

Abstract— In this paper, a general purpose information

representation for robot’s software development is described.

The fundamental idea is to have only one structure for

information that is be used software system-wide, to represent

environment model, knowledge database, robot’s tasks, output

of data processing, and other information related to the robot’s

operation. Using only one data structure provides several

advantages, including high reuse on software core parts, such

as searching, comparison, interpolation, coordinate

transformation and feature extraction.

I. INTRODUCTION

reating a software for the robot is a demanding task.

How to connect all the parts, how to express past,

present and future in a way that a robot can truly operate in

the environment? How to define the task for the robot? How

the information learnt could be used on another robot? And

most of all, how to make it so that it can be continuously

expanded with new information, new algorithms and new

functionalities without making the system too complex to

handle? All these questions can be answered, when we can

define a general purpose unit for information.

 Traditionally, research projects around the world have

shown too many cases of “reinventing the wheel”.

Especially on how data types of algorithms are defined, and

in what form the data is delivered. As the main focus has

been on creating algorithms, the representation of the

information has been defined from mathematical point of

view without thinking how it could be a part of a larger

system. Without getting known on publically available

libraries, parts are implemented from the scratch over-and-

over again. A good example for this is how the position is

implemented over and over again on each library. This

reinvention usually causes focusing on primitive parts of the

robot’s software, and in the worst case, will lead to the

situation where nothing new is done within the project’s

period, and progress of robotics in general will not proceed.

Therefore, a standard way of doing things is needed.

Choosing a right representation for knowledge (and

everything else) is a key issue.

There are lots of examples of how things work in similar

ways in different systems. Functions related to comparing

positions, like distance, are similar to calculation of

correlation in a different space, and similarity of a feature.

Nodes and graph are used in many places for analyzing

networks, relations, structure and kinematic models. Still, in

practice, these are implemented separately on own libraries,

and the code is not reused. In this work, these types of

similarities are detected, and a library is implemented to

optimize as much as possible under the representation.

Fortunately, the problem has got increasing attention in

several places lately. A new interest of how to represent

information in a robotic system and how to combine

information and algorithms has rose. Common awareness of

the fact that “no single algorithm or method solves the

problem” has spread among robotics researchers; instead,

the robot’s software must be a dynamically adapting hybrid.

Large projects like RoboEarth[1], Proteus[2], GeRT[3],

Rosetta[4], BRICS[5], KnowRob[6] and many more, focus

on how the knowledge should be defined in general and how

push robotic research close to operation in real world.

Similarly many robotic libraries like ROS, Orocos, Player,

are focusing on combing the technologies together.

In this work, the issue has been studied purely from

implementation point of view, and a more straightforward

way by surveying basic structures from a large number of

technologies, detecting their similarities and combining

similarities to a building block for representation, and

minimizing the size of the core.

II. RELATED WORK

The main unit in this representation is called a Marker. A

marker is a computational component responsible for storing

and updating values related to a set of environmental

features’ prior knowledge and task information. As the main

purpose of the Marker is to act as a generalized structure; the

number of technologies related to this work is large, and not

reasonable to cover here.

The term marker itself is not new. In earlier work, at least

Brill [7,8] used the term as a representation for task related

objects in simulated robots. Later Riekki [9] used markers

for a soccer robot environment model and Tikanmäki [10]

expanded the representation to real robots and for integration

of vision and sonar sensors output. This work has been

expanded further through many experiments to the form of

the marker described in this paper.

As the representation has always been part of the robot’s

software, algorithms, planning, similar technologies with a

different name exists quite a few. The same structures are

repeated over and over again in simulators, 3D modeling

tools, game physical engines, etc, where the unit is called,

for example, “object”, “entity”, ”target”, “point”, or “nodes”.

In this work, the major difference to other systems is how

various technologies are combined to this generalized

representation, and how this is used on all parts of the

robot’s software architecture. Through several use cases,

markers have been used to create various applications with

Markers – toward general purpose information representation

Antti Tikanmäki, Juha Röning, University of Oulu, Finland

C

maximizing code reuse and minimizing the amount of

reimplementation.

III. A MARKER

A. Key features

A marker consists of three parts: properties, connections

links to define connections to other markers, and children

providing a way to create hierarchical structures. Following

shortly explains some aspects of these three main features.

1) Properties,

Property consisting of name-value pair is one of the

fundamental ways of describing a dynamically expandable

structure of information. Properties are used in many

systems for storing configuration parameters, attributes, and

other information. A typical implementation of this is a hash

table, where a key is used for calculating a hash index

pointing to a value. For example, many parts on Python

relay on a dictionary, where, for example, attributes and

functions are stored on the dictionary and can dynamically

be expanded during execution.

In markers, keys will based on a commonly used term in

physics and robotics, and will follow term standards in

robotics. The units for values will follow SI base (or

derived) units. Some keys are already defined, for example,

“position” (including also orientation), “mass”, or

“probability” of existence. Properties are features extracted

from the physical target, and may contain information like

“alias” (what people are calling the object), or storing

physical properties of the target like “material”,

”boundingbox”, “shape”, and “color”.

It is very typical, for example, on machine vision systems,

to extract N features of a segmented target and compare it to

a learned set of “known targets”. In markers, each feature is

stored to its own property, and using marker comparison, the

similarity of two markers can be compared.

2) Connections

Graphs, a relational structure of nodes and links between

them, are used in a number of places. Navigation graphs,

search graphs, social relations, and communication networks

just to name few, are all based on graphs, and many

algorithms for search strategies, optimizations, complexity

estimation or loop detection exist, by means of which the

structure of graphs can be analyzed. Further, several

traditional representations can be expressed using graphs, for

example grids using spatially fixed positions and links to

neighbor markers, or topological representations using

markers without actual position. In artificial intelligent,

commonly used technologies like neural-networks, state-

machines, Markov models, etc. can also be thought to

consist of nodes and links. Also, in widely used vector-

graphics (like SVG), a shape consists of nodes and edges

providing many tools for manipulating these, like Bezier-

curve interpolations, shape generations that robot’s software

may reuse in operation.

In this representation, nodes and links are both described

using a marker. Each of link-marker may have several

targets, and their properties are used to store information

about the link itself. For example, a navigation graph

contains node-makers of crossings and link-markers telling

how to travel from node to node. On properties of link-

marker, the properties like traversability of path, suitable

driving speed, etc. can be stored. Further, a graph feature is

be used for describing kinematic models, networks

structures, modeling the interaction, or describing

information relations in a knowledge database. Again, the

fundamental principle of “implement once, use everywhere”

is followed.

3) Hierarchy

Hierarchical relations of parent and children is also used in

many systems; for coordinate relations, level of details, 3D

models, directory structures and search trees, for example.

One way to use this hierarchy is by defining coordinate

frames, like a local coordinate system. Each frame is a

marker, containing at least a position of origin in the parent

frame. Figure 1 shows an example of frames used for an

outdoor/indoor robot. The world coordinate frame is an

Earth bounded frame, containing for example a GPS based

metric frame (like UTM or ETRS89 [11] base) coordinates.

The regional coordinate frame is, for example, city part,

campus, or similar size of region that makes the navigation

level of details more reasonable in size. On building level

coordinate frame, there might be own initial position and

origin that has a known global position and positions of all

markers bellow this level are represented relatively to this.

The Robot coordinate frame is tied to the robot’s base (for

example on the floor touching center of rotation) and all

sensors of the robot are located on that coordinate frame.

And finally, on the sensor coordinate system, the targets that

the sensor and data processing can detect are located in the

sensor coordinate system.

Fig. 1. An example of Hierarchical coordinate system

Hierarchical representation is used in many places for

fastening the processing. By dividing the area in smaller

regions, computer games optimize their world model. In

computer hard drive, we organize files to directories and

categories instead of putting all the files in one directory.

Similarly a robot’s environment model can optimize its

performance by reorganizing markers on a hierarchy for

faster operation.

4) Implementation

In practice, a marker is implemented with a class that

inherits a hash table, like a map in C++, Properties-class in

Java or dictionary in Python. Further, the following methods

for processing marker and its ancestors are implemented as

class methods.

B. Methods for manipulating markers

This section will shortly explain some key features of how

the marker structure can be used, and what methods the

marker has.

1) Coordinate system transformation

Hierarchical coordinate system frames require a

transformation between parent and children coordinate

systems, and therefore, one essential method for Markers is

the way coordinates are transformed to other coordinate

system. For 3D markers and dynamic models, 6D spatial

vectors called Plücker basis vectors [12] are used, which

combines translations and rotations to one 1x6 matrix. If

fewer dimensions is used or known, like no rotational

information, fields will have zero value.

2) Level of details

Markers provide a way to easily create level-of-details

structure. Each marker represents a certain level of details on

environment and children contain more detailed information

of the target. For example, in an outdoor navigation map, a

marker represents a house with a simple square from house

corners as a shape and a center point as a location. On

children levels, details like interiors, rooms, furniture, etc.

are stored. Depending on the task and position of the robot,

it can select the level that is used on navigation. Similarly, a

representation for a human is defined using a hierarchical

way, and depending on the robot’s current task, the robot

uses the level of details from a bare location of the human to

detailed poses of fingers and facial expressions. The major

advantage of using hierarchical representation for the level

of details is that it saves processing power.

3) Flattening

Using Hierarchy flattening, the tree can be converted to a

flat list of markers on root coordinate system. As each

child’s coordinate are expressed in the parent’s coordinate

system, a flattening is a way to get a list of leaves in a

certain level coordinate system.

4) Combining markers to structure

Several markers can be combined and stored as children of a

new marker by grouping them together. A typical example

of this is by detecting targets from camera image or laser

scan points. When algorithm for example detects the

similarities of shade, color, and distances of each point less

than a threshold, a new marker is created to represent this

connected object. Each single measurement is stored as child

of this marker.

5) Property comparison

The marker’s properties can be compared to other

markers. Comparison searches through properties, and using

a key-tied callback function, a defined distance between

each property can be determined. Callback is used for

defining how a certain property is compared. Additionally,

the method has a parameter for giving a list of keys that are

used for comparison, as well as weights for each property (or

feature) to be used for calculating a final similarity output

value. By using comparison, sensed markers can be

compared to previous sensing on each step of the control

cycle (for tracking) or compared to a knowledge database

template to recognize the target and find more details to a

sensed object. The same comparison can be used for

template matching, defining the difference, error from

reference, derivate in time, progress, to name some.

6) Marker serialization.

The software of the robot is rarely a single program that

runs in a single computer. To be able to transfer information

between processes and machines, a formal representation is

needed. In this architecture, only a list of markers are used.

A number of ways to serialize data exist, like XML, S-

expression, JSON, just to name few. In this work, S-

expression is selected, mainly because it is more compact

than XML, simple to parse, and literal (ascii or unicode) use

as it is readable by a human and easier to transmit using

most of the protocols. S-expression is also used in a mature

AI language, probably most widely known in Lisp, and has

shown its flexibility as expression. Relations in graph are

represented using a reference to markers’ ID-property.

Additionally, JSON format is used on web based

visualization as it is widely supported by browser based

visualization libraries like Protovis. In addition to using

serialization for communication between processes, it is

used to store and restore representation on file(s) to be used

later.

7) Marker generators

One of the key functionality on the system is how markers

are generated. Generators are used for creating new markers

based on simple rules. For example, a trajectory curve for

the robot’s movement is defined with control points

(represented using markers). The generator interpolates and

creates new markers along the path. Another example is a

generator that creates markers from operating area

definitions, and creates a grid of markers (places) where the

robot should visit while executing the task. Later the

navigation system gets this list of places and while visiting

the places during execution, removes markers from the list

as the place is reached. One analogy for generators is

particle systems in computer graphics and games, where the

generator is used for particle effects like fire, liquids, or

smoke.

8) Network interface

One unique feature of architecture is the possibility to start a

network interface on any marker on the systems. Using a

selected protocol (like for example http), the properties of

the marker can be read and adjusted trough a network

interface using SET and GET commands. For example, a

marker representing the robot in marker hierarchy is started

as service and properties, like position, can be requested by

clients. On request, the properties are serialized and served

using services protocol.

 The network interface provides also functional properties.

The most simple one is named with ”*” character. This

property will provide the current state, complete content

dump of the marker in serialized format. Similarly, more

complex queries can be made by using template-markers as

a parameter. For example, querying all markers from a

certain area, a template marker with position and size

matching the area is included on request. Knowledge

storages and environment models are created by starting the

root marker as a service. For limiting the write access to

certain properties, a list of restricted access can be defined.

The query request starts with “?” character followed by the

string containing parameters.

C. Usage in software architecture

Markers create a base for all communication between

system (Figure 2) parts, using serialization parts can be

located on several processes and even several computers on

the robot’s network. Data processing parts can be run

parallel and their parameters can be adjusted during

operation. In this section, markers’ role is further explained.

Fig. 2. An overall view of software architecture. Communication

between parts is done using marker representation

This section will shortly introduce some of the parts in the

robot’s software that can be represented using markers.

1) Sensor data processing

To minimize transmission of raw sensor data, the

processing is located right next to the software part that

communicates with the physical device (like reading the

serial port). Therefore, each sensor data processing

algorithms gives out the information using a marker and

properties. The data fusion part of the software will later

combine these markers to represent markers with more

properties. For example, machine vision can detect the color

of the object and shape, while a laser scanner can provide a

more accurate position for the target. The fusion combines

these two markers to one marker that has color, shape, and

position properties. Further, if algorithm can detect the

material of object, it can estimate the mass or other

properties for the target. This information can further be

used for task planning, environment state progress

prediction, etc.

2) Environment model

An environment model forms a base for the robot’s task

planning, navigation, obstacle avoidance, and for example

human interaction. The model may also contain kinematic

relations (like forces and masses), and it can be used for

predicting the upcoming state of the model. Further, in

technologies, like particle filters, several additional

predictions may exists, which are represented by using

several parallel models and choosing the most likely. In

practice, the environment model is a marker with all the

content stored on children. It may also have one

configuration related properties, and links to other

environment models on the system. One essential part of the

environment model is to provide an integrated way of doing

simultaneous localization and mapping, SLAM and integrate

algorithms like graph slam [13] on it.

3) Knowledge storage

Knowledge storage is a database with a query interface.

Information is stored in several groups of markers,

representing the spatial knowledge of environment and prior

information of objects in operating environment. Using a

query interface, markers from certain spatial area

boundaries, or markers with certain properties can be

requested, and a returned message is a list of markers

matching the query. For example, the robot may request all

printers on a laboratory floor, or a navigation graph (with

several additional routes) for a certain area or a target

position (expressed with a marker).

In addition to the spatial model, the knowledge database

contains “template”-markers for objects that the robot can

already detect. These templates contain properties for

features how to detect target, meanings of object, names for

objects used by humans, material, mass, or similar

properties. By comparing features of detection, software can

add additional properties to a marker that represents the

object. Knowledge storage can be build from commonly

available information, later in the use case section it will be

shown in practice how Open Street Map information is

converted to a knowledge base for an outdoor robot.

In practice, knowledge storage is a marker started with a

network interface. This will be explained in more detail in

the next section.

4) Task definition.

The robots’ task can be expressed using structures like

state machines, parallel scripts, etc. By using markers, a state

machine with sub states (children of the marker) can be used

for constructing a task description for the robot. This state

machine may have state or spatially related properties

proving a hybrid approach to the task description.

The environment model can also be expanded by defining

the use of virtual markers, sort of “hallucinated walls” or

“virtual fences”, by means of which the operation area of the

robot can be limited. The path or navigation graph with

additional routes is expressed using markers. Task definition

is part of the environment model. In multi robot systems,

this can also be shared among several robots, which provides

an easy way for robot group control and task definition and

sharing.

5) Visualization

One important part for verifying system operation is to see

how well the system is working. For a complex and large

amount of information, a visual view is needed to see how

the software is performing. Using level-of-details and

properties related to the visual appearance are used for

drawing the markers on the user interface, for example,

color, shape, and obviously position.

IV. USE CASES

In this chapters, several examples of robot related topics

are studied from marker-perspective. Following gives

example cases where this representation has been used in the

robot’s software architecture. Due lack of space, it will not

cover completely all aspects of robot’s software, but gives

an idea of markers flexibility in each case.

A. Representing a human model and robot’s structures

In Human-robot interaction, the model of human may

vary from simple locating of the human to a detailed

representation of gesture, pose, and emotional state.

Depending on the current task of the robot, level-of-detail on

interest varies a lot. If the task is to drive next to a human,

only location is relevant, while trying to understand the hand

marks, the movements of hands and fingers are focused. The

hierarchical representation gives a way to store all detected

information of a human on one structure, and use the

required level of detail on a certain task (if it is available).

Figure 3 shows an example of how human parts are

organized on hierarchical representation.

By fitting the kinematic model of human to measured

poses, the current movement can be used for predicting near

future possible poses of the human. Similar technology is

used on Ragdoll-physics[14] in computer game engines.

Fig. 3. An example of human coordinate hierarchy, each color represent a

certain level of on marker hierarchy

A similar hierarchical model is used for the robot, including

the sensors on child nodes on hierarchy. The same structure

of joints is used for legged robots, robot manipulators, or

more complex robots. Similarly by using a kinematic model

of the robot, possible causes of actions for certain control

can be predicted by stepping the current state forward. This

online simulation for certain parts is then used for finding

the best possible action for the robot’s actuators.

B. Obstacle avoidance

Using a local environment model of obstacles along the

robot’s path, an obstacle avoidance path can be created. One

way of doing it is by calculating the sum of forces defined

by the attractive force toward a goal and repulsive forces

from each obstacle. The sum of these forces shows the

suitable movement. This can be expanded further by

calculating several variations of weighting the forces and

choosing the fastest one.

C. Sensing and measuring wireless LAN coverage

In this use case, a mobile robot or hand-held device is

continuously scanning available wireless LAN access points

and stores measurements to a marker-based structure. The

structure is continuously updated, and further used for robot

localization. On the base level, a list of markers is created,

and each marker represents an access point. If a new unique

ESSID is detected on scanning, a new marker is added to the

list. Each measurement of the strength of network is stored

on the corresponding marker’s children, and location of

measurement is rounded according the grid size. Figure 4.

shows a simplified example of the sensed structure. A and B

represent base level markers for estimation of two access

points with unique color, and each other circles in the figure

represents a measurement with opacity related to signal

strength. Markers’ A and B locations are calculated based on

each measurement after measurement cycle.

Similarly, any other kind of measurement maps can be

created, for example temperature map, where each marker

stores the spatial temperature that the robot has measured.

 Fig. 4. Visualization of Wi-Fi signal strength sensing

D. Human-robot interaction

Human-robot interactions have become one major topic of

research and development along with the term service

robotics. The main requirement for operating among humans

is to be able to integrate the information from various

sources, and quickly react on changing situations. Any

algorithm has limitations and works only on limited features

on environment and therefore, the robot must have several

sensors, several parallel running algorithms and a way to

adapt algorithm parameters to a current situation on the

environment. For example, one edge detection algorithms

works better on a certain view, while other algorithm or

threshold works better on other view. Running these parallel

and integrating the outputs to one richer model is required.

Figure 5 shows an example of visualization output of the

robot’s vision system integrating object detection using two

algorithms. The system uses a simple knowledge database

for storing features for classification using template markers.

Fig 5. Visualization of vision system detecting objects

The integration of various machine vision algorithms has

also done using markers. In an experiment, a Microsoft

Kinect was used as the main sensor and the camera’s depth

information was used for detecting the location of humans

and other target objects. OpenNI provided a human pose

which was converted to structural representation. By running

in parallel a detection of human, its pose, finding a face,

detecting the person, facial expression, and gesture

movements, a combined representation has build. As each

method can detect, the properties are combined on the

marker representing the human.

E. Swarm of robots

In this use case, markers are used for representing a group of

robots and their coordinated operation. Each robot is

represented with a marker, and the base marker represents

the whole group. Using the base marker and adjusting its

properties, for example, the target for movement, the whole

group can be controlled. The group can be reorganized by

changing the location in a marker tree. Internally, the group

operation includes functionalities like task distribution, or

coordinated movement. Externally, the groups operation is

controlled by adjusting the properties of the group marker.

Fig. 6. Left – spatial location of markers, Right - Hierarchical
representation of robot swarm

In addition to grouping robots to a tree, the swarm

movement can be organized using markers’ links, so that

each robot is linked to neighbors and following their

movements.

F. Creating a navigation model

In this use case, the prior information for outdoor robot

navigation is calculated from two sources. The base is

formed from Open Street Map repository, by requesting xml

representation of nodes on the operating area of the robot.

Graph representation of markers is created and information

of road type, and targets like bus stop, are stored on

properties of the markers. The robot uses this mode for

calculating several additional routes from the current

position to the target position, and update sensed details, like

a visual estimation of traversability of soil to the model.

V. CONCLUSION

By detecting the primitive similarities of mostly used

technologies, a rather simple, but powerful representation

has been created for representing the information in the

robot’s software architecture. Using the same structure

system-wide, algorithms are faster to implement and the

robot’s software can truly step on the next level.

VI. FURTHER WORK

The initial structure for markers has been defined, and

further work will include a standardization of keys used for

certain information. As the core of the system is available,

the major focus will be on creating more practical examples

and real world applications for robots using this

representation.

REFERENCES

[1] RoboEarth project web page: http://www.roboearth.org
[2] Proteus project web page: http://www.anr-proteus.fr/

[3] GeRT project web page: http://www.gert-project.eu/

[4] Rosetta project web page: http://www.fp7rosetta.org/
[5] BRICS project web page: http://www.best-of-robotics.org/

[6] KnowROB project web page: http://ias.cs.tum.edu/research-

areas/knowledge-processing/knowledge4cotesys
[7] F. Brill , W. Martin , T. Olson, “Markers Elucidated and Applied in

Local 3-Space,” In Proceedings of the 1995 IEEE International

Symposium on Computer Vision, 1995
[8] F. Brill “Representation of Local Space in Perception/ Action

Systems: Behaving Appropriately in Difficult Situations”, University

of Virginia Charlottesville, VA, USA
[9] J. Riekki “Reactive Task Execution of a Mobile Robot.” Doctoral

Thesis, Infotech Oulu and Department of Electrical Engineering,

University of Oulu, 1999
[10] A. Tikanmäki “Mobile robot’s environment modeling and

visualization.” Department of Electrical Engineering, University of

Oulu, Oulu, Finland. Diploma thesis, 2002
[11] European standard for spatial information web page:

http://etrs89.ensg.ign.fr/

[12] R. Featherstone “Plücker Basis Vectors”, IEEE Int. Conf. Robotics &
Automation, Orlando, Florida, May 15-19, pp. 1892-1897, 2006

[13] E. Olson and J. Leonard and Seth Teller, “Fast Iterative Optimization

of Pose Graphs with Poor Initial Estimates”, ICRA2006, pp. 2262-
2269.

[14] W. Armstrong and M. Green. Visual Computer, “The dynamics of

articulated rigid bodies for purposes of animation”, pages 231–240.
Springer-Verlag, 1985.

