consider the action of a robot R attaching to an
endpoint of an object. This action is not possible if the robot
is connected to some endpoint EP of an object:

nonexecutable attach(R) if connected(R,EP).

Note that here we do not refer to the special case of the action
of attaching via attributes. Also it is not possible if the robot
and the endpoint are not at the same location (X,Y):

nonexecutable attach(R) & attach_point(R)=EP
if -[\/X \/Y | at(R,X,Y) & at(EP,X,Y)].

In the last line above, the negated expression stands for
a disjunction of conjunctions at(R,X,Y) & at(EP,X,Y)

over locations (X,Y).
Similarly, we can describe the preconditions of detaching

from an object.
d) Ramifications: We describe two ramifications of the

action of a robot R going to a location (X,Y). If the robot
is connected to an endpoint of an object, then the location
of the object changes as well:

caused at(EP,X,Y)
if connected(R,EP) & at(R,X,Y).

Furthermore, neither the robot nor the endpoint are at their
previous locations anymore:

caused -at(TH,X,Y) if at(TH,X1,Y1)
where X\=X1 ++ Y\=Y1.

Here TH denotes a “thing” which can be either a robot or an
endpoint.

e) Constraints: We ensure that two objects do not
reside at the same location by the constraint

caused false if at(EP,X,Y) & at(EP1,X,Y)
where EP \= EP1.



and that a robot is not connected to two endpoints by the
constraint

caused false
if connected(R,EP1) & connected(R,EP)
where EP \= EP1.

We need to express that a robot cannot move to a location
and attach to or detach from an endpoint of an object at the
same time.

nonexecutable goto(R,X,Y) & attach(R).
nonexecutable goto(R,X,Y) & detach(R).

f) Commonsense knowledge: To clean a house, the
robots should have an understanding of the following: tidying
a house means that the objects are at their desired locations.
For that, first we declare a “statically determined fluent”
at desired location(EP) describing that the endpoint
of an object is at its expected position in the house. A
statically determined fluent is much like a “derived pred-
icate”: it is defined in terms of other fluents. We define
at desired location(EP) as follows:

caused at_desired_location(EP) if at(EP,X,Y)
where in_place(EP,X,Y).

default -at_desired_location(EP).

The second causal law expresses that normally the movable
objects in an untidy house are not at their desired locations.
The first causal law formalizes that the endpoint EP of an
object is at its desired location if it is at some “appropriate”
position (X,Y) in the right room. Here in place/3 is
defined externally.

After defining at desired location/1, we can intro-
duce a “macro” to define tidy:

:- macros
tidy -> [/\EP | at_desired_location(EP)].

Finally, the robots need to know that books are expected
to be in the bookcase, dirty dishes in the dishwasher, and
pillows in the closet. Moreover, a bookcase is expected to be
in the living-room, dishwasher in the kitchen, and the closet
in the bedroom. We describe such background knowledge
externally as a Prolog program. For instance, the external
predicate in place/3 is defined as follows:

in_place(EP,X,Y) :- belongs(EP,Obj),
type_of(Obj,Type), el(Type,Room),
area(Room,Xmin,Xmax,Ymin,Ymax),
X>=Xmin, X=<Xmax, Y>=Ymin, Y=<Ymax.

Here belongs(EP,OBJ), type of(OBJ,Type) describes
the type Type of an object Obj that the endpoint EP belongs
to, and el(Type,Room) describes the expected room of an
object of type Type. The rest of the body of the rule above
checks that the endpoint’s location (X,Y) is a desired part
of the room Room.

Note that the expected location of an object depends on
where it is: for instance, the expected location of a book on
the floor of a kitchen is the exchange area between kitchen
and living room (so that the robot whose goal is to tidy the
living room can pick it up and put it in the bookcase); on the

other hand, the expected location of a plate on the floor of
kitchen is the dishwasher. Therefore, area/5 describes either
an exchange area (if the object does not belong to the room
where it is at) or a deposit area (if the object belongs to the
room where it is at). Note also that knowledge about specific
objects in a room as well as specific deposit and exchange
areas are not common knowledge to all robots; each robot
has a different knowledge of objects in their room.

IV. REASONING ABOUT HOUSEKEEPING DOMAIN

Given the action domain description and the background
and commonsense knowledge above, we can solve various
reasoning tasks, such as planning, using CCALC. However,
the overall planning problem for three cleaning robots may
be too large (considering the size of the house, number of
the objects, etc.). In such cases, we can divide the problem
into three smaller planning problems, assigning each robot
to tidy a room of the house in a given amount of time.

Consider the housekeeping domain described above. The
goal is for the cleaning robots to tidy the house collabora-
tively in a given amount of time: Robot 1 is expected to
tidy the living room, Robot 2 the bedroom, and Robot 3 the
kitchen.

Suppose that the locations of some of the movable objects
are known to the robots a priori, as shown in Table I. Robot
1 knows that there are two books, comics1 and novel1,
on the living room floor. Robot 2, on the other hand, knows
that there are two pillows, redpillow1 and bluepillow1,
and a plate, plate1, on the bedroom floor. The robots also
know where to collect the objects, as shown in Table I. For
instance, Robot 2 knows that, in the bedroom, the closet
occupies the rectangular area whose corners are at (5,0),
(5,3), (7,0), (7,3). Robot 2 also knows that the objects
that do not belong to bedroom, such as plate1 of type dish,
should be deposited to the exchange area between bedroom
and kitchen, that occupies the points (3,7)–(5,7).

Planning problems for each robot are shown in Table II.
For instance, in the living room, initially Robot 1 is at (3,2),
whereas the books comics11 and novel11 are located at
(1,2) and (6,3). The goal is to tidy the room and make
sure that the robot is free (i.e., not attached to any objects),
in at most k steps. Here free is a macro, like tidy. The
planning problem for Robot 1 is presented to CCALC as a
query as follows:

:- query
maxstep :: 0..k;
0: at(r1,3,2), at(comics1,1,2), at(novel1,6,3);
maxstep: tidy, free.

CCALC finds a shortest plan, Plan 1, for this problem:

0: goto(r1,6,3)
1: attach(r1,attach_point=novel1)
2: goto(r1,13,3)
3: detach(r1)
4: goto(r1,1,2)
5: attach(r1,attach_point=comics1)
6: goto(r1,13,2)
7: detach(r1)



TABLE I
BACKGROUND KNOWLEDGE FOR EACH ROBOT.

Robot 1 in Living Room Robot 2 in Bedroom Robot 3 in Kitchen
Object: Type comics1 : book redpillow1 : pillow pan1 : dish

novel1 : book bluepillow1 : pillow spoon1 : dish
plate1 : dish

Deposit Area (13,15,2,5) (5,7,0,3) (0,2,0,3)
Exchange Area kitchen: (11,12,0,0) kitchen: (3,4,7,7) bedroom: (0,0,3,4)

bedroom: (0,0,3,4) living-room: (7,7,3,4) living-room: (3,4,7,7)

TABLE II
PLANNING PROBLEMS FOR EACH ROBOT.

Robot 1 in Living Room Robot 2 in Bedroom Robot 3 in Kitchen
Initial at(r1,3,2) at(comics1,1,2) at(r2,5,6) at(redpillow1,2,5) at(r3,1,5) at(pan1,3,1)
State at(novel1,6,3) at(bluepillow1,3,6) at(plate1,6,3) at(spoon1,3,6)
Goal tidy, free tidy, free tidy, free

TABLE III
EXECUTION OF THE PLANS COMPUTED BY CCALC FOR EACH ROBOT. THE ROWS THAT ARE NOT LABELED BY A TIME STEP ARE NOT PART OF THESE

PLANS, BUT ARE IMPLEMENTED AT THE LOW-LEVEL.

Time Step Robot 1 in Living Room Robot 2 in Bedroom Robot 3 in Kitchen
1 goto(r1,6,3) goto(r2,6,3) goto(r3,3,1)
2 attach(r1,novel1) attach(r2,plate1) attach(pan1) - FAILURE

(Heavy object)
Re-task planning

3 goto(r1,13,3) goto(r2,7,3) goto(r3,3,6)
4 detach(r1) detach(r2) attach(r3,spoon1)
5 goto(r1,1,2) goto(r2,3,6) - FAILURE goto(r3,0,2)

(Unknown object)
Re-motion planning

6 attach(r1,comics1) attach(r2, bluepillow1) detach(r3)
Get ready to help r3

7 help r3 goto(r2,5,2) goto(r3,3,1), goto(r1,4,1)
8 help r3 detach(r2) attach(r3,pan1), attach(r1,pan2)
9 help r3 goto (r2,2,5) goto(r3,0,1), goto(r1,1,1)
10 help r3 attach(r2,redpillow1) detach(r3), detach(r1)

Get ready to continue plan
11 goto(r1,13,2) goto(r2,7,1) -
12 detach(r1) detach(r2) -

Final check for previously unknown or relocated objects
13 - goto(r2,4,5) -
14 - attach(r2,yellowpillow1) -
15 - goto(r2,6,1) -
16 - detach(r2) -

While CCALC computes such a plan, CCALC calls a
motion planner (based on Rapidly exploring Random Trees
(RRTs) [8]) to check the preconditions of the action of a
robot going to a location without any collisions.

V. MONITORING THE CLEANING ROBOTS

For each cleaning robot, a plan is computed and executed
by the planning and monitoring algorithm introduced in [9].
According to this algorithm, first, each robot obtains the
current state s of the world from the sensor information.
After that, each robot computes a plan P of length less than
or equal to a given nonnegative integer k, from the observed
state s to a goal state (that satisfies the given goal g) in
a world described by a given action domain description D.
Plans are computed using CCALC.

Once a plan P is computed, each robot starts executing
it. However, a plan execution may fail, for instance, due
to the unpredictable interference of human. Human may
relocate an object which is to be carried by robot, or bring

a new movable object to the room. Since the robots are
unaware of these dynamic changes, they may collide with
these obstacles. Furthermore, while most of the moveable
objects are carried with only one robot, some of these objects
are heavy and their manipulation requires two robots. The
robots do not know in advance which objects are heavy, but
discover a heavy object only when they attempt to move it.

When such incidents occur, robots can identify the cause
of the failure and act accordingly. When a robot collides
with an unknown movable object while following its planned
trajectory for a transition 〈s,A, s′〉 the robot tries to calculate
a new, collision-free trajectory π to reach the next state
s′ from its current configuration. Such a trajectory π is
computed by a motion planner based on RRTs. If no such
trajectory is calculated by the motion planer, the robot goes
to a safe state s (possibly the previous state) and asks CCALC
to find a new plan P to reach the goal from s taking into
account the recently discovered moveable objects.

When a plan fails because a robot attempts to carry an



object which is relocated by another robot, the robot observes
the world and asks CCALC to find a new plan P to reach the
goal from the current state s taking into account the recently
relocated moveable objects.

When a plan fails because a robot attempts to manipulate a
heavy object, the robot asks for assistance from other robots
so that the heavy object can be carried to its destination.
However, in order not to disturb the other robots while they
are occupied with their own responsibilities, the call for help
is delayed as much as possible. With the observation that
the manipulation of the heavy object takes 4 steps (get to
the heavy object, attach to it, carry it, detach from it), this is
accomplished by asking CCALC to find a new plan P that
manipulates the heavy object within the last i = 4, 5, 6, ...
steps of the plan only. Once such a plan is computed, one
of the robots who are willing to help gets prepared (e.g.,
detaches from the object it is carrying, if there is any) and
goes to the room of the robot who requests help. (Currently,
task allocation is done randomly.)

Note that if a human brings some objects into the room,
and these objects are not in collision course with the robots,
they cannot be discovered until the robot observes the world.
Therefore, after the execution of the plans, a final observation
instance is triggered comparing current state of the room with
its goal state. If there are any discrepancies, then the robots
ask for new plans to reach the goal.

In this algorithm plans are executed by as follows. For
each transition 〈s,A, s′〉 of the history of the plan, if A
is a primitive action of the form goto(R,X,Y), then a
trajectory is computed. If A is a primitive action of some
other form (e.g., attach(R) or detach(R)), then the action
is executed. If A is a concurrent action of the form {A1, A2}
to be executed by two robots, then an available robot is found
and instructed about the actions to be executed concurrently.

Table III shows the execution of plans by Robots 1–3.
Robot 1 executes Plan 1 safely without any collisions, but
goes to kitchen at time step 7 to help Robot 3 to move a
heavy object to its goal position. Robot 2 starts executing its
plan, but fails at time step 5 due to a collision with a pillow
bluePillow1 unknown to Robot 2 a priori. Fortunately, the
motion planner finds another trajectory to reach the next state
and Robot 2 continues with the execution of the rest of the
plan after following the trajectory. After the completion of
the plan at time step 13, Robot 2 checks whether there is
any other pillow to be put into the closet. After discovering
another pillow yellowPillow1, Robot 2 asks for a new
plan to move it to the closet, and safely executes that plan
as well. Robot 3 on the other hand starts executing a plan,
but at time step 2, finds out that the pan pan1 he wants to
move is too heavy. Then Robot 3 goes to a safe state and
asks for help to carry the heavy object to its goal position.

We showed the execution of these plans with a simulation,
where the housekeeping domain is modeled using VRML
2.0 and the execution of the actions is implemented in
Matlab/Simulink. Video clips illustrating this simulation can
be found at http://krr.sabanciuniv.edu/cogrobo/

demos/housekeeping/.

VI. CONCLUSION

We formalized a housekeeping domain with multiple
cleaning robots, in the action description language C+,
and solved some housekeeping problem instances using the
reasoner CCALC as part of a planning and monitoring
framework.

In this framework, we embedded knowledge representation
and automated reasoning in each level of the classical 3-
layer robot control architecture, in such a way as to tightly
integrate these layers, using various utilities of CCALC. At
the high-level, external predicates are used to embed geo-
metric reasoning in causal laws, and attributes of actions are
used to talk about the special cases of actions. To represent
commonsense knowledge and background knowledge, we
made use of external predicates/functions and macros in
causal laws. At the mid-level, if a continuous trajectory is not
computed by a motion planner because the discrete plan is
not feasible at the continuous-level, then queries are used to
find a different plan taking into account temporal constraints.
At the low-level, if plan execution fails due to a collision with
movable objects whose presence and location are not known
in advance or due to heavy objects that cannot be lifted
alone, the cause of the failure is identified and a recovery
is found accordingly either by calling the motion planner to
find a different continuous trajectory or by asking the causal
reasoner queries to find a different plan. In this way, high-
level knowledge representation and automated reasoning are
utilized at each level.

A related work on the use of AI planning for housekeeping
with multiple robots is [10], which considers a domain with
no concurrency, no obstacles and no human intervention. On
the other hand, it considers heterogenous robots with differ-
ent functionalities. Application of our approach to domains
with such robots is part of our ongoing work.

REFERENCES

[1] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner,
“Nonmonotonic causal theories,” Artificial Intelligence, vol. 153, pp.
49–104, 2004.

[2] N. McCain and H. Turner, “Causal theories of action and change,” in
Proc. of AAAI/IAAI, 1997, pp. 460–465.

[3] O. Caldiran, K. Haspalamutgil, A. Ok, C. Palaz, E. Erdem, and
V. Patoglu, “Bridging the gap between high-level reasoning and low-
level control,” in Proc. of LPNMR, 2009.

[4] ——, “From discrete task plans to continuous trajectories,” in Proc.
of BTAMP, 2009.

[5] K. Haspalamutgil, C. Palaz, T. Uras, E. Erdem, and V. Patoglu, “A tight
integration of task and motion planning in an execution monitoring
framework,” in Proc. of BTAMP, 2010.

[6] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in Proc.
of ICRA, 2011.

[7] H. Levesque and G. Lakemeyer, “Cognitive robotics,” in Handbook of
Knowledge Representation. Elsevier, 2007.

[8] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[9] E. Aker, A. Erdogan, E. Erdem, and V. Patoglu, “Housekeeping with
multiple autonomous robots: Representation, reasoning and execu-
tion,” in Proc. of Commonsense’11, 2011.

[10] R. Lundh, L. Karlsson, and A. Saffiotti, “Autonomous functional
configuration of a network robot system,” Robotics and Autonomous
Systems, vol. 56, no. 10, pp. 819–830, 2008.


